Air-Side Heat Transfer Coefficient of Thermosyphon Heat Pipe with Crimped Spiral Fins: A Case Study of Staggered Arrangement

A. Nuntaphan
South East Asia Center for Training in Energy for Development
Electricity Generating Authority of Thailand
Mae Moh, Lampang 52220
Tel. 6654-256938
Fax. 6654-256907
e-mail: mmmtap@egat.or.th

T. Kiatsiriroat
Department of Mechanical Engineering
Faculty of Engineering Chiang Mai University
Chiang Mai 50200
Tel. 6653-944144
Fax. 6653-944145
e-mail: tanong@dome.eng.cmu.ac.th

ABSTRACT

This research work studies the air-side heat transfer coefficient of thermosyphon heat pipe in case of staggered-arrangement tubes bank. Normally, the air-side heat transfer coefficient is the lowest and it controls the overall heat transfer of the system. To enhance the overall performance, extended surface is used at the air-side and the crimped spiral finned tube is normally selected in case of thermosyphon heat pipe. In this research work, the heat transfer coefficient of the thermosyphon heat pipe with crimped spiral fins is investigated. The parameters affecting the performance of heat exchanger such as tube diameter, fin spacing, fin height and tube spacing have been studied. Moreover, the empirical correlation for evaluating the air-side heat transfer coefficient is also developed in this work.

Keywords: air-side heat transfer coefficient, thermosyphon heat pipe, crimped spiral fins, heat transfer model

1. INTRODUCTION

Many types of heat exchangers are used as industrial waste heat recovery units such as cross flow, rotary, run around coil, and especially thermosyphon heat exchanger which has high performance and low operating cost. The thermosyphon heat exchanger is used to recover heat from flue gas of the boiler or furnace and transfer this energy to increase the temperature of combustion air (air-preheater) or boiler feed water (economizer).

The thermosyphon heat exchanger comprises of a set of thermosyphon heat pipes with in-line or staggered arrangement. In case of air-preheater, the effective method to improve the performance is to increase the air-side surface area with extended surface. The circular finned is normally designed for the thermosyphon and many correlations are developed for calculating the air-side heat transfer performance of this finned tube [1-3]. However, the process to construct the real circular finned tube is quite complicated with high cost. Thus, the crimped spiral fins are used in practice and Figure 1 shows the shape of the finned tube.

![Figure 1. The shape of crimped spiral fins.](image)

In Thailand, there are a few factories construct this kind of fin and no available heat transfer performance data. Therefore, in this study, the performance of the thermosyphon heat exchanger using crimped spiral fins is investigated and the correlation for evaluating the heat transfer performance of the finned tube is also formulated.

This work can be divided into two parts. The first part is to test the performance of the crimped spiral fins and correlate the heat transfer data. The second part is to find out the performance of the thermosyphon heat...
exchanger using this kind of finned tubes by using the data from Nuntaphan[4].

2. PERFORMANCE TEST OF CRIMPED SPIRAL FIN

2-1 Theory

This research work follows the ANSI/ARI standard [5] for testing the performance of the finned tubes. The air-side heat transfer coefficient of the crimped spiral fins can be evaluated by arranging it as a cross flow heat exchanger shown in Figure 2. Hot water is flowing inside the tube bank and transfers heat to the cross flow air stream. The heat transfer rate \(Q\) of heat exchanger can be calculated as

\[
Q = \dot{m}_a C_p a (T_{ai} - T_{ao}) \quad (1)
\]
\[
Q = \dot{m}_w C_p w (T_{wi} - T_{wo}) \quad (2)
\]

where \(\dot{m}_a\) is the mass flow rate of air, \(\dot{m}_w\) is the mass flow rate of water, \(T_{ai}\), \(T_{ao}\) are inlet and outlet temperatures of air stream, \(T_{wi}\), \(T_{wo}\) are inlet and outlet temperature of water and \(C_p a\), \(C_p w\) are specific heats of air and water respectively.

