
Chiang Mai J. Sci. 2017; 44(2) : 688-698
http://epg.science.cmu.ac.th/ejournal/
Contributed Paper

Design and Analysis of Peer-to-Peer Fault-Tolerance
Approach in a Grid Computing System
Thagorn Tangmankhong*, Peerapon Siripongwutikorn and Tiranee Achalakul
Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology
Thonburi, 126 Pracha-Uthit Rd., Bangmod, Thungkhru, Bangkok, 10140, Thailand.
*Author for correspondence; e-mail: thagorn.tan@kmutt.ac.th

Received 9 June 2016
Accepted 11 August 2016

ABSTRACT
	 A	grid	computing	system	allows	a	large	complex	computing	task	to	efficiently	utilize	

high computing resources by splitting the task into many compute processes to be distributed
and executed in parallel at many grid nodes. Under such paradigm, the system fault tolerance
is the major issue as the failure of one grid node results in the task failure. Most fault tolerance
techniques for a grid computing system are based on periodic savings of checkpoint data,
which is used to roll back the system to the last good operating state when the failure occurs.
In this paper, the fault tolerance technique based on peer-to-peer replication of checkpoint
data	is	designed	and	analyzed.	The	idea	is	to	allow	chunks	of 	checkpoint	data	to	be	replicated	
at	different	backup	nodes	to	facilitate	faster	recovery	time	in	the	failure	recovery	process.	The	
replication	time	under	the	peer-to-peer	replication	procedure	is	analyzed	to	obtain	proper	choices	
of 	chunk	size	and	backup	group	size.	A	significant	reduction	in	the	recovery	time	compared	to	
the traditional client-server approach is also gained by using the peer-to-peer replication.

Keywords: fault tolerance, grid computing, peer-to-peer replication, replication time, peer-to-
peer fault tolerance

1. INTRODUCTION
A grid computing system is a group

of heterogeneous nodes at geographically
dispersed sites, which together can provide
high performance computing power and
large storage space to running applications.
For example, an application that involves a
large	complex	computing	task	may	utilize	the	
computing	power	of 	several	nodes	to	finish	
the	task	in	a	much	smaller	time.	The	original	
task is divided into many subtasks or compute
processes.	These	compute	processes	are	then	
distributed to a group of nodes, referred to

as a working group that collaboratively execute
the subtasks to accomplish the desired goal.

Under this grid computing paradigm, the
node reliability is a major issue because even
a single working node failure results in the
application	failure.	The	type	of 	failure	treated	in	
this paper is the hardware failure, where the node
becomes	completely	dead.	Therefore,	it	is	vital	
that a grid computing system be fault-tolerant,
which can be achieved by either forward recovery
[1, 2, 3] or backward recovery [4, 5, 6, 7, 8, 9]. In
forward recovery, a process in a working node

Chiang Mai J. Sci. 2017; 44(2) 689

is duplicated at many backup nodes and those
duplicated process run in parallel. If the working
node fails, the system can restore the process
from the next good states at one of the backup
nodes.	The	approach	results	in	fast	recovery	
time but requires high resource consumption
as the number of compute processes increases.
Therefore,	forward	recovery	is	not	practical	for	
a large number of compute processes.

Backward recovery, also known as checkpoint/
restart model [6], uses the last good state before
the failure occurrence to restore the operation.
In this approach, several mechanisms are
needed, including Checkpointing, Replication,
and Recovery [8, 10, 11, 12, 13–15, 16].

Checkpointing All running processes on
the working group are periodically suspended
simultaneously and the current states of those
running processes in the memory, referred to
as checkpoint data, are saved to local hard drives.
Checkpoint data is essentially a snapshot of the
operation states that can be used in the failure
recovery process.

Replication For an application requiring
high reliability, checkpoint data may be
duplicated from the local disk to backup nodes.
The	replication	time	results	from	the	data	
transfer from a working node to backup nodes
over the network.

Failure Recovery When a working node
failure occurs, each node rolls back to the
checkpoint data to recover from the failure.

The	main	focus	in	this	work	is	the	replication	
technique.	Traditional	replication	techniques	in	
a grid computing system are based on a client-
server approach, where the checkpoint data of
a working node is replicated as a whole copy to
one or more backup nodes depending on the
reliability requirement. When a working node
fails, its operation state is restored from the
checkpoint data in one of the backup nodes.
The	backup	locations	can	be	a	local	node,	
a	shared	file	system,	or	distributed	over	the	
network [17]. Using a local host for backup

may not produce a high tolerance to failure. If
the local node fails, the backup data could be
damaged, preventing the full recovery of the
system states. In order to increase the level of
resiliency, backup data should be stored at the
central	shared	file	storage	instead	of 	a	local	host.	
However, if multiple replications are performed,
the bottleneck problem may occur at the central
system.	To	alleviate	such	a	problem,	a	shared	
file	system	along	with	multiple	local	storages	
can	be	utilized	for	backups.	Backup	files	can	be	
split into smaller pieces and then distributed to
multiple	nodes	[17,	18].	The	method	is	referred	
to as ”distributed checkpointing” or distributed
replication. While this method can eliminate a
single point of failure problem, it consumes
a higher bandwidth because sending multiple
small	files	to	multiple	locations	generally	creates	
more	network	traffic	than	sending	one	large	
file	to	one	location.	Currently,	variations	of 	the	
distributed replication method were implemented
on many systems and many studies have been
performed to tackle the overhead problem.

