Assessment of Benzene Exposures in the Working Environment at Gasoline Stations

Sunisa Chaikieng a, Chatsuda Pimpasaeng b and Pornnara Suggaravetsiri c

aDepartment of Environmental Health Science, Faculty of Public Health, KhonKaen University, Khon Kaen, 10400 Thailand
bFaculty of Public Health, KhonKaen University, Khon Kaen, 10400 Thailand
cDepartment of Epidemiology, Faculty of Public Health, KhonKaen University, Khon Kaen, 10400 Thailand

Abstract

This study aimed to investigate benzene exposure in the working environment of workers at gasoline stations. Ambient air (n=20) and inhaled air samples (n=101) of benzene were collected in the city of Khon Kaen, Thailand and analyzed with gas chromatography (GC-FID). Data records were also kept of the amounts of various petroleum products sold. The results of inhaled air benzene indicated the range concentrations from 0.03 ppb to 65.71 ppb and showed significant differences between concentrations of each zone (p<0.05). The highest mean concentration was found in suburban stations (35.55 ppb), followed by urban stations (18.19 ppb), and rural stations (2.52 ppb). The highest mean concentration of ambient air was found in urban stations (45.55 ppb). Regarding different job functions, the benzene concentration of fueling workers in the inhalation zone (27.29 ppb) was significantly higher than that of cashiers (0.56 ppb). The amounts of petroleum products with high benzene content sold were relatively consistent with inhaled benzene concentration, indicated by the significant differences between suburban and rural zones (p<0.05). In conclusion, this study found the inhaled air benzene concentration ranged 0.03 to 65.71 ppb depending on locations and job functions of workers. Therefore, workers should be protected of adversely affected health from long-term exposure by training on safe working practice and awareness of the different risks associated with their job functions, locations of stations and daily amounts of petroleum products sold.

Keywords: ambient air; personal sampling; fueling workers; cashiers; petroleum; benzene

1. Introduction

Benzene is classified as a human carcinoogen by the International Agency for Research on Cancer (IARC) and widely used as a component of inks in the printing industry. It is also used as a solvent for organic materials and as a starting material and intermediary in the chemical and drug industries (for example, the manufacture of lubricants, dyes, detergents, synthetic rubbers, and pesticides) (IARC monograph, 2007). It is a 1.63% component in benzene (by volume) (Lekcharerenkul et al., 2007), which can be evaporated into the air from petroleum refineries, while fueling at gasoline stations and it is also found on vehicle exhaust emission. Some previous studies found high benzene concentrations at gasoline stations (Talamanca et al., 2001; Karakitsios et al., 2007).

Previous studies in Thailand indicated that benzene is one of volatile compounds found in the working environment of workers at gasoline stations (Thaveevongs et al., 2010; Suda, 2005). Those reports were confirmed by the detection of benzene from monitoring at gasoline stations in the capital city of Bangkok (Khanawapee, 2009) and Nakhon Rachasima province (Sukreta et al., 2008).

Concerning health impacts, the Bureau of Epidemiology, Thailand (2011) reported that, among 78 cases of petroleum poisoning between 2003 to 2009, benzene poisoning accounted for 12 cases. Thaveevongs et al. (2010) pointed out that exposure to benzene through inhalation elevated risks of cancer among workers at gasoline stations. However, US. EPA (2009) states that there was only 50% of inhaled benzene could be the uptake via inhalation. By exposure under low concentration, the S-Phenylmercapturic acid (PMA) is benzene metabolite which could be found in urine as a specific biomarker (Sukreta et al., 2008). In a systematic review 53% of relevant studies found statistically a significant association between probable benzene exposure and the risk of non-Hodgkin lymphoma (NHL) (Smith et al., 2007) and Schnatter et al. (1996) found a relationship between low-level benzene exposure and leukemia. In a review of studies about leukemia etiology, benzene was considered to be leukemogenic at relatively low occupational levels of exposure (Smith et al., 2011). Furthermore, benzene exposure can be spermatotoxic and damage sperm DNA (Wiwanitkit, 2006).

The quantity of benzene sold each year has been increasing and it reached about 47.1 million liters a
day in 2014 in Thailand. Khon Kaen, a province in Northeast of Thailand, has become on top sales record of benzine with benzene content was 14.6 million liter a day (Department of Energy Business, 2015).

In terms of its geographical position, Khon Kaen is a hub for transportation from Bangkok, Thailand to Mekong sub-region countries, and this will rapidly become more important because of the establishment of ASEAN Economic Community. As a consequence, benzene from benzene containing products and exhaust gases will be an increasingly important issue due to its economic and health impacts. It is within this context that the present study was designed to investigate the level of benzene concentrations in the working environment at gasoline stations. Locations, different functions of workers and the daily quantity of petroleum products sold were considered as influencing factors for benzene concentrations.

