INVESTIGATION OF THE ASSOCIATION BETWEEN PROSTAGLANDIN D\(_2\) (PGD\(_2\)) LEVELS AND MALARIA PATHOGENICITY AND SEVERITY

Raewadee Wisedpanichkij, Wanna Chaicharoenkul, Poonuch Mahamad and Kesara Na-Bangchang*

Pharmacology and Toxicology Unit, Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee 12121, Thailand

ABSTRACT: The aim of the present study was to preliminarily investigate the possible role of PGD\(_2\) in malaria pathogenicity/severity. Plasma and urine samples were collected from a total of 11 healthy Thai subjects and 47 Burmese patients with malaria (Plasmodium falciparum and P. vivax with different levels of parasitemia and mixed infection). There appeared to be the relationship between PGD\(_2\) levels in both plasma and urine samples and malaria disease pathogenicity/severity. However, due to limited sample size and technical problems relating to the assay method for determination of PGD\(_2\) (EIA), significant correlation was only clearly seen with urinary PGD\(_2\) levels in both P. falciparum and P. vivax. In vitro study however, could not confirm the production of PGD\(_2\) by P. falciparum (PfPGD\(_2\)). Further study with larger sample size with improved assay performance is required to definitely conclude on the association between PGD\(_2\) levels malaria disease pathogenicity/severity.

Keywords: prostaglandin D\(_2\), malaria disease, pathogenicity

INTRODUCTION: Malaria has always been a major killer of populations throughout the tropics for thousands of years. Despite important advances in our understanding of the disease, it continues to be one of the greatest causes of serious illness and death in the world. Over 75% of 2-3 million deaths occurring in African children, and about 500 million new cases reported annually, is a challenge to drug therapy and discovery\(^1\). Of the four species of human malarial parasite, Plasmodium falciparum is remarkable for its high case fatality rate particularly in young children and alarming development of resistance to antimalarial drugs. Resistance to antimalarials is spreading throughout the world and is impeding efforts to control malaria\(^2\). Resistance of P. falciparum to the most affordable drugs, such as chloroquine and sulfadoxine/pyrimethamine and mefloquine, has become widespread throughout Africa and Asia, in particular Southeast Asia\(^3\).

Several lines of evidence suggest the involvement of heme oxygenase-1 (HO-1) enzyme in the pathogenesis of cerebral malaria\(^3-5\). HO-1 is a rate-limiting enzymes in heme catabolism forming biliverdin, carbonmonoxide and iron from heme\(^6,7\). Biliverdin is rapidly reduced to bilirubin. It has been shown that HO-1 may suppress cerebral malaria and enzyme activity is induced by the prostanoid prostaglandin J\(_2\) (PGJ\(_2\)) which is synthesized by the non-enzymatic dehydration of prostaglandin D\(_2\) (PGD\(_2\)). It is therefore hypothesized that HO-1, PGJ\(_2\), and PGD\(_2\) may be involved in malaria pathogenicity, susceptibility and disease severity. In human, PGD\(_2\) plays importance role in various pathological conditions, including brain, eye, and hematopoietic cells, etc. Malaria infection is also characterized by symptoms mediated by prostaglandins which are thought to derive from host cells\(^8\). Pathogenesis in malaria patients could enhance PGD\(_2\) level, especially in cerebral malaria patients. However, PGD\(_2\) is not only produced from human to protect their cells or organs from oxidative stress and induce expressions of cytoprotective mediators, but may also be secreted from parasites to protect malarial cell from oxidative stress. Parasite-produced prostaglandins (PfPGD\(_2\), PfPGE\(_2\) and PfPGF\(_{\text{20 extern}}\)) were found to accumulate in the culture medium of P. falciparum\(^8\). Intra-erythrocytic P. falciparum parasites might release PfPGD\(_2\)\(^8\) which may influence heme catabolism in the host cells near the sequestration sites, especially in brain, retina and microvasculature. Moreover, sequestration of parasitized erythrocytes might generate hemodynamic stress, which in