The performance indicator of heat exchanger is the effectiveness which is defined as

\[
\varepsilon = \frac{Q}{Q_{\text{max}}} \quad (3)
\]
\[
\varepsilon = \frac{Q}{(\dot{m}C_p)_{\text{max}} \Delta T_{\text{max}}} \quad (4)
\]

where \(\varepsilon\) is the effectiveness. The relation between the effectiveness and the air side heat transfer coefficient in case of 4 tube rows is as follow

\[
\varepsilon = \frac{1}{C^*} \left[1 - e^{-4KC^*} \left[\frac{1 + C^*K^2(6 - 4K + K^2)}{8C^*K^6} \right] \right] \quad (5)
\]

\[
K = 1 - e^{-NTU/K} \quad (6)
\]

\[
NTU = \frac{UA}{(\dot{m}C_p)_{\text{min}}} \quad (7)
\]

\[
C^* = \frac{(\dot{m}C_p)_{\text{min}}}{(\dot{m}C_p)_{\text{max}}} \quad (8)
\]

\[
\frac{1}{UA} = \frac{1}{\eta\h\lambda A_o} + \frac{\ln(d_o / d_i)}{2\pi k L} + \frac{1}{h_i A_i} \quad (9)
\]

where \(h\) is the heat transfer coefficient, \(A\) is area, \(d\) is tube diameter, \(L\) is tube length, \(k\) is thermal conductivity of tube material, \(\eta_o\) is surface efficiency of the air side and subscripts \(o, i\) are defined as the air side and the tube side respectively.

The tube side heat transfer coefficient can be calculated from Gnielinski correlation [6] as

\[
h_t = \left(\frac{k}{d} \right) \left[\frac{(Re_d - 1000)Pr(f_i / 2)}{1 + 12.7\sqrt{f_i / 2(Pr)^{2/3} - 1}} \right] \quad (10)
\]

\[
f_i = \left[1.58ln(Re_{oi}) - 3.28 \right]^{2} \quad (11)
\]

where \(Re_d\) is the tube-side Reynolds number. The surface efficiency from equation (9) can be estimated from

\[
\eta_o = 1 - \frac{A_r}{A_o} (1 - \eta) \quad (12)
\]

\[
A_o = A_r + A_b \quad (13)
\]

where \(A_o\) is the total surface area of finned tube, \(A_r\) is surface area of fin, \(A_b\) is surface area of bare tube and \(\eta\) is fin efficiency which can be calculated from Schmidt approximation [7] as follows:

\[
\eta = \frac{\tanh(mr\phi)}{mr\phi} \quad (14)
\]
\[m = \frac{2h}{k_f f_t} \]

(15)

\[\phi = \left(\frac{R_{eq}}{r} - 1 \right) \left[1 + 0.35 \ln \left(\frac{R_{eq}}{r} \right) \right] \]

(16)

\[\frac{R_{eq}}{r} = 1.27 \frac{X_L}{X_L} \left(X_L - 0.3 \right)^{1/2} \]

(17)

\[X_L = \sqrt{\left(\frac{S_t}{2} \right)^2 + S_t} \]

(18)

\[X_M = 0.5 S_t \]

(19)

where \(k_f \) is thermal conductivity of fin material, \(S_t \) and \(S_t \) are transverse and longitudinal pitches of tube bank respectively and \(f_t \) is fin thickness.

2-2 The experimental setup

Figure 3 shows the experimental setup. The air stream at room temperature is fed through the tube bank while the hot water is flowing inside the tube. The water flow rate is kept constant at 8 l/min and the inlet temperature is at 65°C. The mass flow rate of air is varied in the range of 0.1-0.5 kg/s. By measuring the inlet and outlet temperatures of the water and the air streams including the mass flow rate of each side, the air side heat transfer coefficient could be calculated.