This	paper	proposes	the	peer-to-peer	
fault-tolerance approach in a grid computing
system. We substantially extend the work in [19]
by	refining	the	protocol	details,	developing	the	
mathematical analysis of the replication time,
and conducting comprehensive performance
evaluation.	The	main	concept	is	to	create	
a group of compute processes that share
backup data in such a way that the replication
time and the recovery time become smaller.
Detailed procedures of how checkpoint
data are distributed among backup compute
processes as well as the operation under failure
recovery	are	explained.	The	replication	time	is	
also	mathematically	analyzed	to	obtain	proper	
choices of the system parameters, and the result
is validated against simulation.

The	paper	is	organized	as	follows.	Section	
2 presents the system environment, notations,
and assumptions on which our work is based,
as well as the key components in our proposed

 Chiang Mai J. Sci. 2017; 44(2)690

work. It also describes the procedures of group
forming, peer-to-peer replication, and failure
recovery.	The	replication	time	is	analyzed	
in Section 3 under a star topology and the
proper choices of system parameter values are
identified,	and	the	analytical	result	is	validated	
against	simulation.	The	conclusion	is	offered	
in Section 4.

2. MATERIALS AND METHODS
2.1 Grid Computing Environment

We consider a homogeneous grid computing
environment that consists of many grid nodes
connected	via	a	TCP/IP	network.	The	system	
consists of many grid nodes and one front-end
node running as the grid proxy. Figure 1 shows
how various pieces of software components and
compute processes inside a grid site interact.
All grid nodes and the front-end node run
Globus	Toolkit	[20].	The	front-end	node	also	
runs Condor [21] as a grid scheduler and acts
as the grid proxy to which a user submits a job.
The	system	works	as	follows.	After	accepting	a	
user job, the grid proxy contacts Grid Resources
Allocation and Management (GRAM) within
Globus toolkit, which is responsible for creating
Compute Processes (CPs) based on the submitted
job and distributing them to the grid nodes
(assuming	one	CP	per	node).	The	CPs	of 	a	
single user job are said to be in the same working
group, denoted by W. Note that the working
group W of each user job is determined by

Condor, which handles the data dependency
among CPs in the task allocation. Since all CPs
in a working group belongs to the same user
job, no irrelevant nodes are involved to incur
unnecessarily energy consumption.

Each CP contains two components – (i)
User application thread and (ii) the Peer-to-Peer
fault-tolerant	service.	The	timing	at	which	these	
threads	execute	is	depicted	in	Figure	2.	The	
Peer-to-Peer fault-tolerance service comprises
the following threads:

Group Forming This	thread	is	executed	
only once at the beginning to create a backup
group for each CP.

Checkpointing This	thread	is	regularly	
executed	in	every	checkpoint	interval.	It	notifies	
Condor at the front-end node to invoke the
checkpointing process for each user application
thread via the grid middleware. In each CP,
the user application thread will be suspended
while the operating states are saved to the
checkpoint data.

Replication After the checkpointing thread
finishes,	the	replication	thread	replicates	the	
checkpoint data to other CPs in its backup group
by using the proposed replication mechanism.
All data transfers among CPs are carried out
over	TCP	connections.

Fault Detection During the normal
process execution, the fault detection thread
monitors if one of the CPs in its backup group
fails	and	notifies	the	grid	proxy.	

Fault Recovery The	grid	proxy	contacts	
GRAM to create the new replacement CP to
resume	the	operation	of 	the	failed	CP.	The	
replacement CP gets a list of backup CPs and
retrieves the checkpoint data from them.

Figure 1. Grid Computing Environment.

 Formatted: Complex Script Font: Times New Roman

Figure 2.	Timing	diagram	 for	 the	 thread	
execution in the fault tolerance service.

Chiang Mai J. Sci. 2017; 44(2) 691

2.2 Peer-to-Peer Fault Tolerance Approach
This	section	describes	group	forming,	

replication, and failure recovery procedures,
which are the basis of the proposed peer-to-peer
fault	tolerance	approach.	Table	1	summarizes	
the	notation	used.	The	set	of 	backup	CPs	for	
a given CP is referred to as a backup group.	The	
number of CPs in a backup group is called the
backup group size, denoted by B.	To	balance	the	
resources among CPs, we enforce that each
CP can belong to at most B backup groups at
any time. CPs in the same backup group are
said to be peers. So, there will be |W| backup
groups for each working group, all of which
having	the	same	size	B, with B < |W|.

