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ABSTRACT: Let G be a finite non-abelian metacyclic p-group where p is any prime. We compute the exact number of
conjugacy classes and the commutativity degree of G. In particular, we describe the number of conjugacy classes both in
the split and non-split case.
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INTRODUCTION

We consider only finite groups. Recently many au-
thors have investigated the number k(G) of conjugacy
classes of a group G. There are several papers on the
conjugacy classes of finite p-groups1–3. Many authors
obtained significant results but only on the lower and
upper bound of k(G). For instance, Sherman4 proves
that if G is a finite nilpotent group of nilpotency
class m, then k(G) > m|G|1/m − m + 1. Later
Huppert5 proved that k(G) > log n for any nilpotent
group G of order n. On the other hand, Liebeck and
Pyber6 found an upper bound for k(G) in terms of
an arbitrary constant. Lopeze7 shows that a maximal
abelian subgroup A of |A| = pα of a nilpotent group
G of |G| = pm and |Z(G)| = pβ satisfies an equality
of the form

k(G) =
p2α−m + pβ(p+ 1)(pm−α − 1)

pm−α

+
k(p2 − 1)(p− 1)

pm−α

where k > 0. For k > 0 this formula provides an
upper bound by default but does not determine the
exact number of conjugacy classes of G.

A group G is called metacyclic if it contains a
normal cyclic subgroup N such that G/N is also
cyclic. Concerning these groups, in Ref. 8 it was
shown that if G is any finite split metacyclic p-group

for an odd prime p, that is, G = H nK for subgroups
H and K, and if |H| = pα and |K| = pα+β , then
there exist exactly

(β − α+ 1)(pα+1 − 1)

(p− 1)
+ 4

α−1∑
i=0

pi(α+ i)

conjugacy classes of subgroups of G.
The metacyclic p-groups of class 2 have been

classified in Ref. 9 where homological methods are
used. The case of p = 2 needs special attention
and was the subject of Ref. 10. Moreover, Beuerle11

classified the non-abelian metacyclic p-groups of class
at least 3 where p is any prime. He showed there are
four classes of such groups which have been called of
positive type. We use these classifications in order to
obtain the precise number of conjugacy classes of all
non-abelian metacyclic p-groups of class 2 and class
at least 3.

Each isomorphism class of metacyclic p-groups
can be represented by five parameters p, α, β, ε,
and γ. These parameters are used to measure the
order, centre and abelianness of the groups, and also
their nilpotency class, and whether the groups are
split extension or not. We also use the parameters
to compute the number of conjugacy classes of the
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groups. Let us first begin with the some notation. Let

G(p, α, β, ε, γ) =

〈a, b|ap
α

= 1, bp
β

= ap
α−ε

, ab = ar〉

where r = pα−γ + 1. We shorten the notation to
G(p) for G(p, α, β, ε, γ) and use the notation [b, a] =
bab−1a−1 = aba−1 for the commutator of b and a.

Theorem 1 11 Let G be a non-abelian metacyclic
p-group of nilpotency class 2. Then

G ' 〈a, b|ap
α

= bp
β

= 1, [a, b] = ap
α−γ
〉,

where α, β, γ ∈ N, α > 2γ and β > γ > 1.

Theorem 2 11 Let p be an odd prime and G a meta-
cyclic p-group of nilpotency class at least 3. ThenG is
isomorphic to exactly one group in the following list:

(i) G ' 〈a, b|apα = bp
β

= 1, [b, a] = ap
α−γ 〉,

where α, β, γ ∈ N, γ − 1 < α < 2γ, and γ 6 β;
(ii) G ' 〈a, b|apα = 1, bp

β

= ap
α−ε

, [b, a] =

ap
α−γ 〉, where α, β, γ, ε ∈ N, γ − 1 < α < 2γ,

γ 6 β, and α < β + ε.

Theorem 3 11 Let G be a metacyclic 2-group of
nilpotency class at least 3. Then G is isomorphic to
exactly one group in the following list:

(i) G ' 〈a, b|a2α = b2
β

= 1, [b, a] = a2α−γ 〉,
where α, β, γ ∈ N, 1 + γ < α < 2γ, and β > γ;

(ii) G ' 〈a, b|a2α = 1, b2
β

= a2α−ε , [b, a] =

a2α−γ 〉, where α, β, γ, ε ∈ N, 1 + γ < α < 2γ,
γ 6 β, and α < β + ε.