*To whom correspondence should be addressed.
Email: kesarantmu@yahoo.com (K. Na-Bangchang),
Tel. +66 2986 9056-7, Fax. +66 2516 5379
turn, increases the production of \(\text{PfPGD}_2 \) through induction of L-PGDS expression in vascular endothelial cells as reported in the case of fluid shear stress\(^{10} \). The discovery of prostaglandin production in \textit{P. falciparum} (\(\text{PfPGD}_2 \)) may indicate the possibility of a substantial contribution of the parasite to malaria symptoms/pathogenicity/severity\(^{8} \). The mechanism of PGD\(_2\) synthesis by malarial cyclooxygenase (COX) was shown to be clearly distinguishable from that by mammalian COX\(^{9} \). \(\text{PfPGD}_2 \) would therefore be a selective potential target for antimalarials without affecting (or with minimum) mammalian PGD\(_2\) biosynthesis. The aim of the present study was to preliminarily investigate the possible role of PGD\(_2\) in malaria pathogenicity/severity. This was done by investigating plasma and urinary PGD\(_2\) levels in patients with malaria and healthy subjects, as well as the production of \(\text{pFPGD}_2 \) by \textit{P. falciparum} in vitro culture.

MATERIALS AND METHODS:

Investigation of prostaglandins D\(_2\) (PGD\(_2\)) levels in plasma and urine of patients with malaria and healthy subjects

The study was conducted at Mae-Sot General Hospital, Mae-Sot, Tak Province. Approval of the study protocol was obtained from the Ethics Committee of the Ministry of Public Health of Thailand. Plasma and urine samples were collected from a total of 11 healthy Thai subjects and 47 Burmese patients with malaria. Plasma samples were collected from healthy subjects (control: \(n = 6 \)), patients with acute uncomplicated \textit{P. falciparum} with low (<0.1% parasitemia: \(n = 6 \)), medium (0.1-1.0% parasitemia: \(n = 6 \)), and high (>1.0% parasitemia: \(n = 2 \)) parasitemia. In addition, 3 and 6 samples respectively, were collected from \textit{P. vivax} patients with medium (0.1-1.0% parasitemia) and mixed infection with \textit{P. vivax} and \textit{P. falciparum} (0.1-1.0% parasitemia). Urine samples (\(n = 5 \) each) were collected from healthy subjects (control), patients with acute uncomplicated \textit{P. falciparum} with low, medium, and high parasitemia, as well as \textit{P. vivax} patients with low (<0.1% parasitemia) and medium (0.1-1.0% parasitemia) parasitemia.

Plasma (3 ml whole blood each with EDTA anticoagulant) and urine (2 ml each without preservative) samples from patients with malaria were collected prior to antimalarial treatment during the acute phase of malaria infection. Urine samples were immediately stored at -80°C until analysis. For whole blood samples, indomethacin (10 \(\mu \)M final concentration) was added immediately after collection to prevent \textit{ex vivo} formation of eicosanoids, which have the potential to interfere with the PGD\(_2\) assay. To ensure the stability of PGD\(_2\), plasma sample was immediately separated after collection. Briefly, plasma samples were diluted with cold acetone at the ratio of 1:1 (\(v/v \)) and incubated on ice for 5 min. Precipitated protein was removed through centrifugation at 3,000 \(\times \) g for 10 min and stored at -80°C until analysis. Before analysis, samples were evaporated to dryness under a stream of nitrogen gas.

Investigation of prostaglandins D\(_2\) production in \textit{Plasmodium falciparum} (\(\text{PfPGD}_2 \)) culture in vitro

\(\text{K1} \) (chloroquine-resistant) and 3D7 (chloroquine-sensitive) \textit{P. falciparum} clones were maintained in culture \textit{in vitro} according to the method of Trager and Jensen with modification\(^{11} \). Suspension of human type O+ erythrocytes (5%) was prepared in culture medium consisting of powdered RPMI 1640 (GIBCO Laboratories, USA) diluted in sterile water with 25 mM HEPE (N-2-hydroxyethylpiperazine-N-2 ethanesulfonic acid, Sigma, USA), 32 mM NaHCO\(_3\) (GIBCO), and 10% human type B+ fresh frozen plasma (in acid-citrate-dextrose anticoagulant). Stock cultures were maintained in 5 ml of the 5% erythrocyte suspension in 25-cm\(^2\) tissue culture flasks (Corning Co. Ltd., USA). The flasks were flushed with a gas mixture consisting of 5% \(\text{O}_2\), 5% \(\text{CO}_2\), and 90% \(\text{N}_2\) and incubated at 37°C. Subculture was performed every 2-3 days in order to maintain parasitemia at lower than 2%.

