Electrophilic Aromatic Addition Reaction: Electrophilic Attack at an Aromatic H Substituent Position

Han Young Choi, Ekaruth Srisook,1 Kun Sam Jang, and Dae Yoon Chi*
Department of Chemistry, Inha University, 253 Yonghyundong Namgu, Inchon 402-751, Korea
dychi@inha.ac.kr

Received September 24, 2004

Introduction

Although a wide variety of electrophilic species can attack aromatic rings and effect substitution, a single broad mechanism encompasses the large majority of electrophilic aromatic substitution reactions through the reversible formation of π and σ complexes.1 In electrophilic substitution, the formation of the σ complex is generally the rate-determining step, with the aromatization occurring much faster than the formation of the nucleophile to the σ complex carboxation, but there are exceptions. Some authors indicate that nucleophile addition proceeds faster than deprotonation,2 but the inability to isolate the intermediate adducts—due to their rapid rearomatization or further reaction to multiaddition products—forces investigators to draw conclusions regarding intermediate identity based solely on structural information obtained from the products. In cases where isolated adducts have been identified, the intermediates sometimes imply significant mechanistic differences when compared to the majority of known electrophilic aromatic substitutions. One example of this is the series of adducts identified in the nitration of furan, whose mode of decomposition differs greatly from that commonly seen in six-membered systems.3 Moreover, when rearomatization by deprotonation is blocked, the known ipso attack of the nitro group at the substituted position also showed the possibility of electrophilic addition on benzenoid systems.4

Herein, we wish to report and propose a mechanism for an unusual electrophilic aromatic addition reaction (Ad_{Ar}). During our preparation of 5,7-dibromo-8-methoxyquinaldine as a key intermediate in the synthesis of 7-bromoquinaldine-5,8-dione, direct bromination in either acidic or neutral conditions led only to the formation of 5-bromo-8-methoxyquinaldine. Under basic methanolic conditions, however, we unexpectedly obtained the 5,7-dibromo-8,8-dimethoxy-7,8-dihydroquinaldine adduct 2a. This result not only allows for the functionalization of aromatic compounds via the addition adducts, but also introduces the possibility of an alternate mechanism for electrophilic substitution reactions.

We report and propose a mechanism for an unusual electrophilic aromatic addition reaction (Ad_{Ar}). During our preparation of 5,7-dibromo-8-methoxyquinaldine as a key intermediate in the synthesis of 7-bromoquinaldine-5,8-dione, direct bromination in either acidic or neutral conditions led only to the formation of 5-bromo-8-methoxyquinaldine. Under basic methanolic conditions, however, we unexpectedly obtained the 5,7-dibromo-8,8-dimethoxy-7,8-dihydroquinaldine adduct 2a. This result not only allows for the functionalization of aromatic compounds via the addition adducts, but also introduces the possibility of an alternate mechanism for electrophilic substitution reactions.
Electrophilic Aromatic Addition Reaction

Table 1: Bromomethoxylation of 8-Methoxyquinaldine (1a) under Various Conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>brominating agent</th>
<th>base (equiv)</th>
<th>yield of product (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Br₂</td>
<td>NaHCO₃ (3.5)</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Br₂</td>
<td>NaHCO₃ (2)</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Br₂</td>
<td>NaOMe (3)</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Br₂</td>
<td>NaOMe (1)</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Br₂</td>
<td>NaOH (1)</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>NBS</td>
<td>NaHCO₃ (3.5)</td>
<td>96</td>
</tr>
</tbody>
</table>

* All reactions were carried out on 2.0 mmol of 8-methoxyquinaldine 1a with 3 equiv of bromine for 10 min at room temperature. * Isolated yield. * 5-Bromo-8-methoxyquinaldine.

Results and Discussion

The conversion of 8-methoxyquinaldine 1a by the treatment of bromine (3.0 equiv) in the presence of NaHCO₃ (3.5 equiv) occurred simply at room temperature (Scheme 1) and led to the formation of an intermediate, 5-bromo-8-methoxyquinaldine, which was indicated from TLC monitoring. After addition of water, the nearly pure addition product 2a was precipitated as a racemic mixture. The proton NMR spectrum shows the H7 peak at 4.88 ppm (d, J = 7.0 Hz) as well as two different methoxy peaks, clearly proving the existence of the tetrahedral product.