Table 1 shows dimensions of the finned tubes and their arrangement. The effect on the heat transfer performance of the parameters such as tube diameter, fin height, fin spacing, fin thickness and tube arrangement are studied. Moreover the empirical model including these parameters is formulated for calculating the air side heat transfer coefficient

<table>
<thead>
<tr>
<th>(d_o)</th>
<th>(d_i)</th>
<th>(f_s)</th>
<th>(f_h)</th>
<th>(f_t)</th>
<th>(S_t)</th>
<th>(S_i)</th>
<th>(n_t)</th>
<th>(n_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>6.10</td>
<td>100</td>
<td>0.4</td>
<td>72.0</td>
<td>36.0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>3.85</td>
<td>100</td>
<td>0.4</td>
<td>72.0</td>
<td>36.0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>2.85</td>
<td>100</td>
<td>0.4</td>
<td>72.0</td>
<td>36.0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>6.10</td>
<td>100</td>
<td>0.4</td>
<td>84.0</td>
<td>24.2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>3.85</td>
<td>100</td>
<td>0.4</td>
<td>84.0</td>
<td>24.2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>2.85</td>
<td>100</td>
<td>0.4</td>
<td>84.0</td>
<td>24.2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>6.10</td>
<td>100</td>
<td>0.4</td>
<td>50.0</td>
<td>43.3</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>3.85</td>
<td>100</td>
<td>0.4</td>
<td>50.0</td>
<td>43.3</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>2.85</td>
<td>100</td>
<td>0.4</td>
<td>55.6</td>
<td>48.2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>6.10</td>
<td>100</td>
<td>0.4</td>
<td>55.6</td>
<td>48.2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>3.85</td>
<td>15.0</td>
<td>0.4</td>
<td>55.6</td>
<td>48.2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>21.7</td>
<td>16.5</td>
<td>3.85</td>
<td>10.0</td>
<td>0.4</td>
<td>50.0</td>
<td>43.3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: All dimensions are in millimeter.

2-3 Results and Discussion

Figures 4-6 shows the relation of the air-side heat transfer coefficient and the mass flow rate of air stream. All of the mentioned Figures give the same undoubted results that higher the mass flow rate of air stream results in higher the heat transfer coefficient. From Figure 4, it is found that smaller diameter of tube gives higher heat transfer coefficient. This result comes from the re-circulation of air stream behind the tube that increases with the tube diameter. This affect pronounces the ineffective area of tube and it brings to get lower heat transfer coefficient. Wang et al. [8] also found this phenomena by using flow visualization.

Figure 5 shows the effect of fin spacing, and \(S_t \) on the airside heat transfer coefficients. The tube diameter is 21.7 mm and the fin height is 10 mm. For a smaller transverse tube pitch
(S_t = 50 mm), one can see the effect of fin spacing on the heat transfer coefficients is negligible. This result is analogous to that of continuous fin geometry as reported by Rich [9] and Wang et al. [10]. However, for a larger transverse pitch of 84 mm, the heat transfer coefficients decrease with the decrease of fin spacing. This phenomenon may arise from the influence of airflow bypass effect. As is known, the corresponding pressure drop rises with the decrease fin spacing. As a consequence, although the airflow is directed by the tube row, the airflow is prone to flowing the portion where the flow resistance is smaller. For a very large of transverse tube pitch of 84 mm, part of the directed airflow just bypass the tube row and fin without effective contribution to the heat transfer, thereby causing a drop of heat transfer coefficients at smaller fin spacing. This flow bypass phenomenon becomes much where the transverse tube pitch is increased. Therefore, one can see no appreciable change of heat transfer coefficients for S_t = 50 mm.

Figure 6. Effect of fin height on air-side heat transfer coefficient.

In this research work, the empirical model for predicting the heat transfer coefficient for various types of the finned tubes is also developed. The empirical model is as follow.

\[
Nu = 0.0276Re_0^{0.8834} \left(\frac{f_s}{f_t} \right)^{-0.1430} \left(\frac{S_t}{S_l} \right)^{1.1866} \left(\frac{S_t}{d_0} \right)^{0.7815} \left(\frac{d_t}{d_0} \right)^{-0.1250}
\]

Figure 7. Comparison of Nu from the experimental data and the model.
Figure 7 shows the comparison of Nu from the experimental data and the model. It is found that the model can predict 98.6% of the experimental data with in ±15% error.