In this article we are going to compute the exact
number of conjugacy classes of metacyclic p-groups
which have been presented in Theorems 1, 2, and 3.
We will show in our main result (Theorem 4) that the
split and non-split metacyclic p-groups of class greater
than 2 and class exactly 2 have precisely

pα+β
( 1

pγ
+

1

pγ+1
− 1

p2γ+1

)
conjugacy classes.

We also investigate the commuting probability in
metacyclic p-groups, since conjugacy classes can be
used to find the commutativity degree of a group.
There are many papers on the lower and upper
bound of commutativity degree of some particular
groups12–16. We recall that Gustafson introduced
Pr(G) = k(G)/|G| as the probability that a randomly
picked pair of elements of a group G are commuting.
Thus finding the commutativity degree of a group is

the same of finding the number of conjugacy classes of
the group. It was noted in Ref. 16 that Pr(G) 6 5

8 for
any non-abelian group G and equality holds exactly
when [G : Z(G)] = 4.

In Theorem 5 we will obtain the exact value
of Pr(G) for metacyclic p-groups (p is any prime)
which have been mentioned in Theorems 1, 2, and
3. Moreover, we show that the commutativity degree
of the groups of cases (1)–(5) which are given in
Theorem 4 are the same and equal to

1

pγ
+

1

pγ+1
− 1

p2γ+1
.

PRELIMINARIES

This section contains some important results and other
preparatory material which will be used in our main
theorems. In the following lemma the centre and the
order of centre of a metacyclic p-group G are given.

Lemma 1 If G = G(p, α, β, ε, γ), then
(i) |G| = pα+β;
(ii) Z(G) = 〈apγ , bpγ 〉 and |Z(G)| = pα+β−2γ .

Proof : (i) G = 〈a〉〈b〉 and 〈a〉 ∩ 〈b〉 = 〈apα−ε〉 has
order pε, then the order of G is pα+β . Part (ii) is
a straightforward consequence of Proposition 4.10 in
Ref. 17. �
The following corollary is an immediate consequence
of Lemma 1, and also see Ref. 11.

Corollary 1 LetG be a group of typeG(p, α, β, ε, γ).
If β+ε 6 α, thenG is isomorphic to a split metacyclic
p-group and in particular, G ' G(p, α, β, 0, γ).
Moreover, the class of G is greater than 2 if and only
if α < 2γ.

Lemma 2 Let α, β, r, and ε be integers with α, β
non-negative and let

G ' 〈a, b|ap
α

= 1, bp
β

= ap
α−ε

, ab = ar〉

be a metacyclic p-group, where r = pα−γ + 1. If
x, y ∈ G with x = aibj and y = asbt, then the
following hold in G:

(i) xy = ai+sr
j

bj+t;
(ii) xy = as(1−r

j)+irtbj;
(iii) [x, y] = ai(1−r

t)+s(rj−1).

Proof : This is straightforward. �

Lemma 3 If [b, a] = ap
α−γ

, r = 1 + pα−γ , and
` = pδ`′ such that gcd(p, `′) = 1, then r` − 1 =
pα−γ+δ(pk + `′), for some integers δ, `′, k, γ, and
α > 0.

www.scienceasia.org

http://www.scienceasia.org/2012.html
www.scienceasia.org


ScienceAsia 38 (2012) 115

Proof : By a direct calculation we get,

r` − 1 =
(
1 + pα−γ

)` − 1

=
∑̀
i=0

(
`
i

)
p(α−γ)i = pα−γ+δ(pk + `′)

for some integers δ, `′, k, where ` = pδ`′ and
gcd(p, `′) = 1. �

Lemma 4 Let Gγ = G(α, β, γ) ' 〈a, b|apα =

bp
β

= 1, [b, a] = ap
α−γ 〉 and Gγ−1 = Gγ/〈z〉,

where z = ap
α−1

. Then x̄, ȳ ∈ Gγ−1\Z(Gγ−1) are
conjugate if and only if x, y ∈ Gγ are conjugate.