2. Materials and Methods

2.1. Sampling site and study population

This study was conducted in the city of Khon Kaen, Thailand. There were 98 gasoline stations in the city of Khon Kaen during the study period and these employed 686 workers (The office of Energy Khon Kaen province, 2012). The sample size was calculated by stratified random sampling (Levy and Lemeshow, 2008). The zones were categorized into 3 zones as ‘urban’, ‘suburban’ and ‘rural’. The gasoline stations in the urban zone were defined as those located in the Nai Muang Sub district of the city of Khon Kaen, Thailand and where the majority of the residents’ occupation were not in agriculture; the suburban gasoline stations were located around the Nai Muang Subdistrict and near the main highway which connects the provincial city of Khon Kaen to the capital city of Bangkok (Mittraphap Road); the rural gasoline stations were those located outside the Nai Muang Subdistrict and where the majority of the residents worked in agriculture. The individual variances of each zone were based on concentrations from the study of Lekcharernkul (2006). The required minimum sample size was 88 workers for personal sampling. Additionally, the personal samplings were based on different job functions, 15% of total numbers were added for cashiers because Pimpasaeng and Chaiklieng (2013) found that one fourth of gasoline station workers were employed as cashiers. Therefore, the total sample size was 101 workers. The inclusion criteria to recruit of subjects for personal sampling were; 1) worked in various selected gasoline stations in the city of Khon Kaen 2) held full time job at least 8 hours per day 3) aged older than 18 years, and 4) non-smokers. The simple random sampling was done for representative subjects from each zone by taking into consideration of the total population of workers in each zone. The numbers of subjects selected in each zone were 30, 51 and 20 workers from total population (TP) of urban (TP=154), suburban (TP=238), and rural (TP=294) stations, respectively. For demographic characteristics of participants, there were 52 male and 49 female workers participated in the study. The age ranged 18-60 years, and work experience was 6 months to 30 years at the current station. This study was approved from human research ethic committee, Khon Kaen University no. HE562237. All subjects were given informed consent before entering into this study.

2.2. Air sampling for measurement of benzene concentration

Air samplings were personal sampling and ambient air; 1) personal sampling was conducted in breathing zone of each worker, 2) ambient air was collected by locating sampling equipment in the center of each station at 1.5 meter height. Benzene samples were collected using a coconut charcoal sorbent tube (ZEFON, USA) connected to active personal pumps with a flow-rate of 0.2 liter per minute followed the method of NIOSH number 1501 (NIOSH, 2003). The sampling was carried out during dry season (December). The mean recorded air temperature was 24.1 ± 2.06 °C, the mean humidity was 60.98 ± 6.39%, the mean wind velocity was 22.85 ± 0.19 kilometers per hour and there was no rain fall. The monitoring of benzene concentration was conducted for a 8-hour period in the working day while the subjects were performing their usual activities. At the end of the sampling period, the tube was sealed, transported to the laboratory and kept in refrigerator at 4°C until analysis.

2.3. Sample analysis

The benzene concentrations were analyzed by gas chromatograph with flame ionization detector: GC-FID (Hewlett Packard 1996, Germany). The desorbed eluent was transferred via a heated column of Durabond-1(DB-1) (30 m×0.25 mm of length×diameter) (Agilent Technologies, USA) under 250°C and split less, with the use of ACS grade chemical. The quantitative control of analysis was performed by the calibration with five concentrations and an external standard was also analyzed.

2.4. Amounts of daily petroleum product sold

Records of the sales volume of various petroleum
products were collected from the gasoline stations. Petroleum product refers to a fuel or gasoline containing benzine or diesel. There were only five types of products available at gasoline stations in city of Khon Kean which were; 1) benzine E10 octane 91, 2) benzine E10 octane 95, 3) benzine E20, 4) benzine neocane 95 and 5) diesel. These records were daily sales volume of these five types of petroleum products and were compiled by the gasoline station managers at the end of the days of air sampling.

2.5. Statistical analysis

Data were analyzed using STATA version 10 software. For data analysis, descriptive statistics (mean, standard deviation, minimum, maximum) and 95% confidence interval (95%CI) were used. Analytical statistics were Kruskal-Wallis test and Mann-whitney U test. The statistic significance was identified at p-value <0.05.

