A Mucor Rouxii Mutant with High Accumulation of an Unusual Trans-Linoleic Acid (9c,12t-C18:2)

Kobkul Laotenga, Rapeepun Pongchuachidthaib, Kanchana Rueksomtawinc, Yuwapin Dandusitapunthb, Morakot Tanticharoena;b;c, Supapon Cheevadhanarakb;c

aBiochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), at King Mongkut’s University of Technology Thonburi, Bangkhuntien, Bangkok 10150, THAILAND
bSchool of Bioresources and Technology,
cPilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkhuntien, Bangkok 10150, THAILAND

Genetic and biochemical approaches reveal the existence of a γ-linolenic acid biosynthetic pathway in Mucor rouxii. By treatment with ultraviolet light, combined with low temperature cultivation and filtration enrichment, a mutant defective in polyunsaturated fatty acid synthesis was isolated. Genetic analysis and fatty acid supplementation indicate that the defect occurred in the Δ^{12}-desaturation resulting in the absence of cis-linoleic acid and γ-linolenic acid and in the accumulation of monounsaturated fatty acids. In addition, an unusual fatty acid, trans-linoleic acid (9c,12t-C18:2), which has not been reported previously in this fungus, was found to increase in the mutant. The information gained from the mutant was used to develop the hypothetical pathway of fatty acid desaturation in M. rouxii.