Initially, every CP s creates its own backup
group Bs by executing the group forming
procedure.	Then,	in	each	checkpointing	
interval, the replication procedure is executed
to distribute the checkpoint data to backup
CPs. In the context of replication, the CP of
interest acts as the source of checkpoint data,
referred to as the source CP.	The	group	forming	
and checkpoint data replication procedures
are explained below. Because all CPs in the
working group perform identical operations,
the group forming and replication procedures
will be explained from a viewpoint of a single
source CP.

2.2.1 Group forming procedure
The	group	forming	procedure	is	listed	in	

Figure	3.	To	form	a	backup	group,	a	source	CP	
sends Group-request messages with a unique ID
(its compute process ID assigned by Condor)
to all other CPs and waits for responses. Since
we restrict that each CP joins at most B backup
groups, only CPs that belong to less than B
backup groups will acknowledge the Group-
Request	message	together	with	their	ID.	The	
source CP collects the responses and ranks
the responding nodes by their response times
as	candidates	for	its	backup	CPs.	The	source	
CP sends the Member-Request message to B
candidate	CPs	and	waits	for	the	responses.	The	
source CP includes the CP that acknowledges
its Member-Request message in its backup
group. For each Group-Request and Member-
Request message sent, the timeout intervals
Tg and Tm are respectively used to trigger
the retransmission. In the absence of the
acknowledgment from a candidate backup
CP for two retries, the source CP chooses the
next backup CP in the candidate list to send
the Member Request message. Since we restrict
that each CP joins at most B backup groups
with B < |W|, each CP always gets B backup
CPs for its backup group.

Table 1. Notations for parameters.

Parameters Description

W A	set	of 	CPs	in	the	working	group	with	size	|W|

B Backup	group	size

Bs A set of CPs in the backup group of CP s with	size	|Bs| = B, B < |W|

Tg Timeout	interval	for	Group	request	message

Tm Timeout	interval	for	Member	request	message

Rl Replication level

Nc Number of chunks in checkpoint data

∆ Checkpoint	data	size

 Chiang Mai J. Sci. 2017; 44(2)692

 Figure 3. Group forming procedure for source CP and backup CPs.

Chiang Mai J. Sci. 2017; 44(2) 693

After the source CP receives the
acknowledgments for all its Member-Request
messages, it sends the backup group member
list	to	all	its	backup	CPs.	The	list	is	ranked	by	
the process IDs so that each backup CP knows
both the backup group members as well as its
successor in the backup group.

2.2.2 Replication procedure
The	replication	procedure	immediately	

follows the checkpointing procedure. Each
source CP divides the checkpoint data into Nc
chunks that are integral multiples of B.	That	is,	
Nc = M ·B, M · Z+. Each chunk is numbered
sequentially.

Denote Rl as the replication level, which
is the number of copies of checkpoint data
in addition to the source copy. At the end of
the replication procedure, each chunk will be
stored at Rl backup	CPs.	This	means	that	if 	
the application thread is recoverable if a source
CP fails and at most Rl − 1 backup CPs fail.

The	replication	procedure	is	illustrated	by	
example as follows. Consider a group of four
working CPs with three backup CPs per backup
group (|W| = 4, B = 3) as shown Figure 4.
Suppose Nc = 9 and Rl = 2. Without loss of
generality, let us denote a source CP of interest
by P0, and the backup CPs by P1, P2, and P3,
ranked	by	their	process	ID.	The	replication	
procedure at the source CP and backup CPs
work as follows:

Source CP: The	source	CP	transfers	Nc/B
chunks	to	each	of 	its	backup	CP.	The	transfer	
is carried out sequentially for chunks to the
same backup CP, and in parallel for chunks

to different backup CPs. In the example, P0
sequentially transfers chunks 1, 4, 7 to P1,
chunks 2, 5, 8 to P2, and chunks 3, 6, 9 to P3.
Generally, P0 transfers chunks i + (j − 1)B to
CP i, where i ∈ {1, 2, . . . , B} and j ∈ {1, 2,
. . . , M }.

Backup CP: For chunks received from
the source CP, the backup CP is responsible for
distributing them to other Rl − 1 backup CPs.
For Rl = 1, the backup CP only keeps chunks
to itself. For Rl = 2, the backup CP transfers
each chunk to its successor. In general, there
exists Rl copies of each chunk at Rl backup CPs,
which is done by each backup CP iteratively
transferring a received chunk to its successor
until Rl copies exist in Rl backup	CPs.	Thus,	
each backup CP eventually holds exactly M ·
Rl chunks. In this example of Rl = 2, P1 will
replicate chunks 1, 4, 7 received from the source
CP to P2, and likewise for P2 and P3. At the end
of the replication procedure, P1 holds chunks
1, 3, 4, 6, 7, 9, P2 holds chunks 1, 2, 4, 5, 7, 8,
and P3 holds chunks 2, 3, 5, 6, 8, 9.

