Prevalence of *Bartonella henselae*, *Bartonella clarridgeiae*, and *Bartonella vinsonii* subsp. *berkhoffii* in pet cats from four provincial communities in Thailand

Wilasinee Srisanyong¹ Ratree Takhampunya² Thidarut Boonmars³
Anusak Kerdsin⁴ Fanan Suksawat*¹

Abstract

*Bartonella* species are Gram-negative alpha proteobacteria and intracellular parasites of erythrocytes, endothelial and dendritic cells. Many are zoonotic pathogens of various mammalian reservoir hosts and are transmitted by blood-feeding arthropods. Recently, there have been several reports indicating that cats are important reservoir hosts for *Bartonella* pathogens, including those that cause cat scratch disease affecting humans in many countries including in Thailand. To assess more completely the role of cats as reservoir hosts for *Bartonella* pathogens in Thailand, 139 blood samples were collected from companion cats from a single community in each of four provinces (Khon Kaen, Kalasin, Nakhon Si Thammarat and Nakhon Ratchasima) from January 2014 to January 2015. The blood samples were assessed for the presence and identification of *Bartonella* spp. by molecular methods. In addition, various potential risk factors were assessed. Overall, 13 (9.4%) pet cats were found to be infected with *Bartonella* species including *Bartonella henselae*, *Bartonella clarridgeiae* and *Bartonella vinsonii* subsp. *berkhoffii*. This is the first evidence of the discovery of *Bartonella vinsonii* subsp. *berkhoffii* DNA in pet cats in Asia. Further studies of *Bartonella* spp. prevalence in other locations in Thailand should be investigated.

Keywords: *Bartonella* spp., blood, cats, PCR assay

¹Department of Veterinary Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
²Department of Entomology at Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok 10400, Thailand
³Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
⁴Department of Community Health, Faculty of Public Health, Kasetsart University Chalermprakiat Sakon Nakhon Province Campus Chiang Kruea, Mueang, Sakon Nakhon 47000, Thailand
*Correspondence: sjirap@kku.ac.th

Introduction

Bartonellosis is a contagious disease associated with humans and animals, and caused by Bartonella spp. The members of Bartonella genus are Gram negative bacteria infecting erythrocytes, endothelial and dendritic cells of mammalian hosts. Bartonella spp. are emerging zoonotic pathogens in humans and animals (Guptill, 2003). Recently, there have been many reports on Bartonella infection in a variety of mammalian hosts worldwide. More than 47 mammalian species and subspecies have been described as reservoir hosts (Boulouis et al., 2005), including rats (Heller et al., 1998), mice (Welch et al., 1999), cats (Koeheir et al., 1994), dogs (Breithwerdt et al., 1995), voles (Birtles et al., 1995) and coyotes (Chang et al., 2000). In humans, Bartonella spp. cause various diseases, e.g. Carrion’s disease, Trench fever, cat scratch disease; and clinical abnormalities, e.g. bacillary angiomatosis, hepatic peliosis, endocarditis, neuroretinitis and chronic bacterial infection (Jacomo et al., 2002). In addition, important vectors of bartonellosis are blood sucking arthropods such as the sand fly (Lutzomyia verrucarum) for Bartonella bacilliformis (Carrion’s disease) (Ihler, 1996), the body louse (Pediculus humanus) for Bartonella quintana (trench fever and bacillary angiomatosis) (Roux and Raoult, 1999), the rat flea (Xenopsylla cheopis) for Bartonella elizabethae (Breitschwardt and Kordick, 2000), and the cat flea (Ctenophaledes felis) for B. henselae (Chomel et al., 1996). Cats are important reservoir hosts for Bartonella species such as B. clarridgeiae (Kordick et al., 1997), B. henselae (Chomel et al., 2000), B. koehlerae (Droz et al., 1999), and B. bovis (Bermond et al., 2002). Cat fleas (C. felis) play a major role as vectors among cats (Boulouis et al., 2005). There are three species of Bartonella which may cause diseases in humans including B. clarridgeiae, B. henselae and B. koehlerae (Chomel et al., 1995). Cat fleas are also reservoirs of B. quintana (Bergmans et al., 1997). Pet cats live in close association with humans and although owners normally keep their cats in the house and often in their bedrooms, pet cats usually spend considerable amount of time outdoors, where they can be infested by ectoparasites that can transmit Bartonella spp. to humans via bites or scratches.

