Hematological and serum biochemical values of white ibis (*Threskiornis melanocephalus*)

Worapol Aengwanich¹ and Alongkoad Tanomtong²

Abstract

Aengwanich, W. and Tanomtong, A.

Hematological and serum biochemical values of white ibis

(*Threskiornis melanocephalus*)

Hematological and biochemical values are important for diagnosis of clinical signs, showing how disease processes change. This is the first report to demonstrate hematological and serum biochemical values of white ibis (*Threskiornis melanocephalus*) in Thailand, which are rare species in tropical countries. The study was carried out in ten healthy white ibises (male, n=5; female, n=5), at the age of 4 years from Khow Khoew Open Zoo, Chon Buri province, Thailand. The results revealed the following information: total red blood cell, hemoglobin concentration, packed cell volume, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, total white blood cell, percentage of lymphocyte, percentage of heterophil, percentage of monocyte, percentage of eosinophil, percentage of basophil and thrombocyte of white ibis were $2.78 \pm 0.70 \times 10^6$ cells/µl, 18.75 ± 1.32 g/dl, $46.00 \pm 3.59\%$, 173.51 ± 38.52 fl, 70.73 ± 15.42 g/dl, 40.82 ± 1.65 pg, $1.49 \pm 0.66 \times 10^4$ cells/µl, $89.70 \pm 6.40\%$, $8.50 \pm 6.34\%$, $0.50 \pm 0.97\%$, $0.90 \pm 1.29\%$, $0.30 \pm 0.95\%$ and $16.2 \pm 0.49 \times 10^3$ cells/µl, respectively. Serum biochemistry values i.e. serum glucose, serum creatinine, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase of white ibis were 12.55 ± 1.90 mmol/dl, 69.95 ± 13.05 mmol/l, 204.82 ± 56.76 IU/L and 30.43 ± 8.66 IU/L, respectively. Hematological and biochemical values between males and females white ibis were not significantly different ($P>0.05$).

Key words : hematology, serum biochemistry, white ibis (*Threskiornis melanocephalus*)

¹D.V.M., Ph.D.(Physiology), Division of Animal Production Technology, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44000, Thailand. ²M.Sc.(Genetic), Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

Corresponding e-mail: worapol.a@msu.ac.th

Received, 21 August 2003 Accepted, 5 April 2004
Stephany, W. and Tanomtong, A.

Hematological and serum biochemical values of white ibis

White ibis (Threskiornis melanocephalus) is a large, white bird (Lekagul and Crownin, 1974), standing at approximately 76 cm high with a naked head, and long curved black bill. They are found all over the countryside, especially on river sand bars, rice fields and marshes (Lekagul, 1971). Immature birds have mottled heads with brown and conspicuous red patches under their wings (Lekagul and Crownin, 1974). Male and female birds are visually identical. These birds are found in the Republic of China, Taiwan, India, Japan and Southeast Asia. These birds are classified as order Ciconiformes, in the Family Threskiornithidae (Lekagul and Crownin, 1974; Pettinggill, 1956).

At present, white ibises are rare species in Thailand and endangered in other tropical countries. Hematological values are important for clinical pathological diagnosis such as traumatic injury, parasitism, organic disease, bacterial septicemia and nutritional deficiencies. Besides, treatment of abnormalities in these birds requires biochemical changes, because clinical signs and symptoms in these birds are frequently subtle (Polo et al., 1998). Therefore, the objective of this study is to establish their hematological and serum biochemical values which will be used for clinical pathological diagnosis and other studies.

Materials and Methods

Birds: Ten healthy white ibis (male, n=5; female, n=5), at the age of 4 years, which had been caged at Khao Koew Open Zoo, Chon Buri, Thailand, were separated from the unhealthy ones, and then taken for the study. The wild birds were fed on a commercial diet with a supplement of chopped...
frogs or fishes. Blood samples were collected from jugular vein using a 3-ml syringe, 23-gauge needle 1.5 inch in length, then placed in glass tubes with and without EDTA for determining hematological values and other serum biochemical values (Ritchie et al., 1994), respectively. The samples were cooled to approximately 4°C, using icepacks and transferred to the laboratory within 12 hours after blood collection.