The	above	replication	procedure	enforces	
that Rl ≤ B. For Rl = B, all backup CPs will
store the complete checkpoint data. In practice,
Rl = 2 is commonly used (data is replicated
at two sites), and higher values of Rl is rare.

2.2.3 Failure recovery procedure
During the user application execution

period, every CP monitors the liveliness of
its backup CPs (e.g., by periodically issuing
the ping command). Consider the case when
a particular CP p fails. All CPs that has p as its
backup will detect the failure and send a fault
detection message to the grid proxy, and hence
many fault detection messages can be received
by the grid proxy. After the grid proxy has
verified	the	node	failure,	it	requests	GRAM	to	
create a replacement CP at another grid node
not in the current working group W.	Then,	
the	grid	proxy	notifies	the	monitoring	CPs	of 	
the replacement CP. Because the replacement

(a) Stage 1 Replication (b) Stage 2 Replication (c) Stage 3 Replication

 Figure 4. Replication mechanism.

 Chiang Mai J. Sci. 2017; 44(2)694

CP needs to get the backup checkpoint data
for the recovery, only monitoring CPs that are
in the backup group of p are	relevant.	Those	
CPs will send the backup group member list
to the replacement CP, which in turn asks for
chunks from backup CPs in the list. Once the
complete checkpoint data has been acquired, the
replacement CP calls Condor restore function
to resume the user application execution thread.

3. RESULTS AND DISCUSSION
3.1 Analysis of Replication Time

This	section	analyzes	the	replication	time	
under	a	TCP/IP	network	as	a	function	of 	
checkpoint	data	size,	chunk	size,	and	the	backup	
group	size.	The	major	difference	between	our	
proposed Peer-to-Peer replication approach
and the client-server replication approach
lies in the replication time, which is the time
taken for the checkpoint data of a source CP
to be completely replicated at all of its backup
CPs. In the client-server replication, the whole
checkpoint data is transferred from the source
CP to backup CPs while in the Peer-to-Peer
replication, different chunks from the source
CP are transferred to different backup CPs, and
those chunks are also replicated among backup
CP. Because chunks are transferred over the
network, the replication time strongly depends
on the network topology of the grid nodes
and	the	flow	pattern,	i.e.,	how	many	flows	on	
each	network	link	at	a	given	time.	To	enable	
tractable analysis, we assume that the grid nodes
are interconnected in a star topology as shown
in Figure 5. For a more complex topology,
the replication time could be determined by
manually	constructing	the	flow	pattern	in	the	
network.	The	performance	on	more	complex	
topologies is left for future work.

We denote the replication time by T , the
checkpoint	data	size	by	D (in MB), the chunk
size	by	∆ (in	MB).	The	replication	level	Rl =
2 is assumed. Recall that in the replication
procedure, the checkpoint data is divided

into chunks and individual chunks are then
transferred	among	backup	peers	over	TCP	
connections. Consequently, the replication
time	can	be	calculated	based	on	the	TCP	
connection throughput and how chunks are
transferred	among	the	peers.	To	analyze	the	
replication time, consider the scenario of one
source CP (P0) with three backup CPs (P1, P2,
and P3) in Figure 4 with one CP per grid node.
The	corresponding	network	topology	for	this	
scenario	is	shown	in	Figure	5.	The	source	CP	
divides the checkpoint data into nine chunks,
chunks 1, 4, 6 for P1, chunks 2, 5, 7 for P2, and
chunks 3, 6, 9 for P3.	The	replication	time	can	
be	analyzed	in	three	stages	as	follows:

1st stage:	The	source	CP	transfers	the	first	
chunk of each backup CP simultaneously over
three	TCP	flows	as	shown	in	Figure	6(a),	which	
takes	T1	to	finish.	For	𝑛𝑛𝑏𝑏 backup CPs, B parallel
flows	exist	in	the	link	between	the	source	CP	
and the switch, and one ow on all the other
links. Because the transfer time is dictated by
the	link	with	largest	number	of 	flows,	we	have

𝑇𝑇1 =

∆
𝑅𝑅(𝑛𝑛𝑏𝑏)

where 𝑇𝑇1 =
∆

𝑅𝑅(𝑛𝑛𝑏𝑏)
 	is	the	per-flow	TCP	throughput	

(in Mbps) over a single link having 𝑛𝑛𝑏𝑏 	flows.

