DCE-MRI-Derived Parameters as Predictors of Response to Neo-Adjuvant Chemoradiation Treatment of Rectal Carcinoma

Sith Phongkitkarun MD*, Umalin Tohmad MD*, Noppadol Larbcharoensub MD**, Kanit Sumbunnanondha MD***, Thiti Swangsilpa MD*, Ekaphop Sirachainan MD****

* Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
** Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
*** Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
**** Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Background: Preoperative combined chemoradiation treatment (CRT) is now accepted as the treatment of choice due to its benefits of decreasing the primary tumor volume and enhancing the sphincter preservation surgery. Determining whether a patient is responding to therapy is crucial for rectal cancer patients who may benefit from prompt treatment modifications.

Objective: To evaluate the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the treatment response.

Material and Method: Nineteen patients with histologically proven rectal adenocarcinoma who were candidates for neo-adjuvant CRT were prospectively included. All patients were examined by conventional and DCE-MRI at three time points (pre-, during-, and post-CRT). Surgical resection was performed after complete CRT. The pathological response and Dworak regression grade were assessed. All parameters were blindly analyzed.

Results: The median pathologic response rate for all patients was 40%. Dworak regression grades of 0, 1, 2, 3, and 4 were found in 0.0%, 21.1%, 42.1%, 26.3%, and 10.5% of patients, respectively. The tumor thickness and length were 30% and 32.9% lower at during-CRT and 40.6% and 44.7% lower post-CRT and had moderate and fair negative correlations with the pathologic response rate and Dworak regression rate, respectively. Among the DCE-MRI parameters, only a change in the time to peak between pre- and during-CRT was correlated with the Dworak regression grade (p = 0.01). The percentage change in the time to peak in patients with poor regression (grades 0-1) was significantly greater than in patients with intermediate/complete regression (grades 2-4) [139.25% vs. 6.13%].

Conclusion: Changes in the tumor thickness and length evaluated by conventional MRI and the time to peak evaluated by DCE-MRI during CRT may be useful for predicting the treatment response of rectal cancer patients.

Keywords: Rectal cancer, Magnetic resonance imaging, Contrast media, Chemoradiotherapy, Neoadjuvant therapy
microvascular flow and endothelial permeability, which can then be related to CRT. However, several DCE-MRI parameters that are obtained have not been standardized\(^6\)\(^,\)\(^7\).

Several studies have shown the diagnostic value of the perfusion parameters in DCE-MRI for predicting the therapeutic outcome of LARC after neo-adjuvant treatment. However, most reported parameters require special software with mathematic modelling to derive those results\(^4\)\(^,\)\(^8\)\(^,\)\(^9\). Therefore, the purpose of the present study was to evaluate the use of the simple parameters of DCE-MRI to predict the treatment response of rectal cancer patients who underwent neo-adjuvant CRT followed by surgery, and these findings were correlated with the pathologic response.

Material and Method

Patient selection

The present study involved prospective data collection. The Committee on Human Rights Related to Researches Involving Human Subjects of Faculty of Medicine, Ramathibodi Hospital approved the study, and the written informed consent was obtained from all patients. We enrolled patients with rectal cancer who met the following inclusion criteria: (i) histologically confirmed adenocarcinoma of rectum, (ii) tumor clinically staged as cT3 or cT4 with any N-stage and without any evidence of distant metastases according to pelvic MRI, and (iii) age greater than 18 years. The exclusion criteria were tumor clinically staged as cT1 or cT2 or patient who received neither complete CRT nor definitive surgical resection. Twenty patients were enrolled between May 2009 and November 2012. One patient refused surgery. We enrolled 19 patients (mean age, 56.05 ± 9.0 years [standard deviation, SD]), comprising 10 men (mean age, 51.6 ± 10.1 years) and nine women (mean age, 61.0 ± 4.0 years) (\(p = 0.019\)). Definitive surgical resection with total mesorectal excision was performed after complete CRT.