3. Results and Discussion

3.1. Benzene concentrations in working environment of gasoline stations classified by zone

Personal air monitoring indicated that the benzene concentration in inhaled air ranged from 0.03 to 65.71 parts per billion (ppb). The highest level occurred at the suburban gasoline stations and the lowest one was found in the rural area. Interestingly, there was a significant difference in the concentrations between different zones (p<0.05), particularly, a large difference was found between individual concentrations in the rural zone compared to other zones. Data were also presented in microgram per cubic meter (µg/m3) as shown in Table 1.

As the finding, the highest concentration of benzene was found in the inhaled air of workers in the suburban station. This might be explained by their locations along a main highway Mittraparp road connecting Bangkok and some Mekong sub-region countries (i.e. Laos, Cambodia, Vietnam, and Burma) with heavy traffic. The mean value across all zones was 23.85 ppb which did not exceed the occupational safety standard of REL-TWA (recommended exposure level-time weight average) set at 100 ppb by National Institute for Occupational Safety and Health (NIOSH, 2014). Based on inhalation uptake, US. EPA (2009) indicated the assumption that only 50% of inhaled benzene can be adsorbed. By the mean concentration and calculation, it can be estimated for inhalation uptake in these workers for the daily uptake of benzene to be 0.017 mg/m3. This value did not exceed inhalation reference concentration (RFC) at 0.03 mg/m3 (Rothman et al., 1996; US. EPA, 2003). However, at maximum concentration across all zones, the estimation for inhalation uptake could reach 0.047 mg/m3, which is higher than such the RFC.

Moreover, the previous study have found that workers had potential exposure to benzene from other sources via food contaminated consumption and skin absorption during working period (Pimpasaeng and Chaiklieng, 2014), that was confirmed by US. EPA (2009). Sukreta et al. (2008) also supported that the proportion of the S-PMA was 3 times higher in workers who eat food in workplace compared to who did not eat. A study in the inner city of Bangkok indicated

Table 1. Benzene concentrations in inhaled air of workers classified by zone (n = 101)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Urban zone (n=30)</th>
<th>Suburban zone (n=51)</th>
<th>Rural zone (n=20)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene concentration (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>18.19 ± 23.12*</td>
<td>35.55 ± 21.92*</td>
<td>2.52 ± 11.17*</td>
<td>23.85 ± 24.27</td>
</tr>
<tr>
<td>Min</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Max</td>
<td>50.00</td>
<td>65.71</td>
<td>50.00</td>
<td>65.71</td>
</tr>
<tr>
<td>95%CI</td>
<td>9.56 - 26.83</td>
<td>29.38 - 41.71</td>
<td>2.70 - 7.77</td>
<td>19.06 - 28.64</td>
</tr>
<tr>
<td>Benzene concentration (µg/m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>57.90 ± 73.56</td>
<td>113.14 ± 69.75</td>
<td>8.04 ± 35.54</td>
<td>75.92 ± 77.25</td>
</tr>
<tr>
<td>Min</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Max</td>
<td>159.08</td>
<td>210.00</td>
<td>159.08</td>
<td>210.00</td>
</tr>
<tr>
<td>95%CI</td>
<td>30.44 - 85.37</td>
<td>93.52 - 132.76</td>
<td>8.58 - 24.68</td>
<td>60.67 - 91.17</td>
</tr>
</tbody>
</table>

Remark: *significant differencebetween urban zone andsuburban zone (p<0.05)

$^+$significant differencebetween urban zone and rural zone (p<0.05)

†significant differencebetween suburban zone and rural zone (p<0.05)
that, even though the benzene concentration in inhaled air was less than 0.1 ppm (100 ppb), the assessment on health risk indicated that such workers were under unacceptable level of risk for cancer development (>1x10^-6) (Thaveevongs et al., 2010). This seems to be unsafe condition when workers have no protections exposure.

According to ambient air, the benzene concentration ranged from 7.50 to 50.0 ppb. When ambient air concentration was examined by zone, there were no differences of concentrations between suburban samples and urban samples but both were distinctively different from the rural gasoline stations where benzene could be detected in the lowest concentration as shown in Table 2.

This finding is consistent with a previous study in the inner city of the city district of Khon Kaen, which found benzene in ambient air containing volatile compounds at gasoline stations (Suda, 2005). Benzene in ambient air might come from other sources. The previous studies found benzene in diesel exhaust gases that might contribute to ambient air (Muzyka et al., 1998) as well as in the areas with traffic congestion (Navasumrit et al., 2005). European commission (2010) established the annual limited value of benzene concentration in public ambient air to be less than 5 µg/m^3 or about 2 ppb in 2010. The significant higher concentration of benzene compared to the European commission’s guideline could be the warning for adversely affecting the attendant’s health at gasoline stations after long-term exposure without protection.