 2nd stage: In the second stage, the source
CP continues to send the remaining chunks to
the backup CPs, while each backup CP starts

 Figure 5. Network topology used for the
analysis of replication time.

Chiang Mai J. Sci. 2017; 44(2) 695

replicating the completely received chunks to
its successor. As shown in Figure 6(b), while
receiving chunk 4 from the source CP, P1
shares chunk 1 with P2.	Then,	it	shares	chunk	
4 with P2 while receiving chunk 7, and so on.
This	stage	lasts	for	the	amount	of 	time	for	the	
source CP to transfer the remaining chunks to
individual backup CPs. Denote the time taken
in	the	second	stage	by	T2. With 𝑛𝑛𝑏𝑏 CPs per
backup group, the number of chunks left to
be sent from the source CP to each backup CP
is (𝐷𝐷/𝑁𝑁𝑏𝑏) - ∆ 	because	the	first	chunk	of 	each	
backup CP has already been transferred in the
first	stage.	For	each	CP	𝑖𝑖 , let 𝑁𝑁𝑖𝑖 = {𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑖𝑖𝑖𝑖} be
a tuple representing the number of outgoing
parallel sessions to the switch and the number
of incoming parallel sessions from the switch.
From Figure 6(b), at the source CPs, 𝑁𝑁𝑠𝑠 = {3, 0}
, and all the other backup CPs have 𝑁𝑁𝑏𝑏 = {1, 2} .
In general, the source CP will have 𝑁𝑁𝑠𝑠 = {𝑛𝑛𝑏𝑏 , 0}
while each backup CP will have 𝑁𝑁𝑠𝑠 = {1, 2}
because it has to send its chunks to its successor
while receiving one chunk from the source CP
and one chunk from its predecessor. Since
there are |𝑊𝑊| CPs in the working group, there
must be |𝑊𝑊| backup groups, one for each CP.
As each CP belongs to 𝑁𝑁𝑏𝑏 = {1, 2} backup groups, we
have that for each CP 𝑖𝑖 , the number of parallel
flows	to	and	from	the	switch	is	given	by

𝑁𝑁𝑖𝑖 = {𝑛𝑛𝑖𝑖 +∑ 1, 2
𝑛𝑛𝑏𝑏

𝑗𝑗=1
∑ 1
𝑛𝑛𝑏𝑏

𝑗𝑗=1
}

= {2𝑛𝑛𝑏𝑏 , 2𝑛𝑛𝑏𝑏}

Therefore,	there	exists	= {2𝑛𝑛𝑏𝑏 , 2𝑛𝑛𝑏𝑏} parallel flows
between each grid node and the switch in both
directions, and it follows that

𝑇𝑇2 =
(𝐷𝐷 𝑛𝑛𝑏𝑏⁄) − ∆
𝑅𝑅(2𝑛𝑛𝑏𝑏)

3rd stage:	The	third	stage	starts	when	the	
source	CP	finishes	transferring	the	remaining	
chunks to its backup CPs, and each backup CP
replicates the last chunk with its successor. As

shown in Figure 6(c), the source CP will have
 𝑁𝑁𝑠𝑠 = {0, 0} , while each backup CP will have
 𝑁𝑁𝑏𝑏 = {1, 1} , because it has to share its chunks
to the successor while receiving one chunk
from	its	predecessor.	Therefore,	there	exists	
𝑛𝑛𝑏𝑏 parallel	flows	between	each	node	and	the	
switch in both directions. It follows that the
time taken in this 3rd stage is given by

𝑇𝑇1 =
∆

𝑅𝑅(𝑛𝑛𝑏𝑏)

Combining the replication time from the three
stages above, we have
𝑇𝑇(𝐷𝐷,𝐶𝐶,𝑝𝑝) = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3

𝑇𝑇(𝐷𝐷,∆,𝑛𝑛𝑏𝑏) = (∆
𝑅𝑅(𝑛𝑛𝑏𝑏)

) + (
(𝐷𝐷 𝑁𝑁𝑏𝑏⁄) − ∆
𝑅𝑅(2𝑛𝑛𝑏𝑏)

)+ (∆
𝑅𝑅(𝑛𝑛𝑏𝑏)

)

= (2∆
𝑅𝑅(𝑛𝑛𝑏𝑏)) + (

(𝐷𝐷 𝑁𝑁𝑏𝑏⁄) − ∆
𝑅𝑅(2𝑛𝑛𝑏𝑏))

(1)

where, p ≤ D
C and 1 ≤ 𝑛𝑛𝑏𝑏 ≤ 𝑚𝑚𝑚𝑚𝑛𝑛 (|𝑊𝑊|, |𝐷𝐷∆|)

(a) Stage 1 Replication (b) Stage 2 Replication (c) Stage 3 Replication

Figure 6. Flow patterns in different stages of
the replication procedure.