Neo-adjuvant chemoradiation treatment

Patients were treated according to the preoperative CRT trial. The preoperative radiotherapy schedule for rectal cancer was performed with megavoltage equipment. The radiotherapy treatment volume covered the primary tumor with locoregional extension and pelvic lymph nodes. Patients received a tumor dose of 180 cGy/fraction for a total tumor dose of 4,500-5,040 cGy/5-5.5 weeks. Chemotherapy was performed concomitantly with radiotherapy with oxaliplatin (Eloxatin; Sanofi-Aventis, Paris, France) infusion 50 mg/m\(^2\) on days 1, 8, 22, and 29 of radiotherapy plus oral capecitabine (Xeloda; Hoffmann-La Roche, Basel, Switzerland) 825 mg/m\(^2\) twice daily on days 1-14 (first cycle) and days 22-35 (second cycle) of radiotherapy.

MR imaging technique

All patients were examined with MRI three times: before CRT (pre-CRT), after the first cycle of chemotherapy (during-CRT), and post-CRT. All MRI studies were performed with 1.5 T scanner (Signa HDxt; GE Healthcare, Milwaukee, Wisconsin, USA). Standard anatomical imaging using a thin slice sagittal T2W FSE was acquired with 24-cm FOV, 3-mm slice thickness, and no interslice gap including the tumor. Axial (perpendicular to the rectal tumor lumen) and coronal oblique T2W images were acquired.

For the DCE-MRI study, multi-slice pre- and post-contrast, axial, TIW, and three-dimensional (3D) spoiled gradient echo sequences (LAVA, GE Healthcare) (24-cm FOV; 5-mm slice thickness) were acquired. The temporal resolution of the LAVA sequence was approximately 15 seconds, and dynamic data acquisition was started after the contrast medium injection and repeated 30 times (phases) through the main bulk of the tumor at each time point. The average scan time was approximately 7.29 minutes. Subsequent studies were performed in the same axial plane as the previous examination, unless the tumor was no longer visible, in which case, the axial section was taken through what remained of the main bulk of the tumor. All patients received a bolus of 0.1 mmol/kg gadobutrol (Gadovist), which was administered intravenously through a peripheral vein at the antecubital fossa at the rate of 3.0 mL/second with a power injector (Medrad, Spectris Solaris EP MR Injector System; Medrad Inc., Indianola, PA, USA) and was followed by a 30-mL saline flush.

MR image analysis

Pre-, during-, and post-CRT MR images of each patient were analyzed in consensus by two radiologists (one specialist in body imaging and one fellow, with 10 and two years’ experience in DCE-MRI, respectively) who were blinded to the clinical and pathologic data related to the treatment response. All MR images were restored in a picture archiving and communication system (PACS).

The TIW DCE-MR images were processed using commercially available software (Functool 4.5.3,
GE Healthcare), and the following quantitative perfusion parameters were calculated: the maximum slope of enhancement, peak enhancement (MR Unit), and time to peak (millisecond [msec], time until peak enhancement). A circular or oval region of interest (ROI) was manually placed in the tumor at the highest enhancing portion, slice by slice. The area of the ROI was approximately 11-154 mm². After each ROI was placed, color-coded maximum slope of enhancement and time-intensity curves were generated. From these time-intensity curves, the peak enhancement and time to peak were obtained. The ROI with the highest maximal slope of enhancement value was selected to record the peak enhancement and the time to the peak values for each tumor.

The maximal tumor thickness and length were also recorded on T2W images. T- and N-staging was attributed to the post-CRT MR images. A lymph node was considered positive if its short-axis length was more than 5 mm (mesorectal region) or 10 mm (iliac region), its contour was irregular or rounded and its signal intensity relative to the tumor showed a loss of chemical shift artifact or mixed signal intensity on T2W images. It was considered negative if it had a uniformly low signal intensity and was less than 5 mm(10).

The Response Evaluation Criteria in Solid Tumors (RECIST version 1.1) measurement(11) was used to assess the response of rectal cancer on MRI post-CRT using the maximal tumor thickness and maximal tumor length on pre-CRT and post-CRT. The MRI responses of the tumor thickness and length were evaluated separately; these two response parameters for each patient were included in the overall RECIST response of each patient, which was defined as the RECIST response. The patients were categorized as responders (complete response (CR) or partial response (PR)) or non-responders (stable disease (SD) or progressive disease (PD)) based on the tumor thickness and length measurements, as well as its signal intensity on T2W.

Histopathologic examination

The tumor thickness and length were measured. Pathologic tumor staging was recorded according to the TNM system. The Dworak regression grade system proposed by Dworak et al(12) and the response rate (0 to 100%) were applied to evaluate the treatment response to CRT(13). The Dworak’s grade 0 represents no regression. Grade 1 is minor regression (fibrosis seen in 25% or less of the tumor mass). Grade 2 is moderate regression (fibrosis seen in 26 to 50% of the tumor mass). Grade 3 is good regression (fibrosis outgrowing the tumor mass or more than 50% tumor regression). Grade 4 is total regression (no viable tumor cells, only fibrotic mass). The Dworak regression grade was also divided into the following two groups: grades 0 and 1 (none and poor regression) and grades 2 to 4 (intermediate regression for grades 2 and 3 and complete regression for grade 4). The response rate was defined as 0 to 100%, 0 was no regression and 100% was complete regression.

Statistical analysis

All analyses were performed using STATA version 13 (StatCorp, 2013). Continuous variables were expressed as the mean ± standard deviation or median, and categorical variables were expressed as a number and percentage.

Spearman correlation analysis or the Kruskal-Wallis test was used to determine the correlation between the percentage change of each MRI parameter and the pathologic response result (response rate and Dworak regression grade). The association between the percentage change of each MRI parameter and grouped Dworak regression grade was evaluated with the Mann-Whitney test. The association between the percentage changes of the MRI tumor thickness and length with the pathologic response results was analyzed with the Chi-square (χ²) test or Mann-Whitney test. The Chi-square (majority), Kruskal-Wallis, and Mann-Whitney tests were used to compare between the overall MRI responses using the RECIST criteria (version 1.1) and the pathologic response results. The correlation coefficient (r) from 0 to 0.25 (or -0.25) indicates little or no relationship, those from 0.25 to 0.50 (or -0.25 to -0.50) reflects a fair degree; and those from 0.50 to 0.75 (or -0.50 to -0.75) a moderate degree, while correlations over 0.75 (or -0.75) reflect a strong relationship.

The correlations of the MRI post-CRT tumor thickness and length with the pathologic response result (response rate and Dworak regression grade) were evaluated with the Spearman correlation analysis or Fisher’s exact test. A p-value less than 0.05 was considered statistically significant.

Results

The results of the tumor thickness and length from the conventional MRI and DCE-MRI parameters on pre-, during-, and post-CRT of the patients were presented in Fig. 1. The median of the pathologic response rate in all patients was 40% (range 10-100%). Dworak regression grades of 0, 1, 2, 3, and 4 were found
in zero, four (21.1%), eight (42.1%), five (26.3%), and two (10.5%) patients, respectively. The meantime interval between the MRI post-CRT and pathologic results was 34.1 days (range 12-66 days).

Correlation between the MRI findings and pathologic results

Tumor length and thickness

The tumor length measured by MRI post-CRT (median 3.1 cm, range 0.5 to 8 cm) was significantly correlated with the tumor length of the histopathologic specimen (median 2 cm, range 0 to 5 cm) with the correlation coefficient $r = 0.56$ ($p = 0.01$). There was a fair correlation ($r = 0.43$) between the tumor thickness, as measured by MRI post-CRT (median 1 cm, range 0.5 to 1.9 cm), and the pathologic specimens (median 1 cm, range 0 to 3 cm), but this correlation was not significant ($p = 0.06$).

The comparison analysis between the percentage changes in the MRI parameters and pathologic response, comparing pre- vs. during-CRT and pre- vs. post-CRT, was shown in Table 1. During chemoradiation, the mean tumor thickness of all patients decreased by 30%, and this was significantly correlated with the pathologic response rate and Dworak regression grade. While the tumor thickness decreased by 40.63% post-CRT, this was not significantly correlated with the pathologic response rate or Dworak regression grade. Meanwhile, the decreases in tumor length during- and post-CRT were not significantly correlated with the pathologic responses.

![Fig. 1](image)

Fig. 1 Each graph (a-e) consists of box and whisker plots that were used to compare the tumor thickness and length, maximum slope of increase, peak enhancement and time to peak at each time point for all 19 patients. The box represents the values from the lower to the upper quartile (25th to 75th percentile). The whiskers indicate the range from the maximum to the minimum parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MRI</th>
<th>Response rate</th>
<th>Dworak grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>median (min, max)</td>
<td>r</td>
<td>p-value</td>
</tr>
<tr>
<td>Conventional MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Tumour thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-CRT vs. pre-CRT</td>
<td>-30.00 (-56.25, 0)</td>
<td>-0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>Post-CRT vs. pre-CRT</td>
<td>-40.63 (-69.23, -5)</td>
<td>-0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Δ Tumour length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-CRT vs. pre-CRT</td>
<td>-32.91 (-66.67, 0)</td>
<td>-0.23</td>
<td>0.34</td>
</tr>
<tr>
<td>Post-CRT vs. pre-CRT</td>
<td>-44.68 (-81.61, 6.67)</td>
<td>-0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>DCE-MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Max slope of enhancement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-CRT vs. pre-CRT</td>
<td>4.45 (-80.98, 531.12)</td>
<td>-0.01</td>
<td>0.96</td>
</tr>
<tr>
<td>Post-CRT vs. pre-CRT</td>
<td>-17.66 (-90.67, 487.42)</td>
<td>0.09</td>
<td>0.70</td>
</tr>
<tr>
<td>Δ Peak enhancement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-CRT vs. pre-CRT</td>
<td>28.97 (-29.55, 395.84)</td>
<td>0.09</td>
<td>0.72</td>
</tr>
<tr>
<td>Post-CRT vs. pre-CRT</td>
<td>3.92 (-35.39, 318.07)</td>
<td>-0.05</td>
<td>0.85</td>
</tr>
<tr>
<td>Δ Time to peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-CRT vs. pre-CRT</td>
<td>10.29 (-94.95, 266.67)</td>
<td>-0.13</td>
<td>0.60</td>
</tr>
<tr>
<td>Post-CRT vs. pre-CRT</td>
<td>5.95 (-32.46, 266.67)</td>
<td>-0.12</td>
<td>0.64</td>
</tr>
</tbody>
</table>

MRI = magnetic resonance imaging; CRT = chemoradiation treatment; DCE-MRI = dynamic contrast-enhanced magnetic resonance imaging; r = correlation coefficient; $Δ$ = percentage change

The median of the pathologic response rate = 40 (range 10-100)
DCE-MRI parameters

There were no significant correlation between the percentage changes of the DCE-MRI parameters and the pathologic responses on either the pre-CRT vs. during-CRT or the pre-CRT vs. post-CRT MRI, except for time to peak on the pre-CRT vs. during-CRT MRI, which was correlated with the Dworak regression grade ($p = 0.01$). The time to peak during-CRT increased by 10.29% compared with pre-CRT, while the time to peak on the MRI post-CRT was increased by 5.95% compared with the MRI pre-CRT.

The percentage change in the time to peak in patients with poor regression (grades 0 and 1) was significantly greater than among patients with intermediate/complete regression (grades 2 to 4) (Table 1).

Comparison results of T- and N-stage between MRI and histopathology

When comparing the T-stage evaluated by MRI post-CRT and histopathology in all 19 patients, 15 patients (78.9%) were correctly classified, and four patients were incorrect. MRI post-CRT showed overstaging for two patients and understaging for two patients. When comparing the N-stage (positive nodes or not) evaluated by MRI and histopathology in all 19 patients, 15 patients (78.9%) showed the correct nodal status, and four patients showed the incorrect. MRI showed over-evaluation of the nodal status in these four patients.

The T- and N-stage showed highly significant correlation between the MRI post-CRT and pathologic results, as shown in Table 2 (p-value <0.001 and 0.01, respectively). The sensitivity, specificity, positive predictive value, and negative predictive value of the T-stage were shown in Table 3.

Comparison between the MRI response and pathologic response

According to the RECIST response criteria, the MRI response was found in 15 patients, and the MRI nonresponse was found in four patients. The comparison analysis between the RECIST response criteria (CR, PR, and SD) of MRI and the pathologic response rate ($p = 0.07$), as well as between the overall response of MRI (response and nonresponse) and the pathologic response rate ($p = 0.06$), were concordant, but this was not significant (Table 4). The RECIST response and overall response of MRI showed high concordance with the Dworak regression grade ($p = 0.04$ to 0.04), which was summarized in Table 5.

Discussion

MRI parameters and pathologic responses

Imaging markers for tumor angiogenesis can help monitor the disease progression and treatment response\(^{(14)}\). It would be beneficial to predict whether an individual cancer patient will respond to therapy at an early stage of treatment. Ineffective treatment may cause unnecessary toxicity in those patients and delay

Table 2. Tumour and nodal stages evaluated by MRI vs. histopathology

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pathologic stage</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI post-CRT</td>
<td>Overall T-stage</td>
<td><0.001 ((r = 0.82))</td>
</tr>
<tr>
<td>T-stage</td>
<td>ypT0 to 2</td>
<td>ypT3 and 4</td>
</tr>
<tr>
<td>- T0 to 2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>- T3 and 4</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>N-stage</td>
<td>ypN0</td>
<td>ypN1 and 2</td>
</tr>
<tr>
<td>- Positive</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>- Negative</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Diagnostic performances of the T- and N-stages evaluated by MRI

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Grouped T-stage</th>
<th>Grouped N-stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (%)</td>
<td>92.3 (64.0-99.8)</td>
<td>100 (59.0-100)</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>100 (54.1-100)</td>
<td>66.7 (34.9-90.1)</td>
</tr>
<tr>
<td>Positive predictive value (%)</td>
<td>100 (73.5-100)</td>
<td>63.6 (30.8-89.1)</td>
</tr>
<tr>
<td>Negative predictive value (%)</td>
<td>85.7 (42.1-99.6)</td>
<td>100 (63.1-100)</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>96.2 (88.6-100)</td>
<td>83.3 (69.4-97.3)</td>
</tr>
</tbody>
</table>

Data in parentheses are the 95% CI

Table 4. Comparison between the MRI response and pathologic response rate

<table>
<thead>
<tr>
<th>MRI</th>
<th>Response rate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Median (min, max)</td>
<td></td>
</tr>
<tr>
<td>RECIST response(^1)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Partial response</td>
<td>16</td>
<td>40.0 (10, 100)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>2</td>
<td>12.5 (10, 15)</td>
</tr>
<tr>
<td>Overall response</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>17</td>
<td>40.0 (10, 100)</td>
</tr>
<tr>
<td>Non-response</td>
<td>2</td>
<td>12.5 (10, 15)</td>
</tr>
</tbody>
</table>

No. = number of patients; RECIST = response evaluation criteria in solid tumors

\(^1\) Overall response, including the tumour thickness and length, according to the RECIST criteria
proper treatment. The purpose of the present study was to evaluate the use of the parameters of DCE-MRI for predicting the treatment response in rectal cancer patients who undergo neo-adjuvant CRT. The results demonstrate that the DCE-MRI parameters as the imaging markers fluctuated during treatment and were not correlated with the pathologic response, except for the time to peak parameter. We found that patients who had poor regression had a greater significant increase in the time to peak during-CRT compared with patients who had intermediate or complete regression compared to MRI pre-CRT, which suggests that a slower (increased) time to peak during-CRT may be predictive of poor regression. Our study was in agreement with the study by Dinter et al, which also showed that the decrease in the slope of the contrast enhancement curve in the response group (downstaging) was significantly greater than in the non-response group (without downstaging)\(^6\). However, our study used a different histopathological outcome (response rate and Dworak regression grade). Lim et al reported that higher pre-CRT K\(_{\text{trans}}\) values tend to have better tumor regression grade (TRG) responses (i.e., a lower tumor TRG), but the rates of the tumor K\(_{\text{trans}}\) values in the early-CRT and post-CRT phases relative to the K\(_{\text{trans}}\) in the pre-CRT phase were not correlated with the TRG\(^{42}\). It should be noted that different MR parameters were used and that the correlations were found at different time points.

The correlation between the changes of time to peak during-CRT and tumor response may be explained by the fact that the slower time to peak affected the delivery of chemotherapeutic agents into the tumor mass, which might have resulted in non-responsiveness. Additionally, the slower time to peak could be related to the hypoxic microenvironment, which increased the overall tumor resistance to radiation\(^{15}\). A faster tumor enhancement may be indicative of more tumor angiogenic activity\(^{14,15}\), which is targeted by anti-angiogenic therapy and is found among intermediate and regression patients. Thus, MRI analysis of the time to peak parameter of during-CRT for measuring early temporal changes appears to be helpful for predicting the therapeutic outcome.

In addition, Hong et al reported that time to peak was positively correlated with histologic tumor grade, i.e., poorly differentiated tumors showed longer times to reach the peak enhancement compared to those of well-differentiated lesions\(^{16}\). The slower time to peak in poorly differentiated tumors could be due to poorly perfused tumoral vessels. Tuncbilek et al found that time to peak with pre-treatment histopathology. Unfortunately, the present study was unable to perform correlations between MRI parameters and pre-treatment histopathology (biopsied specimens) because the histopathologic result might not represent the whole tumor.

DCE-MRI research has focused on different tumors and has shown mixed results in the relationship between the tumor dynamic enhancement patterns and tumor angiogenesis and response\(^{7,18,19}\). Different methods to derive those MRI parameters have been proposed\(^7\). In the present study, however, we decided to use semi-quantitative analysis (i.e., peak enhancement, maximal slope of enhancement, and time to peak) that was performed directly with the T1WI due to its speed, reproducibility, and availability. These parameters can be obtained immediately by generating time-intensity curves from a workstation in routine clinical practice, unlike quantitative analyses [i.e., blood flow, blood volume, permeability or transfer constant (K\(_{\text{trans}}\)].

Table 5. Comparison between the MRI response and pathologic Dworak grade

<table>
<thead>
<tr>
<th>MRI</th>
<th>Dworak grade (No.)</th>
<th>p-value</th>
<th>Grouped Dworak grade (No.)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECIST response(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>0 0 0 1</td>
<td>0.009</td>
<td>0 1</td>
<td>0.01</td>
</tr>
<tr>
<td>Partial response</td>
<td>2 8 5 1</td>
<td></td>
<td>2 14</td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>2 0 0 0</td>
<td></td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>Overall response</td>
<td>0.04</td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>2 8 5 2</td>
<td></td>
<td>2 15</td>
<td></td>
</tr>
<tr>
<td>Non-response</td>
<td>2 0 0 0</td>
<td></td>
<td>2 0</td>
<td></td>
</tr>
</tbody>
</table>

No. = number of patients

\(^1\) Overall response, including the tumour thickness and length, according to the RECIST criteria

which require more scanning techniques and mathematical modeling for conversion of the MR signal intensities to Gd-DTPA concentrations\(^{(20,21)}\). Our study found mixed results among three time points (pre-, during-, and post-CRT), and there were no significant correlation between the maximum slope of enhancement or peak enhancement and the pathologic response. However, we were able to demonstrate a temporal change in the perfusion parameters in tumors after CRT. These results generated additional research questions for the future.

Conventional MRI and pathologic results

MRI post-CRT and the histopathologic tumor length had a significant correlation (Table 2), similar to that reported in a previous study\(^{(22)}\). The tumor thickness and MRI tumor length tended to decrease in size with a higher pathologic response. However, there was a significant correlation between the change in the tumor thickness on the MRI pre-CRT vs. during-CRT and the pathologic response.

The T-stage on MRI post-CRT was highly correlated with the pathologic stage. There was higher sensitivity and specificity than in the recent study by van der Paardt et al\(^{(23)}\). In the present study, there was a T-stage correction of 78.9% between MRI post-CRT and the histopathology, which was similar to the observations in the study by Johnston et al\(^{(20)}\). However, Dinter et al\(^{(3)}\) reported that pre-surgical MRI could not predict the ypT stage.

The nodal status on post-CRT was correlated with the pathologic result with high sensitivity and accuracy. The present study showed higher sensitivity than previous studies, with a sensitivity of 57% to 95%\(^{(25-28)}\), but we found similar specificity (67 to 75%) and accuracy\(^{(22)}\). Most of the inaccuracy in the N-stages was caused by overstaging, and this remained challenging due to the high prevalence of malignancy in normal-sized lymph nodes. Brown et al\(^{(10)}\) reported that the signal intensity and border characteristics of the nodes were superior to the size in predicting the nodal status. The high spatial resolution of the MR imaging technique was needed in assessing the border irregularity, combined with the heterogeneity of the intranodal signal intensity.

The MRI response (RECIST and overall responses) was better concordant with the Dworak regression grade than the pathologic response rate. The Dworak regression grade is considered a significant prognostic factor for survival and local recurrence after preoperative CRT\(^{(29-31)}\). Therefore, the MRI response may predict the treatment response and may be a prognostic factor.

There were some limitations to the present study. First, the number of patients was relatively small and the sample size was not calculated. Second, the time interval between the MRI post-CRT and the pathologic result varied considerably (12-66 days), and changes in the disease status could occur in this time frame. A previous study demonstrated that a prolonged interval between neo-adjuvant CRT and surgery still might improve the pathologic complete response rate\(^{(15)}\). Third, the time to peak measurement in a patient with a slow circulation time would result in a long time to peak even if the tumor enhanced rapidly. This was not an issue for any of the patients in the present study because they all had a similar time to arterial enhancement. Fourth, the choice of the ROI for the dynamic sequences was very crucial because single-slice ROI analysis was prone to bias and might not adequately represent the tumor heterogeneity. To minimize these limitations, ROIs were drawn at the highest enhancement region of the central levels of the tumor.

In conclusion, the changes in the tumor thickness and length of rectal cancer evaluated by conventional MRI, and the time to peak evaluated by DCE-MRI during CRT may be useful for predicting treatment response, and these factors have a good correlation with the pathological response. Tumors with a faster time to peak tend to respond favorably to CRT, according to the Dworak regression grade. Early evaluation of the response during neo-adjuvant CRT treatment shows great promise in predicting the tumor response.

What is already known on this topic?

Several studies had shown the diagnostic value of the perfusion parameters in DCE-MRI for predicting the therapeutic outcome of locally advanced rectal carcinoma after neo-adjuvant treatment. However, most reported parameters require special software with mathematic modeling to derive those results, which was not practical in clinical practice. In addition, there were some conflicting results on perfusion parameters in term of which parameters to use and when to assess the treatment as well as the correlation to histopathology results.

What this study adds?

This study demonstrated DCE-MRI parameters as the imaging markers fluctuated during
treatment and were not correlated with the pathologic response, except for the time to peak parameter. The result showed that patients who had poor regression had a greater significant increase in the time to peak during-CRT compared to patients who had intermediate or complete regression compared to MRI pre-CRT, which suggested that a slower (increased) time to peak during-CRT may be predictive of poor regression.

The tumor length measured by MRI post-CRT was significantly correlated with the tumor length of the histopathologic specimen. While, the percentage change of tumor thickness during-CRT was significantly correlated with the pathologic response rate and Dworak regression grade.

Acknowledgements
This research was supported by a grant from Mahidol University. The authors wish to thank Mr. Dittapol Muntham from the Section for Clinical Epidemiology and Biostatistics, Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University for statistical consultation.

Potential conflicts of interest
None.

References
16. Hong HS, Kim SH, Park HJ, Park MS, Kim KW, Kim WH, et al. Correlations of dynamic...

การตรวจด้วยคลื่นแม่เหล็กไฟฟ้าโดยวิธี dynamic contrast enhancement เพื่อประเมินผลการตอบสนองของการรักษาของผู้ป่วยมะเร็งลำไส้ส่วนปลายให้ส่วนปลายของลำไส้ด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด

ลิทธิ์ พรหมกิจกรูบุ, อุมลักษณ์ ไดรอนคุณ, นพลดล กลาภิหารพัฒน์, ณัฐนิท สัมณานันทน์, ยิ่ง สิ่งแก้ว, เล็กภัทร ศรีชัยบัณฑิต

ภูมิหลัง: การรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัดในผู้ป่วยมะเร็งลำไส้ส่วนปลายมีผลบวกด้านการลดขนาดของก้อนมะเร็งและคุณภาพชีวิตของผู้ป่วย แต่ยังมีบางกลุ่มผู้ป่วยที่ไม่ตอบสนองต่อการรักษาด้วยเคมีบําบัดหรือการรักษาด้วยรังสี เจ้าหน้าที่ต้องมีการประเมินผลการตอบสนองของผู้ป่วยมะเร็งลำไส้ส่วนปลายอย่างมีประสิทธิภาพในการรักษา

วัตถุประสงค์: เพื่อศึกษาหาค่าผลลัพธ์ที่ได้จากการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าด้วยวิธี dynamic contrast enhancement ในการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าได้ข้อมูลเกี่ยวกับการเปลี่ยนแปลงทางกายภาพภายในก้อนมะเร็งหลังได้รับการรักษา

วัสดุและวิธีการ: เป็นการศึกษาแบบไปข้างหน้า โดยผ่านการพิจารณารับรองโดยคณะกรรมการจริยธรรมการวิจัยในคน โดยมีผู้ป่วยมะเร็งลำไส้ส่วนปลายที่ต้องรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด ทั้งนี้ต้องได้รับการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าก่อนรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด ทั้งนี้ต้องมีการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าก่อนรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด ทั้งนี้ต้องมีการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าก่อนรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด ทั้งนี้ต้องมีการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าก่อนรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด ทั้งนี้ต้องมีการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าก่อนรักษาด้วยเคมีบําบัดร่วมกับการให้รังสีรักษาก่อนผ่าตัด

ผลการศึกษา: ผลการตรวจด้วยกลุ่มผู้ป่วย 19 ราย พบ Dworak regression grade ของมะเร็งที่ระดับ 0, 1, 2, 3 และ 4 เท่ากับร้อยละ 0, 21.1, 42.1, 26.3 และ 10.5 ตามลำดับ โดยพบว่าขนาดของก้อนมะเร็งที่ตรวจจากการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าหลังการรักษาจะน้อยลงในระดับ moderate และ fair กับผลการตรวจทางทางกายภาพทั้งหมด และความยาวของก้อนมะเร็ง นอกจากนี้การเปลี่ยนแปลงของขนาดก้อนมะเร็งที่ตรวจได้จะสอดคล้องกับผลการตรวจทางทางกายภาพ ที่ประเมินด้วยวิธี Dworak Regression Grade ส่วนผลลัพธ์การเปลี่ยนแปลงของ maximal slope of enhancement และ peak enhancement ที่วัดจากการตรวจด้วยคลื่นแม่เหล็กไฟฟ้า ไม่แสดงความสัมพันธ์กับการตอบสนองของการรักษา ยกเว้นผลลัพธ์การเปลี่ยนแปลงของ time to peak ระหว่างการรักษา พบมีความสัมพันธ์กับ Dworak regression grade และพบว่า time to peak จะมีค่าการเปลี่ยนแปลงเพิ่มขึ้นในกลุ่มผู้ป่วยที่ไม่สามารถตอบสนองต่อการรักษา โดยมีค่าที่สูงขึ้นจาก 139.25 เมื่อเทียบกับกลุ่มผู้ป่วยตอบสนองต่อการรักษา ที่มีค่าการเปลี่ยนแปลงเพียงร้อยละ 6.13

สรุป: การเปลี่ยนแปลงของขนาดก้อนมะเร็งจากภาพการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าและผลลัพธ์จากการตรวจด้วยวิธี dynamic contrast enhancement ที่ได้จากการตรวจระหว่างการรักษาเปรียบเทียบกันก่อนรักษา มีความสัมพันธ์กับผลการตอบสนองทางทางกายภาพ ซึ่งแสดงถึงการใช้ในการพยากรณ์การตอบสนองต่อการรักษาในผู้ป่วยมะเร็งลำไส้ส่วนปลายให้ส่วนปลายที่ได้รับเคมีบําบัดร่วมกันก่อนการให้รังสีรักษาก่อนผ่าตัด