In Thailand, the prevalence of Bartonella infection in stray and pet cats averaged 27.6% (76/275) in nine geographical regions, including Khon Kaen (50.1%), Roi Et (36.8%), Ratchaburi (34.8%), Chiang Mai (23.3%), Kanchanaburi (21.4%), Nakhon Ratchasima (20%), Songkhla (21.8%), Bangkok (5.6%) and Ubon Ratchathani (11.8%) (Maruyama et al., 2001). Bartonella spp. infection prevalence was also reported at 5.5% (9/163) and 1.2% (2/163) in Thai people by sera survey and occasionally by culture and PCR (Maruyama et al., 2000). Awareness of the risk of Bartonella infection in Thailand needs to be increased since it is emerging everywhere in Southeast Asia as well as the rest of the world (Bai et al., 2010). The aim of this study was to investigate the prevalence of Bartonella spp. in pet cats from Thailand. Blood samples were collected from cats in a single community in each of 4 provinces: Khon Kaen, Kalasin, Nakhon Si Thammarat and Nakhon Ratchasima. The ssrA gene based quantitative real-time PCR (qPCR) assay was chosen to detect and identify Bartonella species DNA (Diaz et al., 2012). The gI1A and 16S-23S rRNA intergenic spacer genes (ITS) were used to further identify Bartonella spp. as previously described (Kosoy et al., 2010). Risk factors associated with Bartonella infection in pet cats were investigated. The goal of this study was to determine the prevalence, distribution and risk factors associated with Bartonella infected companion cats in Thailand to assist in the prevention and control of Bartonella infection in animals and humans.

Materials and Methods

Study areas: During August 2015 and March 2016, 139 pet cat blood samples were collected from one community in each of four provinces: Khon Kaen, Kalasin, Nakhon Si Thammarat and Nakhon Ratchasima.

Blood collection: One to three milliliters of blood were collected from a jugular vein from each cat by sterile technique into ethylene diamine tetra-acetic acid (EDTA) tubes and stored at -20°C until used for DNA extraction and PCR analysis. The pet cats were thoroughly examined and records of age (less than 3 years and more than 3 years, based on physical examination and chief complaint from veterinarians), sex, breed (pure and mixed history taking by veterinarians), health status (healthy and unhealthy classified by medical diagnosis from veterinarians), living area, living condition, geographical area and ectoparasite prevention control were made using a standardize questionnaire. This project’s protocols were approved by the Animal Ethics Committee of Khon Kaen University (protocol number: AEKKU12/2558).

Molecular detection of bartonellae: DNA was extracted from 200 µl of EDTA blood samples using QIAamp DNA blood and tissue kit (QIAGEN, Germany). All DNA samples were stored at -80°C until used. Two µl of the extracted DNA was used for PCR amplification. Primers for the Bartonella genus- and species-specific PCR assays were designed based on the study of Diaz et al. (2012). To confirm the presence of Bartonella DNA in the blood sample and to identify the responsible Bartonella species a 767 bp fragment of the citrate synthase gene (gI1A) was used following a previous report (Birtles and Raoult, 1996). In addition, the ITS gene (280 bp) was used for species identification following a previous report (Billette et al., 2008). Each set of experiments included negative and positive controls. Nuclease-free water replaced DNA templates as negative controls. Template DNA from reference species of Bartonella spp. were used as positive controls. A specific band of each DNA sample was cut for species confirmation using DNA sequencing (AIT Biotech, Singapore). The DNA sequences were analyzed for species by using BLAST programs (http://blast.ncbi.nlm.nih.gov/Blast.cgi). GenBank accession numbers for these sequences were KX001761-KX001769.
Statistical analysis: Data were analyzed by SPSS version 17 software for Windows (http://software.kku.ac.th). Pearson’s chi-square test and the Fisher exact test were used to analyze relationships between *Bartonella* infection and risk factors obtained from questionnaires filled out by client owners. Significance was defined as p < 0.05.

Results

Prevalence of *Bartonella* spp. based on molecular detection: The prevalence of *Bartonella* infection among the pet cats was 9.4% (13/139). The infection prevalence was 5.7% (8/139), 2.2% (3/139) and 1.4% (2/139) for *B. henselae*, *B. clarridgeiae* and *B. vinsonii* subsp. *berkhoffii*, respectively. The percentages of PCR positive cats for *Bartonella* spp. in different geographic regions were 26.67% in Khon Kaen, 10.2% in Nakhon Si Thammarat, 6.67% in Nakhon Ratchasima and 4.44% in Kalasin (Fig. 1, Table 1).