Nantanuch and Chaiklieng (2013) reported adverse symptoms and those who did not have health problems (Thansruangkan et al., 2005). In addition, Lan et al. (2004) reported the significantly hematological changes i.e. decreases of WBCs, granulocytes, lymphocytes, B cells, and platelets after workers inhaled air containing less than 1 ppm (1,000 ppb) benzene. Another biomarker which is urine trans,trans-Muconic acid (tt-MA) is one specific identification of low benzene exposure (Fustinoni et al., 2005) and it’s level can further confirm the exposure to benzene among the gasoline station workers in this study.

Table 2. Benzene concentrations in ambient air classified by zone (n=20)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Urban zone (n=7)</th>
<th>Suburban zone (n=8)</th>
<th>Rural zone (n=5)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene concentration (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>45.55 ± 11.75</td>
<td>45.30 ± 13.29</td>
<td>34.24 ± 21.69</td>
<td>42.62 ± 15.24</td>
</tr>
<tr>
<td>Min</td>
<td>18.90</td>
<td>12.40</td>
<td>7.50</td>
<td>7.50</td>
</tr>
<tr>
<td>Max</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>95%CI</td>
<td>34.68 - 56.42</td>
<td>34.18 - 56.41</td>
<td>7.30 - 61.17</td>
<td>35.48 - 49.76</td>
</tr>
<tr>
<td>Benzene concentration (µg/m^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>144.94 ± 37.39</td>
<td>144.12 ± 42.29</td>
<td>108.94 ± 69.01</td>
<td>135.61 ± 48.51</td>
</tr>
<tr>
<td>Min</td>
<td>60.13</td>
<td>39.45</td>
<td>23.86</td>
<td>23.86</td>
</tr>
<tr>
<td>Max</td>
<td>159.08</td>
<td>159.08</td>
<td>159.08</td>
<td>159.08</td>
</tr>
<tr>
<td>95%CI</td>
<td>110.35 - 179.53</td>
<td>108.76 - 179.48</td>
<td>23.24 - 194.63</td>
<td>112.90 - 158.30</td>
</tr>
</tbody>
</table>

Considering job functions, fueling workers had significantly higher concentration of benzene exposures compared to cashiers (p<0.05). The mean concentration of inhaled benzene by fueling workers was 27.29 ppb (95%CI: 22.17 to 32.41 ppb). For cashiers, the mean concentration was 0.56 ppb (95%CI: 0.60 to 1.74). Concentrations were also presented in µg/m^3 (see Table 3).

3.2. Benzene concentrations in inhaled air of fueling workers and cashiers

S. Chaiklieng et al. / EnvironmentAsia 8(2) (2015) 56-62
3.3. The correlation between benzene concentration in the work environment and amount of petroleum product sold

Regarding the quantities of five kinds of petroleum products sold, the highest sales across all zones were for diesel, followed (in descending quantities) by benzine E10 octane 91, benzine E10 octane 95, benzine E20, benzene octane 95. In terms of the relative amounts of each product sold in the different zones, the highest amounts of benzine E20 and benzene octane95 were sold in the urban gasoline stations, while the highest sales for benzine E10 octane 91, benzine E10 octane 95 and diesel occurred in the suburban zone. Moreover, benzine E10 octane 91 sold in suburban zone compared with rural zone was significantly different (p<0.05). The lowest sales for each of the five different petroleum products were all in the rural areas.

The Ministry of Energy in Thailand has observed that, benzene E10 octane 91, benzene E10 octane 95, benzine E20, and benzene octane 95 all include benzene. These affected benzene percentage by volume varied from one type of fuel to another. According to a study of the amount of benzene in different petroleum products, the quantities of benzene in benzene octane 91 and benzene octane 95 were 1.69 and 1.55 percentages by volume, respectively (Lekcharernkul et al., 2007). However, at present, Thai government has promoted using benzine E10 octane 91 instead of benzine octane 91 which was withdrawn from the market.

Benzene was found in diesel exhaust gases. In a study evaluating the carcinogenic risk associated with diesel, Muzyka et al. (1998) found that the concentration of benzene in airborne PM 2.5 particles and in diesel exhausts were 354 ug/m3 and 194 ug/m3, respectively. The diesel exhaust condition might also contribute to ambient air concentration of benzene. Additionally, it could cause more exposure concentration for workers and leads to adverse symptoms as reported before (Nantanuch and Chaiklieng, 2013).

Therefore, it is interesting to note that the rank order of differences in inhaled benzene concentrations among gasoline station workers across the three zones correlated with that of the relative amounts of benzene E10 octane 91 sold in these zones (see Table 4).