3.2 Choice of Backup Group Size
From	(1),	our	goal	is	to	find	appropriate	

values of 𝑛𝑛𝑏𝑏 and ∆ 	that	minimizes	the	
replication time for a given checkpoint data
size	D.	To	accomplish	so,	we	first	determine	
the	expression	of 	TCP	per-flow	throughput	
𝑅𝑅(.) 	Essentially,	the	key	to	TCP	throughput	
is	that	TCP	uses	the	end-to-end	congestion	
control mechanism that keeps increasing the
window	size	every	round-trip	time	until	reaching	
the	maximum	window	size	and	flows	sharing	
the same bottleneck link get approximately
equal	throughputs.	The	TCP	throughput	is	

 Chiang Mai J. Sci. 2017; 44(2)696

proportional	to	the	window	size	divided	by	
the round-trip time. So, only after the window
size	reaches	its	maximum	(65,535	bytes),	we	
will	get	the	maximum	TCP	throughput.	If 	the	
amount of data transferred is too small, the
TCP	session	may	finish	before	reaching	its	
maximum throughput.

The	behavior	of 	TCP	per-flow	throughput	
over a single 1 Gbps link is investigated by
using	ns-2	simulation.	Figure	7(a)	plots	the	TCP	
per-flow	throughput	against	the	data	transfer	
size	(i.e.,	chunk	size)	at	different	numbers	of 	
TCP	flows	(𝑛𝑛𝑏𝑏).	For	a	given	number	of 	flows,	
TCP	per-flow	throughput	increases	with	the	
data	transfer	size	and	starts	to	converge	to	a	
constant	after	the	data	size	goes	beyond	MB	
regardless of the number of parallel sessions.
The	chunk	size	∆ should thus be at least 1 MB
to	achieve	the	maximum	TCP	throughput	in	
the	transfer,	and	the	TCP	throughput	becomes	
independent	of 	the	data	transfer	size.	To	derive	
the	form	of 	the	TCP	throughput	per	session,	
𝑅𝑅(.) 𝑛𝑛𝑏𝑏 𝑅𝑅(.) ,	we	simulate	the	TCP	throughput	per	
session as shown in Figure 7(b) under 1 MB
data	size.	The	fitted	regression	model	of 	the	
throughput curve is given by

𝑅𝑅(𝑛𝑛) = 𝛼𝛼
𝛽𝛽 + 𝑛𝑛 Mbps, (2)

𝛼𝛼 = 776.15,𝛽𝛽 = 0.92

Substituting (2) in (3) and given D and ∆ , we
have

𝑇𝑇(𝑛𝑛𝑏𝑏) = 𝑐𝑐1 + (𝑐𝑐2𝑛𝑛𝑏𝑏
) , (3)

where 𝑐𝑐1 =
𝛽𝛽∆ + 2𝐷𝐷

𝛼𝛼 , 𝑐𝑐2 =
𝐷𝐷𝐷𝐷
𝛼𝛼

Another important observation from
Figure 7(b) is that the aggregate throughput
on	the	link	increases	with	the	number	of 	flows.	
For example, for two flows, the aggregate
throughput is about 560 Mbps while for three
flows,	the	aggregate	throughput	is	about	645	
Mbps.	This	behavior	benefits	the	recovery	time	
under Peer-to-Peer replication, which will be
discussed later in Section 4.

(a) TCP per-flow throughput vs. transfer data size at different number of flows.

(b) TCP per-flow throughput as a function of the number of flows

Figure 7.	TCP	per-flow	throughput	under	a	
single 1 Gbps link.

From (3), we see that the replication is a
decreasing function of 𝑛𝑛𝑏𝑏 that converges to
2∆/𝑅𝑅(𝑛𝑛𝑏𝑏) at 𝑛𝑛𝑏𝑏 = ⌊𝐷𝐷/∆⌋ . Because using a larger
backup	group	size	means	more	resources,	we	
select 𝑛𝑛𝑏𝑏 at which 𝑇𝑇(𝑛𝑛𝑏𝑏) = 𝑐𝑐1 + (𝑐𝑐2𝑛𝑛𝑏𝑏

) 	no	longer	significantly	
decreases, say by some small ratio 𝑇𝑇(𝑛𝑛∗ + 1) − 𝑇𝑇(𝑛𝑛∗)

𝑇𝑇(𝑛𝑛∗) =
𝑐𝑐2 (

1
𝑛𝑛∗ + 1 − 1

𝑛𝑛∗) ,

𝑐𝑐1 + (𝑐𝑐2𝑛𝑛∗) ,
 = 𝛿𝛿 , as 𝑛𝑛𝑏𝑏

increases.	Therefore,	our	goal	is	to	find	𝑛𝑛𝑏𝑏 * such
that

𝑇𝑇(𝑛𝑛∗ + 1) − 𝑇𝑇(𝑛𝑛∗)
𝑇𝑇(𝑛𝑛∗) =

𝑐𝑐2 (
1

𝑛𝑛∗ + 1 − 1
𝑛𝑛∗) ,

𝑐𝑐1 + (𝑐𝑐2𝑛𝑛∗) ,
 = 𝛿𝛿

 𝛿𝛿𝑐𝑐1𝑛𝑛2 + 𝛿𝛿(𝑐𝑐1 + 𝑐𝑐2)𝑛𝑛 − (1 − 𝛿𝛿)𝑐𝑐2 = 0 (4)