![Diagram of parallel flow arrangement](image)

a. Parallel flow arrangement

![Diagram of counter flow arrangement](image)

b. Counter flow arrangement

Figure 8. Thermosyphon heat exchanger. Water is working fluid inside.

3. PERFORMANCE OF THERMOSYPHON HEAT EXCHANGER USING CRIMPED SPIRAL FIN

In this part, the crimped spiral fin tube is used as in the air-to-air thermosyphon heat exchanger shown in Figure 8. The heat transfer rate of the thermosyphon heat exchanger can be calculated as follows:

\[
Q = \dot{m}_h C_p (T_n - T_{ho})
\]

\[
= \dot{m}_c C_p (T_{co} - T_{co})
\]

\[= (J/A) A T_{intd} \tag{21}\]

where UA is the product of overall heat transfer coefficient-area of the thermosyphon heat exchanger. In this research work, the simulation program for calculating the performance of thermosyphon heat exchanger developed by Nuntaphan [4] is selected for evaluating the performance. Figures 9-12 show the simulation results at various conditions.

From the Figures, it is found that the performance of the system depends on the mass flow rate of air and the inlet temperature of hot gas. Note that in this part the mass flow rate of the hot gas equals to the mass flow rate of the cold gas. Moreover, it is also found that the counter flow gives higher performance than the parallel flow.

Figure 9 shows the effect of tube arrangement on the performance of thermosyphon heat exchanger. It is found that triangular arrangement gives the highest heat transfer rate because of its highest air-side heat transfer coefficient.

Figures 10-11 show the effect of fin spacing and fin height on the heat transfer rate. The outputs show the same results as those described in the previous section.

![Graph showing effect of tube arrangement on heat exchanger performance](image)

Figure 9. Effect of tube arrangement on the performance of thermosyphon heat exchanger.

![Graph showing effect of fin spacing on heat exchanger performance](image)

Figure 10. Effect of fin spacing on the performance of thermosyphon heat exchanger.

Figure 12 shows the effect of the inlet hot gas temperature on the heat rate. Higher the temperature difference between the heat source and heat sink results in higher heat transfer rate.
Anyway, the temperature must be controlled not to exceed the critical heat flux condition.

Figure 11. Effect of fin height on the performance of thermosyphon heat exchanger.

Figure 12. Effect of hot gas temperature on the performance of thermosyphon heat exchanger.

4. CONCLUSION

This work studies the performance of crimped spiral fin at various conditions such as fin spacing, fin height, tube arrangement, mass flow rate and temperature of air. The empirical model for predicting the air-side heat transfer coefficient is also developed and it can predicts the results quite well. This research also studies the performance of thermosyphon heat exchanger using crimped spiral fin. It is found that fin spacing, fin height, tube arrangement, mass flow rate and temperature of air and the direction of air streams give high effect to the heat transfer rate of heat exchanger.

5. ACKNOWLEDGEMENT

The authors gratefully acknowledge the support provided by the Thailand Research Fund for carrying out this study.

NOMENCLATURES

A Area (m²)

Cp Specific heat (J/kgK)

dr Outside diameter of finned tube (mm)

di Inside diameter of bare tube (mm)

do Outside diameter of bare tube (mm)

fh Fin height (mm)

fs Fin Spacing (mm)

ft Fin thickness (mm)

h Heat transfer coefficient (W/m²K)

k Thermal conductivity (W/mK)

L Length (m)

ṁ Mass flow rate (kg/s)

nt Number of tube rows

nt Number of tubes in row

NTU Number of transfer unit

Nu Nusselt Number

Pr Prandtl number

Q Heat transfer rate (W)

Re0 Reynolds number

St Transverse pitch (mm)

Sl Longitudinal pitch (mm)

T Temperature (°C)

U Overall heat transfer coefficient (W/m²K)

Greek symbols

e Effectiveness

η Efficiency

Subscripts

a Air

b Bare tube

f Fin

i Inlet, tube side

o Outlet, air side

w Water

REFERENCES

