A New Record and Lectotypification of *Persicaria viscosa* (Polygonaceae) in Thailand

CHORTIP KANTACHOT¹, PRANOM CHANTARANOTHAI¹*
AND DAVID A. SIMPSON²

¹Applied Taxonomic Research Center, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
²Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.

ABSTRACT.– *Persicaria viscosa* (Buch-Ham. ex D. Don) H. Gross ex Nakai is recognized as a new record from Thailand. The species is also lectotypified, described and illustrated from the Thai material.

KEY WORDS: new record, lectotypification, Polygonaceae, *Persicaria viscosa*, Thailand

INTRODUCTION

The genus *Polygonum* L. was established by Linnaeus in 1753. Many authors have tried to subdivide the genus *Polygonum s.l.* into more natural groups at generic, subgeneric or sectional rank. However, it is still a matter of debate as to which rank should be used (Haraldson, 1978; Ronse Decraene and Akeroyd, 1988). The genus has been recognized in the broad sense in Thailand including *Aconogonon* (Meisn.) Reichb., *Bistorta* (L.) Mill. and *Perscaria* (L.) Mill. with 18 species (The Forest Herbarium, Royal Forest Department, 2001). However, our studies suggest that these groups should be recognized as distinct genera with one species each in *Aconogonon*, *Bistorta* and *Polygonum s.s.* and 25 species in *Persicaria*.

No revision of Polygonaceae in Thailand has previously been undertaken. In preparing the treatment of the family for the forthcoming Flora of Thailand account, specimens of *Persicaria viscosa* (Buch.-Ham. ex D. Don) H. Gross ex Nakai were collected by the first author. The species appears to be a new record for Thailand, a fact supported by reference to the Flora of China account of Polygonaceae (Anjen et al., 2003) which gives the distribution of *P. viscosa* as Taiwan, India, Japan, Korea, Nepal, Russia (Far East). It has also been recorded from Vietnam (Hô, 1991) and there are specimens from Cambodia and Laos in BM, K and P (abbreviations according to Holmgren and Holmgren, 1998). It also became apparent that the
designation of a lectotype for this taxon was needed.

MATERIALS AND METHODS

The present study is based on field collections and herbarium materials. The voucher specimens from field work are deposited at KKU. Additional material has been examined and consulted from the following herbaria: AAU, BCU, BK, BKF, BM, C, E, CMU, K, KKU, L, P, PSU, QBG, SING and TCD (abbreviations according to Holmgren and Holmgren, 1998. All vegetative and floral parts were measured in a dry state and some parts were observed and measured under a stereo microscopy by both eyepiece and stage graticules. Leaf and ocrea characters actually measured at the fourth, fifth and sixth leaves from the apex of each specimen. The ecological information, location and distribution are recorded.

SYSTEMATICS

Persicaria viscosa (Buch.-Ham. ex D. Don)
H. Gross ex Nakai

Figure 1

Persicaria viscosa (Buch.-Ham. ex D. Don)

Erect perennial herb, 1–1.5 (–3) m tall, viscid; stem and branches terete, hirsute with glandular hairs. Leaves with petioles 4–7 mm long; lamina 9.9–15.5 (–17.5) by 2.4–3.8 (–4.5) cm, ovate and lanceolate, with hirsute and glandular hairs on both surfaces, base attenuate, apex acute, acuminate or caudate, margin entire with hirsute and glandular hairs, secondary nerves with 19–23 (–25)-paired. Ocreae cylindrical, 1.5–2 cm long, scarious, hirsute and glandular hairy, with inconspicuous nerves, margin truncate, with numerous ciliate hairs, 4–6 mm long. Inflorescence spicate, cylindrical racemose, 18–30.5 (–35) cm long, erect sometimes pendulous, terminal and axillary, (18–) 24–32 (–36) ocreolae per spike, inflorescence branches with hirsute and glandular hairs; spike (1.8–) 2.8–5 (–6) cm long; leafy bract (30–) 42–93 (–110) by 3–11 mm; elliptic or lanceolate, apex acute or acuminate, margin hirsute. Flowers in fascicles, each fascicle with 4–5 flowers; pedicels 1–2 mm long, glabrous; bracteoles 2–2.5 mm long, hyaline, 1-ridged, upper parts of ridge setose, 0.5–2 mm long; ocreolae 2.5–3.8 (–4.5) mm long, with hirsute and glandular hairs, apex acute, with hirsute and glandular hairs at margins. Tepals 5, fused at base, pinkish red outside, white inside; lobes 1.5–2 by 1–1.5 mm, with 3–4 nerves, apex obtuse, gland dots absent; tube 1–2 mm long, with 8 glands at base. Stamens 8, in a single whorl, 1–1.5 mm long; anthers elliptic, white, 0.3–0.5 mm long. Style 1, deeply 3-clefted, 1.2–1.5 mm long, stigma capitate, white. Nuts triangular, 2.1–2.5 by 1.8–2 mm, shiny black.

Thailand.- NORTH-EASTERN: Loei [Phu Rua district, near paddy field, alt. ca.
600 m, 16 Aug. 2006, C. Kantachot 434 (KKU!), Khon Kaen [Chum Pae district, along roadsides, alt. ca. 300 m, 24 Aug. 2005, C. Kantachot 435 (KKU!)]; EASTERN: Roi Et [Muang district, along roadsides, 16° 03.361’N, 103° 41.005’ E, alt. 135 m, 15 May 2005, C. Kantachot 258 (KKU!)].

Distribution. Russia (Far East), India, Nepal, China, Taiwan, Korea, Japan, Vietnam.

Ecology. Along roadsides near paddy fields; alt. 135–600 m.

DISCUSSION

Persicaria viscosa differs from other species of the genus by its distinctly hirsute and viscid hairs throughout, cylindrical inflorescence and pinkish red flowers. Specimens from Loei province are up to 3 m tall.

The original description was made by F. Buchanan-Hamilton and published by D. Don (1825) based on specimens collected by Buchanan-Hamilton from Nepal that are in the Wallich Herbarium (K-W) and K. Four different numbers (*Wallich* 1713.A, 1713.B, 1713.C and 1713.D) are present in K-W. *Wallich* 1713.A is chosen here as the lectotype because it is the one number which has information on the sheet about the locality given in the protologue. It is also better preserved than the other numbers. An isolectotype is present in K.

ACKNOWLEDGEMENTS

We thanks Nicholas Hind for his advice on Buchanan-Hamilton material in the Wallich Herbarium and the directors and curators of AAU, BCU, BK, BKF, BM, C, E, CMU, K, KKU, L, P, PSU, QBG, SING and TCD herbaria for making their collections available for study. This work was supported by the Ubon Ratchathani University. We wish to express thank to the TRF/BIOTEC Special Programme for Biodiversity Research and Training grant (BRT 149026) for supporting excursions to the field.

LITERATURE CITED

Received: 26 November 2007
Accepted: 29 February 2008