Note that (4) has two roots with opposite signs.
It follows that 𝑛𝑛𝑏𝑏 * is the positive root of (4),
which is given by

𝑛𝑛∗ = −𝛿𝛿𝑐𝑐1 +√𝛿𝛿(𝑐𝑐1 + 𝑐𝑐2)2 − 4𝛿𝛿(1− 𝛿𝛿)𝑐𝑐1𝑐𝑐2
2𝛿𝛿𝑐𝑐1

 (5)

and	the	choice	of 	backup	group	size	is

Chiang Mai J. Sci. 2017; 44(2) 697

𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚 (⌈𝑚𝑚∗⌉, |𝑊𝑊|, ⌊𝐷𝐷∆⌋) (6)

As an example, with 1-GB checkpoint data,
1-MB	chunk	size	(D	=	1000	MB	and	∆ = 1
MB) and a large working group, we have 𝑐𝑐1 =

𝛽𝛽∆ + 2𝐷𝐷
𝛼𝛼 =

2.5780, 𝑐𝑐2 =
𝐷𝐷𝐷𝐷
𝛼𝛼 = 1.1853. For 𝑇𝑇(𝑛𝑛∗ + 1) − 𝑇𝑇(𝑛𝑛∗)

𝑇𝑇(𝑛𝑛∗) =
𝑐𝑐2 (

1
𝑛𝑛∗ + 1 − 1

𝑛𝑛∗) ,

𝑐𝑐1 + (𝑐𝑐2𝑛𝑛∗) ,
 = 𝛿𝛿 = 0.02, the backup

group	size	calculated	from	(6)	is	𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚 (⌈𝑚𝑚∗⌉, |𝑊𝑊|, ⌊𝐷𝐷∆⌋) = 4.
Observe from (3) that if ∆ ≪ 𝐷𝐷 , 𝑐𝑐1 =

𝛽𝛽∆ + 2𝐷𝐷
𝛼𝛼 and 𝑐𝑐2 =

𝐷𝐷𝐷𝐷
𝛼𝛼

are approximately ∆ ≪ 𝐷𝐷 scaled by constants, and
the solution of 𝑛𝑛𝑏𝑏 * in (5) becomes independent
of ∆ ≪ 𝐷𝐷 .	Therefore,	the	choice	of 	backup	group	
size	can	be	set	to	four.

3.3 Simulation Results
This	section	evaluates	the	replication	

time obtained from the analysis in Section
3.2	against	ns-2	simulation.	The	recovery	time	
under Peer-to-Peer replication and client-server
replication are also compared. We simulated
a grid environment with ten grid nodes under
the star network topology as in Figure 5 with
1-Gbps links and a 200 microseconds of the
end-to-end propagation delay.

Figure 8 shows the replication time as
a	function	of 	the	backup	group	size	(B).
The	results	from	analysis	and	simulation	are	
consistent and clearly validate the analysis that
as	the	backup	group	size	increases	beyond	four,	
the replication time starts to converge.

 For the recovery process, the time to
recover the checkpoint data from backup
CPs to a replacement CP is observed after
a node failure. Because the replacement CP
needs to be created by GRAM, the recovery
overhead occurs when backup CPs of the failed
CP send backup chunks to the replacement
CP. We measure the recovery time from the
start of backup transfer. Figure 9 shows the
recovery times under Peer-to-Peer replication
compared to the client-server replication at
different	backup	group	sizes.	As	expected,	
the recovery time increases linearly with the
checkpoint	data	size.	However,	the	recovery	

time under Peer-to-Peer replication are always
smaller because the aggregate throughput on
the	link	increases	with	the	number	of 	flows	as	
shown	earlier	in	Figure	7(b).	The	results	suggest	
that our proposed Peer-to-Peer fault tolerance
approach can reduce both replication time
and recovery time compared to the traditional
client-server approach.

4. CONCLUSIONS
A peer-to-peer fault tolerance approach in

a grid computing system is proposed to reduce
the replication time and the recovery time in
the	backup	process.	The	backup	process	is	
performed by nodes in a working group to
replicate	checkpoint	data	in	parallel.	The	main	

 Figure 8. Replication time as a function of the
backup	group	size	at	different	check-	point	data	
sizes	(∆	=	1	MB,	|W|	=	10	nodes).