For each experiment, stock \textit{P. falciparum} culture was further diluted in culture medium containing non-infected type O+ human erythrocytes to yield a final 1.5% hematocrit and 0.25-0.5% parasitemia. The parasites were synchronized using 5% D-sorbital to enforce them to ring stage. The culture of both of K1 and 3D7 clones were adjusted to 1 and 6% parasitemia. Culture medium was collected at 0 (control) and at 24 and 48 hours incubation.
Determination of PGD2 levels

PGD2 levels in plasma and urine samples collected from healthy subjects and patients with malaria including *P. falciparum* culture medium were determined using Prostaglandin D2-MOX Express™ EIA kit (Cayman Chemical, USA). Briefly, dried samples were resuspended in 100 µl of EIA buffer. Fifty µl plasma (1:10 dilution), urine (1:5 dilution) and culture medium were added in 96-well plates coated with goat anti-rabbit IgG antibodies. The tracer (50 µl) and the PGD2 specific antibody (50 µl) were added to each well and the plates were incubated overnight at 4 °C. Following incubation, wells were washed five times with 10 mM phosphate buffer (pH 7.4) containing Tween 20 (0.05%) and 200 µl Ellman’s reagent [69 mM acetylthiocholine and 54 mM 5,50-dithio-bis (2-nitrobenzoic acid) in 10 mM phosphate buffer pH 7.4] was added to each well. Microtitre plates were then incubated in the dark at room temperature (25 °C) for 60-90 min. This allowed the bound enzyme tracer to react with Ellman’s reagent to yield a yellow solution that could be measured photometrically with a microplate reader at 410 nm. A standard curve was developed using PRISM™ software version 5.0 (GraphPad, San Diego, CA, USA) and concentrations of PGD2 in plasma, urine and culture medium samples relative to those standards were determined.

Data analysis

Comparison of PGD2 levels in plasma and urine samples collected from all patient groups and healthy subjects were performed using Kruskall Wallis and Mann-Whitney U tests for data not conforming to normal distribution. Spearman correlation test was applied to the data not conforming to normal distribution to assess the relation between the two quantitative variables. Comparison of *Pf*PGD2 levels in culture medium of the resistant K1 and sensitive 3D7 *P. falciparum* clones was performed using Mann-Whitney U test for data not conforming to normal distribution. Statistical significance level was set at α = 0.05 for all tests.

RESULTS:

Investigation of association between PGD2 levels and malaria pathogenicity/severity

The association between malaria pathogenicity/severity and plasma and urinary levels of PGD2 were investigated in samples collected from patients with *P. falciparum* with different severity and *P. vivax* infections during the acute phase infection, in comparison with healthy subjects. Median (range) values of plasma PGD2 concentrations in healthy subjects, patients with *P. falciparum* with low, moderate, high parasitemia, and patients with *P. vivax* and mixed infection with *P. falciparum* and *P. vivax* were 408 (141-525), 428 (245-627), 420 (271-470), 793 (629-957), 251 (235-258), and 213 (194-318) pg/ml, respectively (Table 1). Median plasma PGD2 concentration in patients with *P. falciparum* malaria with high parasitemia was significantly higher than healthy subjects (*p* = 0.0023), and patients with low (*p* = 0.035), moderate (*p* = 0.035), *P. vivax* (*p* = 0.035) and mixed infection (*p* = 0.023). In addition, median plasma PGD2 concentrations in patients with *P. falciparum* with moderate and low parasitemia and healthy subjects were significantly higher than those with mixed infection (*p* = 0.045, 0.040, and 0.032, respectively). There was no significant correlation (*p* = 0.185, *r*² = 0.242) between plasma PGD2 levels and severity of *P. falciparum* infection (Figure 1).