Hematological techniques: Differential white blood cell count (WBC) counts were performed on blood films prepared, fixed in 95% ethyl alcohol for 5 min. and then were stained with Giemsa-Wright’s Solution. Total red blood cell (TRBC) and TWBC were determined by manual method using hemocytometer (Campbell, 1995), packed cell volume (PCV) was investigated by standard manual technique using microhematocrit capillary tubes and centrifuged 2500 rpm for 5 min. Hemoglobin concentration (Hb) was measured by the cyanmethemoglobin method (Ritchie et al., 1994) then mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were calculated (Campbell, 1995).

Serum biochemistry determination: The samples without anticoagulant were allowed to clot at approximately 25°C for 1.5 hours prior to centrifugation at 3000 × g for 10 min. The serum was separated and transferred into 1-ml cryogenic vials and stored at -20°C until tested. Serum glucose, serum creatinine, SGOT, and SGPT were analyzed using the enzymatic method, Jaff’s reaction (Settasatian and Teerajettakul, 1992) and Reitman and Frankel method (Department of Physiology, 2000) (Biotech reagent®), respectively.

Statistical analysis: The results were given as mean ± SD, hematological and blood biochemistry values between males and females were compared by t-test (Daungjinda, 2001) using SAS system (SAS, 1990) and a level of significance set at P<0.05.

Results

The hematological values of ten healthy white ibis i.e. TRBC, Hb, PCV, MCV, MCH, MCHC, TWBC, percentage of lymphocyte, percentage of heterophil, percentage of monocyte, percentage of eosinophil, percentage of basophil, thrombocyte of white ibis, at the age of 4 years which had been caged at Khao Koew Open Zoo, Chonburi, Thailand were 2.78±0.70 × 10^6 cells/µl, 18.75±1.32 g/dl, 46.00±3.59%, 173.51±38.52 fl, 70.73±15.42 g/dl, 40.82±1.65 pg, 1.49±0.66 × 10^7 cells/µl, 89.70±6.40%, 8.50±6.34%, 0.50±0.97%, 0.90±1.29%, 0.30±0.95% and 16.2±0.49 × 10^3 cells/µl, respectively. Serum glucose, serum creatinine, SGOT, and SGPT of white ibises were 12.55±1.90 mmol/dl, 69.95±13.05 mmol/l, 204.82±56.76 IU/L and 30.43±8.66 IU/L, respectively.

Discussion

Ritchie et al. (1994) reported that a TWBC of birds greater than 10,000 cells/µl was considered suggestive of leukocytosis, whereas Campbell (1995) suggested that a TWBC of birds greater than 15,000 cells/µl was suggestive of a leukocytosis in tame birds. TWBC greater than 25,000 cells/µl is suggestive of a leukocytosis in birds not accustomed to handing (such as wild birds), owing to physiologic leukocytosis associated with the release of catecholamines and corticosteriods, which was in accordance with white ibis (14.9±0.66 × 10^3 cell/µl) of this study that were reared at Khow Khoew Open Zoo. Whereas, the normal value of TWBC of green winged macaw (16.9±8.9 × 10^3 cell/µl), blue and yellow macaw (16.6±9.0 × 10^3 cell/µl), herring gulls (15.5±3.1 × 10^3 cell/µl) and great blacked gull (15.7±2.8 × 10^3 cell/µl) as reported by Polo et al. (1998), Averbeck (1992) and Lavin et al. (1992) were higher, the TWBC of white cockatoo (6.7±7.5 × 10^3 cell/µl), yellow amazon (4.2±1.9 × 10^3 cell/µl), blue fronted amazon (6.5±2.4 × 10^3 cell/µl), orange winged amazon (6.1±3.8 × 10^3 cell/µl) that were reported by Polo et al. (1998) were lower than 10,000 cells/µl.
Therefore, the TWBC of white ibis which was higher than 10,000 cells/µl might be cause by breed or above reason.