![Figure 1](presence_of_bartonella_infection_in_pet_cats_from_four_provinces_in_thailand.png)

Figure 1 Presence of *Bartonella* infection in pet cats from four provinces in Thailand

Risk factors associated with *Bartonella* spp.: The risk factors associated with *Bartonella* spp. are presented in Table 2. For gender, the prevalence of *Bartonella* infection between the males and females was 13.5% (7/52) and 6.9% (6/87), respectively, and was not significantly different (chi-square = 4.86, df = 1, p = 0.235). The prevalence of infection with *Bartonella* between the two different age groups of cats, 0-3 years and more than 3 years, was 8.2% (9/110) and 13.8% (4/29), respectively, and was not significantly different (chi-square = 2.71, df = 1, p = 0.471). The prevalence of *Bartonella* infection based on health condition, healthy or unhealthy, was 7.6% (8/105) and 14.7% (5/34), respectively, and was not significantly different (chi-square = 3.18, df = 1, p = 0.306). For the relationship between living area and *Bartonella* infection, it was found that the prevalence of *Bartonella* infection between cats living indoors and outdoors was 12.5% (3/24) and 8.7% (10/115), respectively, and was not significantly different (chi-square = 2.24, df = 1, p = 0.698). For the living condition, the prevalence of infection with *Bartonella* spp. between cats living singly and with other animals was 2.5% (3/121) and 55.6% (10/18), respectively, which was significantly different.
The use of ectoparasite product was also related to the prevalence of *bartonella* infection; the prevalence was 2.4% (3/127) in the groups that used and 83.3% (10/12) in the groups that never used (chi-square = 1.12, df = 1, p = 0.000). Moreover, the presence or absence of ectoparasite infestation at 3.7% (3/45) was not a risk factor for cats infected with *Bartonella* 10.6% (10/94) (chi-square = 4.21, df = 1, p = 0.548).

Table 1  List of matching proteins obtained by LC-MS/MS analysis from gel spot of peak fractions F1, F2, F3, F4, F5, F6 and F7

<table>
<thead>
<tr>
<th>Locations</th>
<th>Total Number of cats(n)</th>
<th>Number of cats</th>
<th>Number of PCR positive (%)</th>
<th>Bartonella species</th>
<th>Numbers of PCR positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakhon Ratchasima</td>
<td>49</td>
<td>17</td>
<td>32</td>
<td>5 (10.2%) B. vinsonii subsp. berkhauffi</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bartonella spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 1</td>
</tr>
<tr>
<td>Kalasin</td>
<td>45</td>
<td>15</td>
<td>30</td>
<td>2 (4.44%) B. clarridgeiae</td>
<td>2 0</td>
</tr>
<tr>
<td>Khon Kaen</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>4 (26.67%) B. clarridgeiae</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bartonella spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 1</td>
</tr>
<tr>
<td>Nakhon Si Thammarat</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>2 (6.67%) Bartonella spp.</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Table 2  Risk factors associated with *Bartonella* infection among pet cats in four communities in Thailand

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number of pet cats (n)</th>
<th>Number of <em>Bartonella</em> infected cats (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>87</td>
<td>6 (6.9)</td>
<td>0.235</td>
</tr>
<tr>
<td>male</td>
<td>52</td>
<td>7 (13.5)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>110</td>
<td>9 (8.2)</td>
<td>0.471</td>
</tr>
<tr>
<td>more than 3</td>
<td>29</td>
<td>4 (13.8)</td>
<td></td>
</tr>
<tr>
<td>Health status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>healthy</td>
<td>105</td>
<td>8 (7.6)</td>
<td>0.306</td>
</tr>
<tr>
<td>unhealthy</td>
<td>34</td>
<td>5 (14.7)</td>
<td></td>
</tr>
<tr>
<td>Breed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pure</td>
<td>20</td>
<td>4 (20)</td>
<td>0.094</td>
</tr>
<tr>
<td>mixed</td>
<td>119</td>
<td>9 (7.6)</td>
<td></td>
</tr>
<tr>
<td>Living area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indoor</td>
<td>24</td>
<td>3 (12.5)</td>
<td>0.698</td>
</tr>
<tr>
<td>outdoor</td>
<td>115</td>
<td>10 (8.7)</td>
<td></td>
</tr>
<tr>
<td>Living condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>single</td>
<td>121</td>
<td>3 (2.5)</td>
<td>0.00*</td>
</tr>
<tr>
<td>multi</td>
<td>18</td>
<td>10 (55.6)</td>
<td></td>
</tr>
<tr>
<td>Geographical area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>109</td>
<td>11 (10)</td>
<td>0.734</td>
</tr>
<tr>
<td>SOUTH</td>
<td>30</td>
<td>2 (6.7)</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>127</td>
<td>3 (2.4)</td>
<td>0.00*</td>
</tr>
<tr>
<td>no</td>
<td>12</td>
<td>10 (83.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>139</td>
<td>13 (9.4)</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

The prevalence of Bartonella infection in cats varies among Asian countries. Previous reports on Bartonella bacteraemic prevalence based on conventional PCR in pet cats included 0% (0/24) in metropolitan areas of Thailand, 7.2% (50/690) in Japan, 19.1% (25/131) in Taiwan, 27.6% (76/275) from 9 rural sites in Thailand, 61% in the Philippines and 64.3% in Indonesia (Maruyama et al., 2001; Chang et al., 2006). In this study, 9.4% (13/139) of the pet cats from four communities in different provinces of Thailand were infected with Bartonella spp. Together, these studies indicate that Bartonella is widely distributed in domestic cats throughout Asia with higher prevalence in southern Asian countries than in northern temperate countries (Maruyama et al., 2001; Inoue et al., 2009). Bartonella seroprevalence in warm and humid environments is higher than that in cold dry environments (Inoue et al., 2009).

The overall infection rate in this study was lower than that previously reported in domestic cats in Thailand (Maruyama et al., 2001). This difference may be due to several reasons including: (1) the sampling sites (Maruyama et al., 2001), (2) the lower numbers of bacteria in blood, resulting in increased PCR negative results, (3) the blood samples not being collected during the maximum period of Bartonella septicemia (Rodkhum et al., 2010) and (4) the blood samples from our study collected mostly from pet cats that visited veterinary hospitals regularly, and raised by owners who often used flea preventive products. As cat fleas are the most important vector of this pathogen, and are often found on stray cats in Bangkok areas (Chomel et al., 1999), the lower prevalence in our study compared to the study by Maruyama et al. (2001) is likely due to the differences in cat population studied (feral urban vs household pets).

Our findings of B. henselae and B. clarridgeiae infection rates are consistent with previous studies in Thailand and other countries in Asia: the Philippines (Chomel et al., 1999), Indonesia (Marston et al., 1999), Singapore (Narisudeen and Thong, 1999), and Japan (Maruyama et al., 2001). However, to our knowledge, this is the first DNA evidence of B. vinsonii subsp. berkhoffii in pet cats in Thailand and Asia. Recurrent osteomyelitis in domestic cats in USA caused by B. vinsonii subsp. berkhoffii infections was reported by Breitschwerdt et al. (2009). B. vinsonii subsp. berkhoffii normally infects canine reservoir hosts and humans, causing persistent intravascular infection and endocarditis (Breitschwerdt et al., 2010). Before 2009, dogs were the only known reservoir hosts of B. vinsonii subsp. berkhoffii (Breitschwerdt et al., 1995; Chomel et al., 2006; Maggi et al., 2006) and the disease was transmitted via ticks. However, the transmission mode of this Bartonella species to cats has not been determined (Breitschwerdt et al., 2009). In this study, the cats infected with B. vinsonii subsp. berkhoffii were raised with other animals including dogs and therefore dog ticks or dog bits may be the cause. Therefore, pet cats may be an accidental host for B. vinsonii subsp. berkhoffii infection.

Similar to a previous study in Thailand (Maruyama et al., 2001), there was no significant difference (p = 0.235) in Bartonella infection between male and female cats. However, an association between gender and rates of infection was reported in the study of Zangmill (1993). As the presence of infection in male cats was higher than in female cats in this study, the results suggest that male cats have more opportunities to be scratched or bitten by other infected cats, while protecting their territories (Inoue et al., 2009).

In this study, Bartonella DNA was not detected in most cats receiving flea control products. A significant connection between the prevalence of Bartonella infection and the use of ectoparasite control product was evident, similar to a previous report indicating that the owners who used flea control products were able to prevent ectoparasite infection in their cats (Bradbure and Lappin, 2010; Assarasakorn et al., 2012).

In conclusion, the zoonotic Bartonella spp. was discovered in this study and has been increasingly discovered worldwide. Pet cats were discovered to harbor Bartonella spp. including B. henselae, B. clarridgeiae and B. vinsonii subsp. berkhoffii, which was formerly reported only in dogs. The three zoonotic Bartonella spp. may play a significant role in causing disease in Thai people. Therefore, good health care management, routine Bartonella detection and urgent implementation of appropriate flea control for cats and their ectoparasites are necessary. Additionally, Bartonella surveillance may be the approach necessary to prevent the transmission of infection from animals to humans. As Thailand has not been a Bartonella-endemic area in the past, further investigation is required to determine the incidence of Bartonella spp. infection in other animals infected with ectoparasites.

Acknowledgements

The authors would like to thank Miss Kewalin Klangthong, Department of Entomology at Armed Forces Research Institute of Medical Sciences (AFRIMS) for laboratory and technical assistance; and Professor Allen Richards and Professor Frank Mallory for editing the manuscript. This research was supported by Rajamangala University of Technology Isan Kalasin Campus and Department of Veterinary Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.

References


Rodkhum C, Satranarakun P, Pusoonthornthum R 2010. Surveillance of *Bartonella* species from pet cats in Bangkok by polymerase chain reaction amplification of 16S-23S rRNA intergenic region. Proc. 9th CU. Annual Conference of the Faculty of Veterinary Medicine, Chulalongkorn University. 133.


บทคัดย่อ

การตรวจหาเชื้อบาร์โทเนลลาในแมวไทยในระดับโมเลกุล

วิลาสินี ศรีแสนยงค์1  ราตรี ดาด้าปัญญา2  อิศวัฒน์ บุญมาศ3  อนุศักดิ์ เกิดสิน4  ฟ้าน่าน สุขสวัสดิ์5

บาร์โทเนลลา (Bartonella spp.) เป็นอัลฟาโปรตีโอแบคทีเรียแกรมลบที่อาศัยอยู่ในเม็ดเลือดแดง เซลล์หลอดเลือด และเซลล์เดนไตรไดค์ บาร์โทเนลลาหลายชนิดก่อโรคสัตว์สู่คนในต่ำกว่านอนเกินขึ้นมาหลายชนิดเพราะเชื้อบาร์โทเนลลิตูดเลือดเป็นพาหะ ไม่เกิดขึ้นในตัวคน แต่ไม่ใช้ในตัวแมว เชื้อไม่สามารถมีการแพร่เชื้อโดยแมลงดูดเลือดเป็นพาหะ ไม่นานนี้เองมีรายงานแสดงให้เห็นว่าแมวเป็นตัวถูกเบียนเก็บเชื้อโดยไม่มีการติดเชื้อในประเทศไทย เพื่อประเมินบทบาทของแมวในการเป็นตัวถูกเบียนเก็บเชื้อจากระดับโมเลกุลเป็นการตรวจหาเชื้อบาร์โทเนลลาในเลือดของแมว 139 ตัวอย่างจากแหล่งชุมชนในสี่จังหวัดคือ ขอนแก่น กาฬสินธุ์ นครศรีธรรมราช และนครราชสีมาในช่วงเดือนมกราคม 2557 ถึงมกราคม 2558 และวิเคราะห์ความเสี่ยงของการพบเชื้อที่สูงในการตรวจหาได้ใช้จีน small stable RNA (ssrA) citrate sythase (gltA) และ the 16S–23S rRNA intergenic spacer (ITS) เป็นจีนเป้าหมาย พบว่าร้อยละ 9.4 ของแมวถูกเบียนเก็บเชื้อบาร์โทเนลลาสามชนิดคือ Bartonella henselae, Bartonella claridgeiae และ Bartonella vinsonii subsp. berkhoffii (accession numbers KX001761-KX001769) การศึกษาครั้งนี้เป็นรายงานแรกเทียบเทียบในโลกของแมว แต่ในอนาคตต้องมีการศึกษาการติดเชื้อในแหล่งอื่น ๆ ของประเทศไทย

คำสำคัญ: บาร์โทเนลลา, เลือดแมว, ปฏิกิริยาลูกโซ่โพลิเออเมอร์

1 การวิจัยยาสุขศาสตร์ คณะสุขศาสตร์สัตวแพทย์มหาวิทยาลัยขอนแก่น จ. ขอนแก่น 40002
2 สถาบันวิจัยวิทยาศาสตร์การแพทย์ กรุงเทพ 10400
3 ภาควิชาปรสิตวิทยา คณะสัตวแพทยศาสตร์มหาวิทยาลัยขอนแก่น จ. ขอนแก่น 40002
4 ภาควิชาวัณโรคและยิมชุน คณะสุขศาสตร์สัตวแพทย์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตเฉลิมพระเกียรติ จ. สกลนคร 47000
*ผู้รับผิดชอบบทความ E-mail: sjirap@kku.ac.th