Median (range) values of urinary PGD2 concentrations in healthy subjects, patients with *P. falciparum*...
with low, moderate, high parasitemia, and patients with *P. vivax* with low and high parasitemia were 48 (17-145), 135 (59-162), 156 (93-209), 164 (141-259), 160 (73-306), and 207 (174-218) pg/ml, respectively (Table 2). Due to technical problem relating to PGD2 analysis, one urine sample from the group of *P. falciparum* with low parasitemia was excluded from data analysis. Median value of parasitemia. In addition, the median PGD2 level in *P. falciparum* was significantly lower than patients with *P. vivax* with low and moderate parasitemia and patients with *P. vivax* with low (p=0.035) and moderate (p=0.004) parasitemia. In addition, the median PGD2 level in patients with *P. falciparum* with low and moderate parasitemia was also significantly lower than those with *P. vivax* infection with moderate parasitemia (p=0.023 and 0.025, respectively). There was a significant correlation between PGD2 levels in urine and severity of *P. falciparum* (p<0.0001, r² = 0.586) and *P. vivax* (p<0.0001, r²=0.642) infection (Figure 2).

Investigation of PfPGD2 production in Plasmodium falciparum culture in vitro

To prove that *P. falciparum* can synthesize PfPGD2, the concentration of PfPGD2 was determined in *P. falciparum* culture in vitro. PfPGD2 concentration of the complete RPMI media collected from K1 and 3D7 *P. falciparum* clones at 0 (control), 24 and 48 hr were measured by EIA technique. No measurable concentration of PfPGD2 was detected in the complete medium culture collected from both clones during both incubation periods.

DISCUSSION: Prostaglandin D2 (PGD2) is biosynthesized in the brain by a soluble, glutathione independent lipocalin-type PGD2 synthase (L-PGDS). It accumulates in the cerebrospinal fluid, where it induces physiologic sleep in humans¹²). PGD2 is also synthesized in mast cells and leukocytes by a cellular, myeloid-type, glutathione -dependent PGD2 synthase. With respect to malaria infection, the link between PGD2 and disease pathogenicity/severity through induction of hemeoxygenase-1 (HO-1) enzyme has been proposed in the present study. It is speculated that PGD2 derived from host cells and/or from the intra-erythrocytic *P. falciparum* parasites may be involved in malaria pathogenicity/severity through stimulating HO-1 expression. In our recent in vitro study in human retinal pigment epithelial (RPE) cells (ARPE-19, D407), lines of evidence (dose-dependent stimulatory effect of PGD2 on HO-1 expression and modulatory effects of DP2 agonists and antagonists) have been provided to suggest that PGD2 mediates stimulation of HO-1 mRNA

Table 1 Median (range) concentrations of PGD2 in plasma associated with malarial pathogenicity

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of sample</th>
<th>Median (range) plasma PGD2 concentration* (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy subjects (control)</td>
<td>6</td>
<td>408 (141 - 525)*</td>
</tr>
<tr>
<td>P. falciparum with low parasitemia</td>
<td>6</td>
<td>428 (245 - 627)<sup>a</sup></td>
</tr>
<tr>
<td>moderate parasitemia</td>
<td>6</td>
<td>420 (271 - 470)<sup>a</sup></td>
</tr>
<tr>
<td>high parasitemia</td>
<td>2</td>
<td>793 (629 - 957)<sup>a</sup></td>
</tr>
<tr>
<td>P. vivax</td>
<td>3</td>
<td>251 (235 - 258)</td>
</tr>
<tr>
<td>Mixed infection with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. falciparum and P. vivax</td>
<td>6</td>
<td>213 (194 - 318)</td>
</tr>
</tbody>
</table>

* Measured by enzyme immunoassay (EIA) technique

Table 2 Median (range) concentrations of PGD2 in urine associated with malarial pathogenicity