Normally, differential WBC is sensitive to physiological changes and health status in animals (Ritchie et al., 1994). In the present study, differential WBC of white ibis such as monocyte, eosinophil, and basophil had high standard deviation. This phenomenon could be found in the reference values of many captive Psittacine birds such as yellow amazon (monocyte = 1.9±2.7%; eosinophil = 0.2±0.4%; basophil = 0.2±0.4%) and herring gull (monocyte = 1.3±1.4%; eosinophil = 0.9±2.0%; basophil = 2.0±0.8%) as reported by Polo et al. (1998) and Averbeck (1992).

Generally, glucose is continuously required as an energy source by all body cells and must be maintained at adequate levels in plasma. Glucose levels are maintained principally through the conversion of liver glycogen, with some being derived from non-carbohydrate source (hepatic gluconeogenesis). Increases in plasma glucose levels may be due to increased glucose production or release. An abnormality can occur when high levels of glucose occur in blood and this is called diabetes mellitus (Ritchie et al., 1994). Glucose value of white ibis (12.55±1.90 mmol/l) was not different from the normal range of ostriches (13.60±2.78; 9.49-23.31 mmol/l) (Levi et al., 1989; Eboh et al., 1992) and african gray parrot (13.8±1.4; 10.4-17.51 mmol/l) (Lumeij and Overduin, 1990).

Creatinine is derived mainly from the catabolism of creatine found in muscle tissue and its catabolism to creatinine occurs at a steady rate. Severe kidney damage can lead to increased creatinine levels (Ritchie et al., 1994). Creatinine value of white ibis (69.95±13.05 mmol/l) in this study was higher than the normal range of ostriches (35.36±8.84; 17.68-56.58 mmol/l) (Levi et al., 1989), and blue and yellow macaw (49.1±15.1; 26.1-76.8 mmol/l) (Hochleithner, 1989). The higher level of creatinine in white ibis might be caused by

Table 1. Hematological and serum biochemical values of white ibis. (Threskiornis melanocephalus)