Proof : Clearly, if x, y ∈ Gγ are conjugate, then
their images in Gγ−1\Z(Gγ−1) are conjugate. Now
suppose that x̄, ȳ are conjugate, i.e., ȳ = x̄ḡ then
y−1xg ∈ 〈z〉 and y−1xg = z` for some `. If ` = 0,
the result is trivial. If ` 6= 0 and xg = yz`, we show
that y and yz` are conjugate. Suppose that y = aibj ,
w = asbt, and yw = yz`. By Lemma 2, we have
ai(1−r

t)+s(rj−1) = z` = ap
(α−1)`. Therefore

i(1− rt) + s(rj − 1) ≡ pα−1` (mod pα).

Now if rj 6≡ 1 (mod pα) and t = 0, then s(rj−1) ≡
pα−1` (mod pα). We can write rj − 1 = pj

′
v

such that gcd(p, v) = 1 and j′ 6 α − 1. Thus
spj
′
v ≡ pα−1` (mod pα). It follows that s ≡ `v−1

(mod p). Now if we let rj ≡ 1 (mod pα), then
i(1 − rt) ≡ pα−1` (mod pα). Suppose that i =
pδi′ and gcd(p, i′) = 1. Using Lemma 3, we have
i′pδpα−γ+σ(pk+t′) ≡ pα−1` (mod pα), from which
it follows that

i′pα+δ−γ+σ(pk + t′) ≡ pα−1` (mod pα),

where t = pσt′ such that gcd(p, t′) = 1. If σ =
λ + δ − 1, then we have i′(pk + t′) ≡ ` (mod p)
and hence t′ ≡ −i′−1` (mod p). The proof is then
complete. �

Lemma 5 Let G be a p-group with |G/Z(G)| = p2,
then k(G) = p−1

(
p2 + p− 1

)
|Z(G)|.

Proof : It is easy to see that if |G/Z(G)| = p2 and g ∈
G\Z(G) then CG(g) =

〈
Z(G), g

〉
= Z(G)〈g〉 that

is
∣∣gG∣∣ =

[
G : CG(g)

]
= p. Thus each conjugacy

classes of G which lies in G\Z(G) has order p and
so G\Z(G) has (|G| − |Z(G)|)/p conjugacy classes.
Hence G has (|G| − |Z(G)|)/p + |Z(G)| conjugacy
classes. �

THE NUMBER OF CONJUGACY CLASSES OF
METACYCLIC p-GROUPS

Now we are in a position to prove our main theorem.
This theorem gives a formula for the exact number of
conjugacy classes of metacyclic p-groups of class 2
and class at least 3 in terms of α, β, γ. By Corollary 1,
the group of part (1) in this theorem has class 2 since
α > 2γ, and the remaining parts have class at least 3
since α < 2γ.

Theorem 4 (Main Theorem) Let G be a non-abelian
metacyclic p-group, where p is any prime number. If
G is one of the groups in the following list:

(1) G ' 〈a, b|apα = bp
β

= 1, [a, b] = ap
α−γ 〉,

where α, β, γ ∈ N, α > 2γ, and β > γ > 1;
(2) G ' 〈a, b|apα = bp

β

= 1, [b, a] = ap
α−γ 〉,

where α, β, γ ∈ N, γ − 1 < α < 2γ, and β > γ;
(3) G ' 〈a, b|a2α = b2

β

= 1, [b, a] = a2α−γ 〉,
where α, β, γ ∈ N, 1 + γ < α < 2γ, and γ 6 β;

(4) G ' 〈a, b|apα = 1, bp
β

= ap
α−ε

, [b, a] =

ap
α−γ 〉, where α, β, γ, ε ∈ N, γ − 1 < α < 2γ,

β > γ, and α < β + ε;
(5) G ' 〈a, b|a2α = 1, b2

β

= a2α−ε , [b, a] =

a2α−γ 〉, where α, β, γ, ε ∈ N, 1 + γ < α < 2γ,
γ 6 β, and α < β + ε, then

k(G) = pα+β
( 1

pγ
+

1

pγ+1
− 1

p2γ+1

)
.

Proof : We compute k(G) in the cases when G is split
and non-split separately, and we prove that k(G) for
both cases is the same.