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of sample</th>
<th>Median (range) plasma PGD2 concentration* (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy subjects (control)</td>
<td>5</td>
<td>48 (17 - 145)<sup>a</sup></td>
</tr>
<tr>
<td>P. falciparum with low parasitemia</td>
<td>4</td>
<td>135 (59 - 162)<sup>a</sup></td>
</tr>
<tr>
<td>moderate parasitemia</td>
<td>5</td>
<td>156 (93 - 209)<sup>a</sup></td>
</tr>
<tr>
<td>high parasitemia</td>
<td>5</td>
<td>164 (141 - 259)</td>
</tr>
<tr>
<td>P. vivax with low parasitemia</td>
<td>5</td>
<td>160 (73 - 306)</td>
</tr>
<tr>
<td>moderate parasitemia</td>
<td>5</td>
<td>207 (174 - 218)</td>
</tr>
</tbody>
</table>

* Measured by enzyme immunoassay (EIA) technique

- Significantly lower than *P. falciparum* with high (p 0.0023) parasitemia, and significantly higher than patients with mixed infection (p 0.025) by Mann-Whitney U test
- Significantly lower than *P. falciparum* with high parasitemia (p 0.035), and significantly higher than patients with *P. vivax* (p 0.0045) and mixed infection (p 0.04) by Mann-Whitney U test
- Significantly lower than *P. falciparum* with high parasitemia (p 0.035), and significantly higher than patients with mixed infection (p 0.0045) by Mann-Whitney U test
- Significantly higher than patients with mixed infection (p 0.035) by Mann-Whitney U test
and protein expression via acting through binding to DP2 receptors linking the PGD2-DP2 with heme homeostasis13. A clinical study conducted in Kenyan children with cerebral malaria demonstrated no significant increase in blood carboxyhemoglobin levels was detected14, which is consistent in part with the current proposal that the enhanced heme degradation may be localized only in host cells near the sequestered site such as microvasculature4,5.

In the present study, the possible association between plasma and urinary PGD2 levels and malaria pathogenicity/severity was investigated in patients with malaria with different pathogenicity/severity. PGD2 concentrations in plasma of healthy subjects were found to be about 8-10 fold of that in urine (Table 1-2). There appeared to be a significant correlation between malaria disease severity of both \textit{P. falciparum} and \textit{P. vivax} infection and the level of urinary PGD2. Patients with malaria with all pathogenicity and severity had markedly higher PGD2 levels (about 3-4 fold) than healthy subjects. For plasma PGD2 on the other hand, markedly and significantly higher PGD2 levels were observed in patients with \textit{P. falciparum} with high parasitemia, of which the median level was about 2-fold of the healthy subject and the groups with low and moderate parasitemia. Interestingly, PGD2 concentrations in patients with \textit{P. vivax} and mixed infection with \textit{P. falciparum} and \textit{P. vivax} were only about 50 and 30\% of healthy subjects and \textit{P. falciparum} patients with high parasitemia. It is noted however that the parasite isolates, plasma and urine samples were not obtained from the same patients, and this could increase the variability of the results. As plasma PGD2 levels in healthy subjects represents baseline PGD2 in human plasma, and since plasma PGD2 levels were markedly high in patients with \textit{P. falciparum} with high parasitemia, it is possible that the levels were the summation of PGD2 produced by both \textit{P. falciparum} (\textit{Pf}PGD2) and human hosts themselves. This speculation will be true if the EIA assay for PGD2 is not only specific to human, but also the parasite PGD2 produced can induce several pathological effects in host including intravascular hemolysis, tissue and microvascular damages from heme toxicity, oxidative stress, hyperthermia, infection and inflammation. On the other hand, PGD2 produced by human hosts can result in the increase of oxidative stress in infected erythrocytes, and inducing PGD2 production by the parasite into erythrocytes and microvascular environment8. Based on the present finding, urinary PGD2 concentrations may provide a more reliable and useful tool for predicting severity of malaria disease. Plasma PGD2 is not an appropriate matrix due to rapid degradation of PGD2 in the presence of plasma protein especially albumin, which complicated the analysis of PGD215. Plasma samples as well as tissue homogenates for determination of PGD2 should be extracted immediately after collection to remove proteins and to stabilize PGD2.