<table>
<thead>
<tr>
<th>Values</th>
<th>Males (n=5)</th>
<th>Females (n=5)</th>
<th>Total (n=10)</th>
<th>Range (mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocyte (10^6 cells/µl)</td>
<td>2.54±0.71</td>
<td>3.02±0.67</td>
<td>2.78±0.70</td>
<td>2.08-3.48</td>
</tr>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>19.08±1.65</td>
<td>18.42±0.95</td>
<td>18.75±1.32</td>
<td>17.43-20.07</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>47.20±4.02</td>
<td>44.80±3.03</td>
<td>46.60±3.59</td>
<td>43.01-85.12</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>194.06±39.12</td>
<td>152.96±27.42</td>
<td>173.51±38.52</td>
<td>134.99-212.03</td>
</tr>
<tr>
<td>MCH (g/dl)</td>
<td>78.52±16.11</td>
<td>62.94±11.12</td>
<td>70.73±15.42</td>
<td>55.31-86.15</td>
</tr>
<tr>
<td>MCHC (pg)</td>
<td>40.46±1.61</td>
<td>41.18±1.79</td>
<td>40.82±1.65</td>
<td>39.17-42.47</td>
</tr>
<tr>
<td>White blood cell (10^3 cells/µl)</td>
<td>13.5±0.72</td>
<td>16.2±0.66</td>
<td>14.9±0.66</td>
<td>8.30-21.50</td>
</tr>
<tr>
<td>Lymphocyte (%)</td>
<td>89.00±7.87</td>
<td>90.40±5.37</td>
<td>89.70±6.40</td>
<td>83.33-96.10</td>
</tr>
<tr>
<td>Heterophil (%)</td>
<td>10.0±8.03</td>
<td>7.00±4.52</td>
<td>8.50±6.34</td>
<td>2.16-14.84</td>
</tr>
<tr>
<td>Monocyte (%)</td>
<td>0.80±1.30</td>
<td>0.20±0.44</td>
<td>0.50±0.97</td>
<td>0.00-1.47</td>
</tr>
<tr>
<td>Eosinophil (%)</td>
<td>0.20±0.44</td>
<td>1.60±1.52</td>
<td>0.90±1.29</td>
<td>0.00-2.19</td>
</tr>
<tr>
<td>Basophil (%)</td>
<td>0.00±0.00</td>
<td>6.00±1.34</td>
<td>0.30±0.95</td>
<td>0.00-1.25</td>
</tr>
<tr>
<td>Thrombocyte (10^4 cells/µl)</td>
<td>1.64±0.45</td>
<td>1.60±0.58</td>
<td>1.62±0.49</td>
<td>1.13-2.11</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>13.32±0.22</td>
<td>11.77±1.76</td>
<td>12.55±1.90</td>
<td>10.64-14.45</td>
</tr>
<tr>
<td>Creatinine (mmol/l)</td>
<td>74.26±7.91</td>
<td>63.65±15.81</td>
<td>69.95±13.05</td>
<td>56.90-83.00</td>
</tr>
<tr>
<td>SGOT (IU/L)</td>
<td>209.94±77.15</td>
<td>199.70±35.07</td>
<td>204.82±56.76</td>
<td>148.06-261.58</td>
</tr>
<tr>
<td>SGPT (IU/L)</td>
<td>31.72±12.32</td>
<td>29.14±3.60</td>
<td>30.43±8.66</td>
<td>21.77-39.09</td>
</tr>
</tbody>
</table>
Hematological and serum biochemical values of white ibis

Aengwanich, W. and Tanomtong, A.

827

breed, because creatinine production is relatively constant and is minimally affected by catabolism of dietary or tissue protein (Ritchie et al., 1994).

SGOT and SGPT are the two enzymes of greatest clinical importance. SGOT is used to evaluate activity of liver or muscle damage while SGPT was used for evaluation of cell damage (Ritchie et al., 1994). In the present study, SGOT of white ibis (204.82±56.76 IU) was higher than the normal range of emu (104±24.0; 78-182 IU) (Eboh et al., 1992) gray parrot (99.3±40.5; 39.1-144 IU) and military macaws (97.0±65.5; 37.3-22.8 IU) (Levi et al., 1989). While SGPT of white ibis (30.43±8.66 IU) was higher than the normal range of captive psittacine birds such as gray parrot (10.5±3.5; 5.4-17.0 IU) (Polo et al., 1998), ostriches (20.0±14.0; 3.0-75.0 IU) (Levi et al., 1989), and emu (15.4±4.3; 7.1-25.9 IU) (Eboh et al., 1992). The higher level of both SGOT and SGPT in this study might be due to the white ibis food (frog or fish) because both SGOT and SGPT belong to a group of enzymes that catalyze interconversion of amino acids and oxoacids by the transfer of amino groups in the liver (Kuchel and Ralston, 1988).

The above documentation indicates that hematological and biochemical values of white ibis are partly the same and partly different from other avian species. Therefore, it is important to investigate hematological and blood biochemical values of each species in order to interpret the results accurately for a particular individual (Polo et al., 1998). Besides, veterinarians must be careful when using these values because of the limitation of this study due to a small number of birds used as subjects. Finally, this is the first report of hematological and serum biochemical values of white ibis in Thailand.

Acknowledgement

We wish to thank to the Khow Khoew Open Zoo, Chon Buri province, Thailand for facilities provided to carry out this research.

References

Department of Physiology. 2000. Veterinary Clinical Biochemistry, Department of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen (in Thai).

Hematological and serum biochemical values of white ibis

Aengwanich, W. and Tanomtong, A.