Structural characterization of 2a was further confirmed by elemental analysis, mass spectroscopy, and single-crystal X-ray analysis. X-ray crystallographic data for 2a (Figure 1) illustrate that the bromine at C7 is in an axial-like orientation and is antiplanar with respect to one methoxy group, thereby placing H7 in an equatorial-like orientation, rendering it resistant to rearomatization by E2-elimination.

Upon first extension of this methodology to 1-methoxyterephthalene (1b), only the substitution products were obtained (Scheme 2). Interestingly, the TLC analysis used to monitor this reaction indicated the formation of dibromo-8,8-dimethoxy-7,8-dihydroquinidine adduct 2a as the major product. To the best of our knowledge, this is the first reported isolation of an addition adduct at an aromatic H substituent position during the electrophilic aromatic substitution of a benzenoid compound. This result not only allows for the functionalization of aromatic compounds via the addition adducts, but also introduces the possibility of an alternate mechanism for electrophilic substitution reactions.

Figure 1. The X-ray structure of tetrahedral adduct 2a.

Scheme 1. The Addition Reaction of 8-Methoxyquinaldine (1a)

Scheme 2. The Addition Reaction of 1-Methoxyterephthalene (1b)
To check the generality of the reaction, we attempted the bromoalkoxylation of various bicyclic aromatic compounds under the same reaction conditions as Table 1, entry 1 (Table 2). The Ad\(_{E}Ar\) reaction of 5-methoxyquinoline (entry 1) proceeded well, giving the stable addition product 2c in very high yield (90%). Alternatively, we obtained a mixture of both addition and substitution products when the \(\beta\)-methoxy compound, 6-methoxyquinoline (1d), was used (entry 2). The \(^1\)H NMR spectrum of 2d showed a long-range coupling constant between H5 and H7 of 2.0 Hz, which is unusually large due to the planar W conformation of the four \(\sigma\) bonds. This suggests that the bromomethoxylated product exists in the same conformer as 2a. TLC analysis indicates only 1.5 equiv of bromine are required to complete the reaction. Like the quinoline, the reaction of 7-methoxyisoquinoline (1e) gave product 2e with similar results (entry 3). To study the effects of nonalcoholic solvents in the presence of additional nucleophiles, the hydroxy ether derivative 1f was treated in acetonitrile (entry 4). The bromoalkoxylated spiro compound 2f was isolated in moderate yield along with the dibromo byproduct, indicating the possibility of introducing various nucleophiles in conjunction with nonnucleophilic solvents for use in the Ad\(_{E}Ar\) reaction.

The stereochemistry of the reaction was further investigated. Although it is well-known that many polar addition reactions of halogen electrophiles to alkenes take place with exclusive anti-stereochemistry, there are also many examples of syn additions.\(^8\) The antiaddition could result from bridged bromonium ion intermediates and from very rapid capture of a carboxocation intermediate by nucleophilic solvent. On the other hand, if the principal intermediate were an ion pair that collapsed faster than translocation about the anion, the syn addition could predominate. In the case of bromoalkoxylation, syn addition could be possible only when the brominating agent was hypobromite, which was reported to be formed from bromine in methanol under basic condition.\(^9\) However, the mixture of both addition products could be obtained if the cationic intermediate were very stable. Therefore, the addition orientation can show the interpretation of reaction stereochemistry and mechanism. When methoxy compounds were treated in methanol solvent, we were unable to distinguish where each methoxy group came from. Therefore, the reactions of 8-ethoxyquinoline (1h) in methanol and 8-methoxyquinoline (1a) in ethanol were used in this study as shown in Scheme 3. Both reactions yielded a mixture of addition products, 5a and 6a, the major product being the antiaddition one. The structures of both products were confirmed by X-ray crystallography (Figure 2). The result elucidated that the alkoxylquinidine reacted with bromine molecules to produce a stable cation intermediate and was finally attacked by a nucleophilic alkoxide, preferentially at the opposite side of the bromine group. We have proposed a mechanism for this addition reaction (Scheme 4) in which the brominated reactant probably forms a cationic intermediate (\(\sigma\) complex),

Table 2. Bromoalkoxylation of Various Methoxy Bicyclic Aromatic Compounds under NaHCO\(_3\)–Methanol Conditions\(^a\)

<table>
<thead>
<tr>
<th>entry</th>
<th>compound</th>
<th>yield of product (%)(^b)</th>
<th>addition adduct 2</th>
<th>substitution adduct 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1c</td>
<td></td>
<td>2c (90)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1d</td>
<td></td>
<td>2d (47)</td>
<td>3d (40)</td>
</tr>
<tr>
<td>3</td>
<td>1e</td>
<td></td>
<td>2e (75)</td>
<td>3e (19)</td>
</tr>
<tr>
<td>4(^c)</td>
<td>1f</td>
<td>2f (30)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\) Unless otherwise noted, all reactions were carried out under the same conditions as in Table 1, entry 1. \(^b\) Isolated yield. \(^c\) Acetonitrile was used as a solvent.

Scheme 3. The Reactions of 8-Ethoxyquinoline and 8-Methoxyquinoline

stabilized by the methoxy group. The formation of the stable complex possibly leads to either deprotonation—aromatization or nucleophilic capture. The aromatization from 2b requires that the proton should be either anti-coplanar or syn-coplanar to methoxy. As the hydrogen occupies a gauche position with respect to the adjacent methoxy substituents in the A conformer, the change of conformation from A to B conformer (Scheme 4) might require much higher activation energy due to steric hindrance. These bulky moieties may hinder the solvent or other bases from assisting in proton removal, favoring either (a) regeneration of the reactant from the σ complex or (b) nucleophilic attack at the ipso position of the methoxy group, giving the kinetic addition adduct 2 as a racemic mixture. Although the formation of aromatic products is usually considered as under thermodynamic control, carbocation sequences often give products under kinetic control. Moreover, the fused ring and the bulky group also make changing conformation impossible. The R-methoxy compounds 1a–c, f yielded only addition adducts 2a–c, f, whereas the ω-methoxy compounds 1d–e gave a mixture of both addition and substitution products, perhaps due to the acidity of the proton at the bromo position. The benzylic protons of the σ complex intermediates for 1d–e should be easier to remove than the nonbenzylic protons of 1a–c.

In summary, we have demonstrated a novel reaction and mechanism—electrophilic aromatic addition reaction (AdAr) at an aromatic H substituent position—for fused bicyclic aromatic compounds, as well as the first isolation of the corresponding addition adducts. These stable adducts should provide new tools for the functionalization of aromatic rings. The methoxy bicyclic aromatic system is a good example of the addition reaction of bromine and methoxide. Further studies regarding mechanism as well as applications of the addition products are currently underway in our laboratory.

Experimental Section

Typical Procedure for the Electrophilic Aromatic Addition Reaction. To the suspension of methoxy compound (2 mmol) and NaHCO₃ (3.5 or 1.75 equiv) in MeOH (6 mL) was added a solution of Br₂ (3.0 or 1.5 equiv) in MeOH (1.5 mL) with stirring at room temperature. After 5 min, water (3 mL) was added and the reaction was stirred for another 5 min. Then, water (30 mL) and Na₂SO₃ (0.32 g) were added. The mixture was extracted with CH₂Cl₂ (2 × 20 mL) and the combined organic layers were washed with brine and dried (Na₂SO₄). The residue was purified by flash column chromatography.

5,7-Dibromo-8,8-dimethoxy-7,8-dihydroquinidine (2a). Yellowish crystalline solid, mp 142–143 °C; ¹H NMR (200 MHz, CDCl₃) δ 2.69 (s, 3H), 3.00 (s, 3H), 3.54 (s, 3H), 4.87 (d, J = 7.0 Hz, 1H), 6.68 (d, J = 7.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 25.1, 47.1, 48.9, 52.0, 98.4, 123.2, 124.0, 125.1, 129.2, 135.9, 150.4, 158.8; MS (EI) 365 (M⁺), 363 (M⁺), 361 (M⁺), 330, 254, 252 (100), 250, 237, 222, 203, 188, 174, 157, 142, 128, 115, 102, 86. Anal. Calcd for C₁₂H₁₃Br₂NO₂: C, 39.70; H, 3.61; N, 3.86. Found: C, 39.74; H, 3.66; N, 3.61.

FIGURE 2. The X-ray structure of products 5a and 6a.
2,4-Dibromo-1,1-dimethoxy-1,2-dihydronaphthalene (2b). Colorless liquid; 1H NMR (200 MHz, CDCl3) δ 2.88 (s, 3H), 3.44 (s, 3H), 4.82 (d, J = 7.0 Hz, 1H), 6.65 (d, J = 7.0 Hz, 1H), 7.40–7.86 (m, 2H), 7.67–7.97 (m, 2H); 13C NMR (50 MHz, CDCl3) δ 47.4, 48.4, 51.4, 52.8, 53.8, 56.5, 98.0, 122.9, 123.5, 124.6, 128.0, 128.9, 135.5, 140.6, 147.2, 152.9, 154.6, 158.6; MS (EI) δ 286 (M+), 253 (M+ – 33), 218 (M+ – 66), 202, 190, 175, 159, 152, 146, 134, 125, 119, 110, 98, 97, 96, 95, 88, 87, 77, 76, 75, 74, 63, 52, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. Found: C, 41.56; H, 4.38; N, 3.58.

5-Bromo-6,6-dimethoxy-6,6-dihydroquinoline (2d). Off-white solid, mp 57–60 °C; 1H NMR (200 MHz, CDCl3) δ 2.54 (s, 3H), 3.23 (s, 3H), 5.12 (d, J = 2.2 Hz, 1H), 6.16 (dd, J = 10.2, 2.2 Hz, 1H), 6.83 (d, J = 10.6 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H); 13C NMR (50 MHz, CDCl3) δ 24.5, 48.4, 49.4, 51.4, 98.9, 122.6, 123.5, 124.6, 128.0, 128.9, 135.5, 140.6, 147.2, 152.9, 154.6, 158.6; MS (EI) δ 286 (M+), 253 (M+ – 33), 218 (M+ – 66), 202, 190, 175, 159, 152, 146, 134, 125, 119, 110, 98, 97, 96, 95, 88, 87, 77, 76, 75, 74, 63, 52, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. Found: C, 41.56; H, 4.38; N, 3.58.

8-Bromo-7,7-dimethoxy-7,8-dihydroquinoline (2e). Colorless crystalline solid, mp 123 °C; 1H NMR (200 MHz, CDCl3) δ 2.67 (s, 3H), 2.84 (m, 1H), 3.52 (s, 3H), 3.58 (m, 1H), 3.62 (m, 1H), 5.8 (d, J = 8.4 Hz, 1H), 6.87 (d, J = 6.8 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H); 13C NMR (50 MHz, CDCl3) δ 46.6, 48.3, 51.3, 98.8, 121.4, 123.1, 130.9, 133.7, 137.7, 149.3, 150.8; MS (EI) δ 271 (M+), 269 (M+ – 2), 250, 238, 225, 223, 190, 175, 159, 144, 116, 89; HRMS (EI) calced for C₁₃H₁₂BrN₂O₂: M+ 283.0208, found 283.0206.

Acknowledgment. This work was supported by the Real Time Molecular Imaging Project of KISTEP (2004-02156) in Korea and we thank Professor Peter Beak and Ms. Lynne Miller-Deist for helpful discussions. High resolution mass spectra were carried out at the Korea Basic Science Institute (Daegu, Korea). This work is dedicated to Professor John A. Katzenellenbogen of the University of Illinois at Urbana–Champaign on the occasion of his 60th birthday (May 10, 2004).

Supporting Information Available: Experimental procedure of starting materials and characterization data of the rest of the compounds and crystallographic data collection parameters for 2a. This material is available free of charge via the Internet at http://pubs.acs.org.