Split case. Using Corollary 1 the groups of parts
(1)–(3) are split, since ε = 0. Based on Lemma 4
we compute the number of conjugacy classes of G
for the split case (2), and then the method of proof
can be applied to the other split cases. We denote the
split group (2) by showing Gγ(p) = G(p, α, β, ε, γ).
Then by using Lemma 1, |Gγ(p)| = pα+β and
|Z(Gγ(p))| = pα+β−2γ . If z = ap

α−1

, then z is a
central element of order p and we define the group
Gγ−1 = Gγ/〈z〉. If we let ā = a〈z〉 and b̄ = b〈z〉,
then |ā| = pα−1 and |b̄| = pβ . Also we have

[b̄, ā] = ap
α−γ
〈z〉 = (a〈z〉)p

α−γ
= āp

α−γ

= āp
(α−1)−(γ−1)

.

Hence

Gγ−1 = 〈ā, b̄|āp
α−1

= b̄p
β

= 1, [b̄, ā]

= āp
(α−1)−(γ−1)

〉
' Gγ−1(α− 1, β, γ − 1).
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Let φ : Gγ → Gγ−1 be the canonical homomorphism
which maps an element x ∈ Gγ to x〈z〉. By
using Lemma 4, there is a one-to-one correspondence
between the conjugacy classes of non-central elements
of Gγ−1 with conjugacy classes of Gγ , which are
mapped by φ to non-central elements of Gγ−1. In
fact if we let Z(Gγ−1) = K/〈z〉, then two elements
x, y of Gγ\K are conjugate in Gγ if and only
if x〈z〉, y〈z〉, as elements of Gγ−1\Z(Gγ−1) are
conjugate in Gγ−1. Since Gγ−1\Z(Gγ−1) contains
k(Gγ−1)−|Z(Gγ−1)| conjugacy classes, we conclude
that Gγ\K has k(Gγ−1) − |Z(Gγ−1)| conjugacy
classes. We now consider conjugacy classes of Gγ
which lie in K. Clearly, Z(Gγ)/〈z〉 ⊆ Z(Gγ−1).
Thus Z(Gγ−1) contains |Z(Gγ)/〈z〉| = |Z(Gγ)|/p
elements which come from Z(Gγ). Now if g ∈
K\Z(Gγ) then g〈z〉 is a central element in Gγ−1.
Hence gGγ contains p elements and it is exactly the
set g〈z〉. Thus each conjugacy class of G which
lies in K\Z(Gγ) maps to a central element of Gγ−1

in Z(Gγ−1) − Z(Gγ)/〈z〉 and vice versa. Thus
K\Z(Gγ) contains exactly∣∣∣Z(Gγ−1)− Z(Gγ)

〈z〉

∣∣∣ = |Z(Gγ−1)| −
∣∣∣Z(Gγ)

〈z〉

∣∣∣
= |Z(Gγ−1)| − |Z(Gγ)|

p

conjugacy classes. Finally, we know Z(Gγ) has
|Z(Gγ)| conjugacy classes of Gγ . Therefore the con-
jugacy classes of Gγ is equal to the sum of conjugacy
classes of Gγ\K, K\Z(Gγ), and Z(Gγ), that is

k(Gγ) = (k(Gγ−1)− |Z(Gγ−1)|) +
(
|Z(Gγ−1)|

− |Z(Gγ)|
p

)
+ |Z(Gγ)|

= k(Gγ−1) + (1− 1/p)|Z(Gγ)|.

By using Lemma 1 and induction on γ, we have

k(Gγ) = k(Gγ−1) + (1− 1/p)|Z(Gγ)|
= k(Gγ−2) + (1− 1/p)|Z(Gγ−1)|

+ (1− 1/p)|Z(Gγ)|
...

= k(G1)

+ (1− 1/p)(|Z(G2)|+ · · ·+ |Z(Gγ)|).

We complete the proof by computing k(G1). It is
easy to see that |G1/Z(G1)| = p2, so according to
Lemma 5 we have

k(G1) = p|Z(G1)|+ (1− 1/p)|Z(G1)|.