![Figure 2](image-url) Scatter plot for correlation between urinary PGD2 concentration and severity of infection classified by type of (a) \textit{P. falciparum} malaria infection and level of parasitemia (Group 1: control-healthy subjects; Group 2: \textit{P. falciparum} patients with low parasitemia; Group 3: \textit{P. falciparum} patients with moderate parasitemia; Group 4: \textit{P. falciparum} patients with high parasitemia); and (b) \textit{P. vivax} infection and level of parasitemia (Group 1: control-healthy subjects; Group 2: \textit{P. vivax} patients with low parasitemia; Group 3: \textit{P. vivax} patients with moderate parasitemia, respectively).
Indomethacin was immediately added to whole blood sample after collection to prevent ex vivo formation of eicosanoids which have the potential to interfere with the EIA assay. For urine sample, the addition of indomethacin is not required.

PGD\textsubscript{2} production in \textit{P. falciparum} culture \textit{in vitro} was next performed in order to provide direct evidence for the production of \textit{Pf}PGD\textsubscript{2} by the parasite by measuring the levels of \textit{Pf}PGD\textsubscript{2} in \textit{P. falciparum} culture \textit{in vitro}. Unfortunately, no measureable concentration of \textit{Pf}PGD\textsubscript{2} was detected in the complete medium culture collected from both \textit{P. falciparum} clones (chloroquine resistant- K1 and chloroquine sensitive- 3D7) following both 24 and 48 hours incubation periods. A number of reasons would explain this finding. The limitation of the EIA assay based on the parent compound PGD\textsubscript{2} is its unreliability and difficulty of result interpretation. Antigenic protein conjugates of PGD\textsubscript{2}, synthesized for the production of antisera show considerable amounts of decomposition. Thus, the resulting antibody response is heterogeneous with poor specificity. Furthermore, PGD\textsubscript{2}-EIA antiserum derived from human PGD\textsubscript{2} used in this EIA method might be non-specific to \textit{Pf}PGD\textsubscript{2}. The absence of exogenous arachidonic acid substrate added to the incubation reaction might also be another reason for the observation of undetectable \textit{Pf}PGD\textsubscript{2}. Kubata and colleagues9 previously reported the accumulation of prostaglandins (\textit{Pf}PGD\textsubscript{2}, \textit{Pf}PGE\textsubscript{2} and \textit{Pf}PGF\textsubscript{2\alpha}) in culture medium of \textit{P. falciparum} and indicated that the capacity to produce prostaglandins of parasite cell was increased by cultivation with exogenous arachidonic acid. The effect of the addition of exogenous arachidonic acid was observed when parasite cell were grown in complete medium supplemented with 33 mM arachidonic acid for 48 hr before harvesting. Almost all of the parasite-produced prostaglandins accumulated in the culture medium but not in the cells. Arachidonic acid content in phospholipids of \textit{P. falciparum}-infected RBC plasma membrane was found to be much lower than that of normal red blood cells. Since \textit{Plasmodium} is incapable of \textit{de novo} biosynthesis of fatty acids, \textit{P. falciparum} directly or indirectly uses an exogenous source of arachidonic acid.

Based on results obtained from limited sample size in patients with malaria, there appeared to be association between malaria pathogenicity/severity and urinary/plasma PGD\textsubscript{2} concentrations at certain level. \textit{In vitro} study however, could not confirm the production of \textit{Pf}PGD\textsubscript{2} in \textit{Plasmodium falciparum} culture. Further study with larger sample size in patients with malaria and confirmation of the \textit{in vitro} study with extended incubation period is required to provide definitive conclusion. In addition, further study should be performed to improve the sensitivity and specificity of the assay method for PGD\textsubscript{2} that could differentiate between the \textit{Pf}PGD\textsubscript{2} and human PGD\textsubscript{2}.

ACKNOWLEDGEMENTS: The study was supported by The Commission on Higher Education, Ministry of Public Health of Thailand.

REFERENCES:

