Indoor Air Quality in Selected Samples of Primary Schools in Kuala Terengganu, Malaysia

Marzuki Ismail a, Nur Zafirah Mohd Sofian a and Ahmad Makmon Abdullah b

aDepartment of Engineering Science, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
bDepartment of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia

Abstract

Studies have found out that indoor air quality affects human especially children and the elderly more compared to ambient atmospheric air. This study aims to investigate indoor air pollutants concentration in selected vernacular schools with different surrounding human activities in Kuala Terengganu, the administrative and commercial center of Terengganu state. Failure to identify and establish indoor air pollution status can increase the chance of long-term and short-term health problems for these young students and staff; reduction in productivity of teachers; and degrade the youngsters learning environment and comfort. Indoor air quality (IAQ) parameters in three primary schools were conducted during the monsoon season of November 2008 for the purposes of assessing ventilation rates, levels of particulate matter (PM10) and air quality differences between schools. In each classroom, carbon monoxide (CO), CO2, air velocity, relative humidity and temperature were performed during school hours, and a complete walkthrough survey was completed. Results show a statistically significant difference for the five IAQ parameters between the three schools at the 95.0% confidence level. We conclude our findings by confirming the important influence of surrounding human activities on indoor concentrations of pollutants in selected vernacular schools in Kuala Terengganu.

Keywords: Indoor air quality (IAQ); Particulate matter (PM10); Carbon monoxide (CO); Carbon dioxide (CO2); Terengganu

1. Introduction

Indoor air pollution has been identified as one of the most critical global environmental problems (WRI, 1998). In the last several years, Indoor Air Quality (IAQ) in workplace and residential environments caught the attention of scientists and the public redundant. Until the late 1960s, attention to air quality was primarily focused on the outdoors because, by that time, outdoor air pollution was considered responsible for many adverse health effects (Zhang, 2005). People spend most of their time indoors and institutional buildings, such as schools, represent a significant fraction of the day (Yip et al., 2004); and since people spend more than 90% of their time indoors, good indoor air quality is very important to us.

Air quality at classrooms is of special concern since children are susceptible to poor air quality, and indoor air problems can be subtle and do not always produce easily recognizable impacts on health and wellbeing (USEPA, 1996). The physical environment of children is different and more vulnerable from those of adults, even when living in the same home. Failure to prevent indoor air pollution can increase the chance of long-term and short-term health problems for students and staff; reduction in productivity of teachers; and degrade the student learning environment and comfort. Particulate air pollution has been found associated with increased respiratory symptoms, school absences and medication use for asthmatic children (Peters et al., 1997). Moreover, the Canadian Lung Association (CLA) 2002 estimates up to 10% of children experience symptoms of asthma, a condition accounting for ¼ of school absenteeism.

The metabolic rate per kilogram of body weight of children is much higher than that of an adult, in part because children are still developing and they are smaller. This means that their respiratory rate, for example, is proportionately greater and they breathe in much more air pollution in relation to their body weight than an adult in similar circumstances (Yassi et al., 2001). Also, their bodies are still developing and the effect of an environmental insult can interfere with that development.

Children and elderly are known as sensitive group to indoor air pollution. Previous studies have found out that indoor air quality affected these sensitive groups more compared to ambient atmospheric air. Due to this fact, an indoor air quality study was carried out in selected vernacular schools in Terengganu state, Malaysia. This study is imperative because children spend half of their day in school buildings. Moreover,
no studies have been reported as regards to indoor air pollution status of schools in the East Coast of Malaysia. For that reason, this study is timely and there is a pressing need to determine the actual IAQ status especially in the schools, where our nation’s so-called future leaders are trained. Therefore, the aim of this research is to determine the concentrations of selected IAQ parameters in selected schools in Kuala Terengganu; and also to evaluate IAQ trends in the monitored areas and between samples and comparing them with existing IAQ guidelines and standards.

2. Methodology

This study was conducted in schools situated in Kuala Terengganu. Kuala Terengganu is capital city of Terengganu state. It has an approximate area of 605 km² (Terengganu Economy Planning Unit, 2008). There are 80 primary schools entire of Kuala Terengganu but only three schools were selected in this study (shown in Fig. 1). The selection of study location is based on its different site of human activities such as commercial area (Sekolah Kebangsaan Sultan Sulaiman 1), sub-urban area (Sekolah Kebangsaan Pasir Panjang) and outskirt-hilly area, Sekolah Kebangsaan Bukit Wan respectively. Table 1 shows the sampling locations and their coordinates.

2.1. School and room selection

As clearly defined in the overall objectives of this research, only classrooms were targeted during this study. It was also mandatory that a space be occupied during sampling as defined by the ASHRAE procedure for ventilation for acceptable indoor air quality (ASHRAE Standard 62-2001, Ventilation for Acceptable Indoor Air Quality). Three classrooms in each school were randomly chosen for sampling because of the following reasons: First, logistics dictated that three as the optimal sample size and second, in the event of instrument failure, sampling could be repeated. Participant recruitment and consent were approved by the Terengganu Education Department (TED).

Figure 1. Map of sampling location.
2.2. Selection of Monitoring Instruments

Research objectives required collection and analysis of baseline IAQ data from schools. The methodology selected had to support measurement of several environmental parameters including temperature, relative humidity, airflow rates, carbon dioxide (CO₂) and carbon monoxide (CO). Air sampling was conducted indoors while classes were in session. All of the air-monitoring equipments used in this study were supplied by Department of Engineering Science, Universiti Malaysia Terengganu. A Kanomax Climomaster was used to obtain air velocity measurements of indoor air, while Kanomax IAQ Monitor was used for temperature, relative humidity, CO₂ and CO measurements within selected classes/spaces. Casella Microdust Pro was used to detect particulate matter (PM₁₀).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Coordinate</th>
<th>Site Category</th>
<th>Sampling Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sekolah Kebangsaan Sultan Sulaiman 1 (SKSS1)</td>
<td>05°19’15”N; 103°08’32”E</td>
<td>Commercial Area</td>
<td>5 hours</td>
</tr>
<tr>
<td>2</td>
<td>Sekolah Kebangsaan Pasir Panjang (SKPP)</td>
<td>05°18’9”N; 103°08’17”E</td>
<td>Sub-urban Area</td>
<td>5 hours</td>
</tr>
<tr>
<td>3</td>
<td>Sekolah Kebangsaan Bukit Wan (SKBW)</td>
<td>05°23’48”N; 103°00’55”E</td>
<td>Outskirt-hilly Area</td>
<td>5 hours</td>
</tr>
</tbody>
</table>

2.3. IAQ Sampling and Data Analysis

The IAQ sampling methodology follows a systematic approach as shown in Fig. 2. Sampling parameters include PM₁₀, CO₂, CO, air velocity, temperature and relative humidity in each room. Monitoring was conducted in occupied rooms over a 3-day period in each school from 8 am to 1.00 pm. The measurement of all schools was conducted in two rounds: in first round, August 13, 2008 until August 28, 2008 and in second round, November 1, 2008 until November 19, 2008. Air velocity, CO and CO₂ were measured every 5 min using Kanomax Climomaster and Kanomax IAQ Monitor. Except for PM₁₀, all the other parameters were sampled utilizing grab sampling technique, whereby the detectors are placed at the back of each classes, at least 0.6 m above the floor and below the ceiling, away from windows, doors, at least 0.5 m...
3.3. Particulate Matter

Age of building, types of flooring, presence of curtains, shelf area, dust from blackboard and fans were found to be the determinants in the PM$_{10}$ classrooms. The recommended threshold level for respirable particulates (for particulate ≤ 10 µm) in the Malaysian Code of Practice (DOSH, 2005) is 150 µg/m3. Fig. 3(c) shows the concentration of particulate indoor ranged between from 64 to 136 µg/m3 for SKSS1; from 100 to 188.8 µg/m3 for SKBW; and from 150 to 284 µg/m3 for SKPP. Average PM$_{10}$ concentrations for SKSS1 (101.5 µg/m3) and SKBW (143.3 µg/m3) is within the recommended value. On the contrary, there is a cause for concern in terms of indoor particulate pollution for SKPP which has an average concentration of 194.3 µg/m3. The average concentration value for outdoor environment was measured at 31 µg/m3 and this is well below the recommended outdoor air quality standards of 150 µg/m3 (DOE, 1988). This suggested that outdoor air being introduced into the classrooms was not a major contributor to the suspended particulate matter.

4. Conclusion

The primary objective of this study was to determine the concentrations of selected IAQ parameters in the schools in Kuala Terengganu. Apart from particulate matter, we conclude our findings by confirming the important influence of surrounding human activities on indoor concentrations of pollutants in selected vernacular schools in Kuala Terengganu.
Figure 3. Studied parameters against time between the schools.

Acknowledgements

The authors would like to thank the Terengganu Education Department, (TED) and all staffs and students in Sekolah Kebangsaan Sultan Sulaiman 1, Sekolah Kebangsaan Pasir Panjang and Sekolah Kebangsaan Bukit Wan for their kindness and cooperation during the sampling duration. Special thanks to all of UMT staffs for their cooperation during implementing the sampling and lab work.

References

Received 29 September 2009
Accepted 1 December 2009

Correspondence to
Dr. Ahmad Makmom Abdullah
Department of Environmental Sciences,
Faculty of Environmental Studies,
Universiti Putra Malaysia,
43400 UPM Serdang, Selangor,
Malaysia
Tel: (603)8946 6734
Fax: (603)8946 7463
E-mail: amakmom@env.upm.edu.my