Therefore

k(Gγ) = p|Z(G1)|

+

(
1− 1

p

)
(|Z(G1)|+ · · ·+ |Z(Gγ)|)

= ppα+β−γ−1

+

(
1− 1

p

)(
pα+β−γ−1 + · · ·+ pα+β−γ−γ)

= pα+β−γ

+

(
1− 1

p

)(
pα+β−2γ

) (
pγ−1 + · · ·+ 1

)
= pα+β−γ +

(
1− 1

p

)(
pα+β−2γ

)(pγ − 1

p− 1

)
= pα+β−γ + pα+β−γ−1 − pα+β−2γ−1

= pα+β

(
1

pγ
+

1

pγ+1
− 1

p2γ+1

)
,

as claimed.
Non-split case. Again by using Corollary 1 the

groups of parts (4) and (5) are non-split, since α <
β + ε. We will use the results of the split case
to find a similar formula for the exact number of
conjugacy classes of the non-split case. In this case,
we need to establish Gγ−1 in terms of α, β, ε, and γ.
Also we may verify whether the central factor group
G1/Z(G1) is isomorphic to the group Zp × Zp.

Let Gγ−1 = Gγ/〈z〉, where z = ap
α−1

is a
central element of order p. If ā = a〈z〉 and b̄ = b〈z〉
then |ā| = pα−1 and |b̄| = pβ+ε−1. Moreover,
b̄p
β

= āp
α−ε

= āp
(α−1)−(ε−1)

. We also have

[b̄, ā] = (a〈z〉)p
α−γ

= āp
α−γ

= āp
(α−1)−(γ−1)

.

Thus

Gγ−1 = 〈ā, b̄|āp
α−1

= 1, b̄p
β

= āp
(α−1)−(ε−1)

, [b̄, ā]

= āp
(α−1)−(γ−1)

〉
' Gγ−1(p, α− 1, β, ε− 1, γ − 1),

and the situation is the same as the split cases. To find
out whether the group G1/Z(G1) ' Zp × Zp, the
order of the central factor groupGγ/Z(Gγ) should be
obtained when γ = 1. By applying Lemma 1 in the
following central factor group we have∣∣∣ G1(p)

Z(G1(p))

∣∣∣ =
p(α−(γ−1))+β

p(α−(γ−1))+β−2(γ−(γ−1))

=
pα+β−γ+1

pα+β−γ−1
= p2.
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Hence from this equality and by using a similar
method as in the proof of the split case, we obtain

k (Gγ(p, α, β, ε, γ)) = p|Z(G1)|

+

(
1− 1

p

) γ∑
i=1

|Z(Gi)|

= ppα+β−γ−1

+

(
1− 1

p

) γ∑
i=1

pα+β−γ−i

= pα+β−γ + pα+β−γ−1

− pα+β−2γ−1,

which completes our proof. �
As mentioned in the introduction, conjugacy

classes can be used to find the commutativity degree
of a group, so we arrive at the following result.

Theorem 5 Let G be a non-abelian metacyclic
p-group mentioned in Theorem 4. Then

Pr(G) =
1

pγ
+

1

pγ+1
− 1

p2γ+1
.

Proof : Theorem 4 gives the exact number of con-
jugacy classes in metacyclic p-groups, where p is
any prime number. We then use Gustafson’s formula
Pr(G) = k(G)/|G| which yields

Pr(G) =
1

pγ
+

1

pγ+1
− 1

p2γ+1
.

�

Remark 1 This theorem shows directly that
Pr(G) = 5

8 , when p = 2 and γ = 1. On the other
hand, it is easy to see that [G : Z(G)] = 22γ = 4
when γ = 1. Thus by using Ref. 16 we see again that
Pr(G) = 5

8 .

We conclude this section with a direct conse-
quence of Theorem 4 and Theorem 5, given in the
following corollary.

Corollary 2 Let G be the quasi-dihedral group
QD2α+1 . Then Pr(G) = 5

8 .

Proof : By taking β = γ = 1 in Theorem 4-(3), we
have

G(2, α, 1, 0, 1) ' 〈a, b|a2α = b2 = 1, [b, a] = a2α−1

〉.

Thus the exact number of conjugacy classes of quasi-
dihedral group G is

k(G) = k(QD2α+1) = 2α(
3

2
− 1

4
) = 2α + 2α−2,

and thus Pr(QD2α+1) = 5
8 . �
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