Figure 9. Comparison of the recovery time.

 Chiang Mai J. Sci. 2017; 44(2)698

procedures including group forming, replication,
and failure recovery are described and the
replication	time	is	analyzed	under	a	basic	star	
topology to obtain suitable parameter values.
Our mathematical analysis, also validated against
simulation, reveals that negligible reduction in
the replication time is gained once the backup
group	size	is	beyond	four.	Furthermore,	the	
recovery time under the peer-to-peer approach
is always better than that of the client-server
approach due to simultaneous transfers of data
among compute processes. Our replication time
analysis	assumes	the	fixed	redundancy	level	of 	
two and a simple star topology. However, there
may be a need of a higher redundancy level in
some cases and the system may have a more
complicated	network	topology.	The	study	of 	
how our peer-to-peer fault tolerance approach
performs under more generic circumstances
will be left for the future work.

ACKNOWLEDGEMENTS
This	work	is	supported	by	the	Thailand	

Research Fund and King Mongkut’s University
of 	Technology	Thonburi	through	the	Royal	
Golden Jubilee Ph.D. Program under Grant
No. PHD/0247/2549.

REFERENCES
[1] Agbaria A. and Friedman R., J. Clust. Comput.,

1999; 6: 167-176.

[2] Charoenchaiamornkij	 P.	 and	Achalakul	T.,	
Proceeding of Technology and Innovation for Sustainable
Development Conference 2008, 2008.

[3] Lee	J.,	Chapin	S.	and	Taylor	S., J. Qual. Reliab.
Eng. Int., 2002; 18.

[4] Abewajy J., Proceeding of International Conference
on Computational Science and Its Applications, 2004;
107-115.

[5] Budhiraja	N.,	Marzullo	K.,	Schneider	F.B.	and	
Toueg	S.,	Proceeding of the 6th International Workshop
on Distributed Algorithms, 1993.

[6] Grabriel	E.,	Fagg	G.,	Bukovsky	A.,	Angskun	T.	
and Dongarra J., Proceeding of 17th Annual ACM
International Conference on Supercomputing, 2003,
2003.

[7] Ouyang J. and Maheshwari P., Proceedings of IEEE
Second International Conference on Algorithms and
Architectures for Parallel Processing, 1996.

[8] Ozaki	T.,	Dohi	T.	and	Okamura	H.,	IEEE T.
Depend. Secure Comput., 2006; 2: 130-140.

[9] Zhang	X.,	Zagorodnov	D.,	Hiltunen	M.,	Marzullo	
K. and Schlichting R., Proceeding of IEEE International
Conference on Cluster Computing, 2004; 105-114.

[10] Garg R. and Singh A., J. Comput. Sci. Eng. Survey,
2011; DOI 10.5121/ijcses.2011.2107.

[11] Gottumukkala N., Failure Analysis and Reliability-
Aware Resource Allocation of Parallel Applications in
High Performance Computing Systems, Ph D Thesis,
Louisiana	Tech	University,	USA,	2008.

[12] Gottumukkala N., Liu Y., Leangsuksun C., Nassar
R. and Scott S., Proceeding of High Availability and
Performance Workshop 2006 in conjunction with Los
Alamos Computer Science Institute Symposium, 2006.

[13] Luckow A., J. Future Gener. Comp. Sy., 2008; 24:
142-152.

[14] Naksinehaboon N., Paun M., Nassar R., Leangsuksun
C. and Scott S., Int. J. Comput. Commun. Control,
2009; 4: 386-400.

[15] Nandagopal M. and Uthariaraj v., Int. J. Eng.Sci.
Technol., 2010; 2: 4361- 4372.

[16] Oliner A., Rudolph L. and Sahoo, Proceeding of the
20th Annual International Conference on Supercomputing,
2006; 14-23.

[17] Al-Kiswany	S.,	Ripeanu	M.,	Vazhkudai	S.	and	
Gharaibeh A., Proceeding of The 28th International
Conference on Distributed Computing Systems 2008,
2008; 613-624.

[18] Song U., Gil J. and Hong S., Checkpoint Sharing-
Based Replication Scheme in Desktop Grid
Computing, Embedded and Multimedia Computing
Technology and Service Lecture Notes in Electrical
Engineering, 2012; 477-484.

[19] Tangmankhong	T.,	 Siripongwutikorn	P.	 and	
Achalakul	T.,	Proceeding of the 9th International
Joint Conference on Computer Science and Software
Engineering (JCSSE2012),	Bangkok,	Thailand,	
30 May 2012 – 1 Jun 2012.

[20]	 The	Globus	Alliance,	About	the	Globus	Toolkit,	
Available at: http://About the	Globus	Toolkit.

[21]	 UW-Madison	Research,	HTCondor,	Available	
at: http://research.cs.wisc.edu/htcondor/.