Table 3. Benzene concentrations classified by job functions (n=101)

<table>
<thead>
<tr>
<th>Job function</th>
<th>Fueling workers (n=88)</th>
<th>Cashiers (n=13)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene concentration (ppb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>27.29 ± 24.16</td>
<td>0.56 ±1.94</td>
<td>23.85 ± 24.27</td>
</tr>
<tr>
<td>Min</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Max</td>
<td>65.71</td>
<td>7.04</td>
<td>65.71</td>
</tr>
<tr>
<td>95% CI</td>
<td>22.17 - 32.41</td>
<td>0.60 - 1.74</td>
<td>19.06 - 28.64</td>
</tr>
<tr>
<td>Benzene concentration (µg/m3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>86.87 ± 76.89</td>
<td>1.82 ± 6.20</td>
<td>75.92 ± 77.25</td>
</tr>
<tr>
<td>Min</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Max</td>
<td>210.00</td>
<td>22.49</td>
<td>210.00</td>
</tr>
<tr>
<td>95% CI</td>
<td>70.58 - 103.16</td>
<td>1.93 - 5.57</td>
<td>60.67 - 91.16</td>
</tr>
</tbody>
</table>

Remark: significant difference between fueling workers and cashiers (p<0.05)

Table 4. Amount of petroleum product sold (thousand liter per day) (n= 26)

<table>
<thead>
<tr>
<th>Petroleum product</th>
<th>Urban zone</th>
<th>Suburban zone</th>
<th>Rural zone</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzine E10 octane 91</td>
<td>6.49 ± 5.59</td>
<td>7.44 ± 6.52†</td>
<td>2.32 ± 5.77†</td>
<td>5.18 ± 6.17</td>
</tr>
<tr>
<td>Benzine E10 octane 95</td>
<td>2.72 ± 1.95</td>
<td>3.49 ± 2.19</td>
<td>2.02 ± 3.38</td>
<td>2.83 ± 2.45</td>
</tr>
<tr>
<td>Benzine E20</td>
<td>2.75 ± 1.06</td>
<td>1.50 ± 0.38</td>
<td>1.15 ± 1.20</td>
<td>1.80 ± 1.05</td>
</tr>
<tr>
<td>Benzine octane 95</td>
<td>0.62 ± 0.29</td>
<td>0.61 ± 0.25</td>
<td>0.40 ± 0.14</td>
<td>0.57 ± 0.24</td>
</tr>
<tr>
<td>Diesel</td>
<td>10.04 ± 8.97</td>
<td>10.55 ± 8.14</td>
<td>3.64 ± 4.25</td>
<td>7.99 ± 7.70</td>
</tr>
</tbody>
</table>

Remark: † significant difference between suburban zone and rural zone (p < 0.05)
The correlation might be good explanation for the link of each percentage of benzene in petroleum type to the benzene concentration in working environment of the worker at the gasoline station.

4. Conclusions

Levels of benzene in the air were assessed at gasoline stations in the capital city district of Khon Kaen province, Thailand, by both personal sampling and ambient air sampling. The amounts of petroleum product sold were also recorded. Levels of benzene exposure were compared for two different job functions and for three different city zones. The results showed that the overall mean concentration of inhaled air benzene was 23.55 ppb, and levels of each zone were significantly different. The highest mean concentration was found in the suburban zone (35.55 ppb), followed by urban zone. The overall mean concentration of ambient air was 42.62 ppb.

Benzene concentrations and the amount of different types of petroleum product sold were consistent across three zones. The benzene concentration was highest in the suburban zone, and gasoline stations in this zone sold the highest amounts of benzine E10 octane 91 and 95 which had the high content of benzene.

Moreover, the estimation for inhalation uptake could reach risk level of that higher than the reference dose concentration for daily uptake of benzene in working environment of the workers. Therefore, it is recommended that training on safe working to protect gasoline station employees from benzene exposure should take into account to the different risks associated with their job functions, the environment of the gasoline station located particularly in suburban zone and the amounts of different petroleum products sold at gasoline stations. This study presented only exposure concentration of benzene, future publication of the biomarker of benzene exposure among these gasoline station workers will be well confirmed result.

Acknowledgements

This study was financial supported by the Khon Kaen University Research Fund, Khon Kaen, Thailand. Special thanks to all owners and employees of the gasoline stations in Muang Khon Kaen for their great participation in this study. Particularly, very much appreciated the valuable discussion to Associate Professor Dr. Chalermchai Chaikittiporn and Professor Dr. Herman Autrup.

References

Levy PS, Lemeshow S. Sampling of populations methods and applications. 2nd ed. A Wiley-Inter science, New York, USA. 2008; 165-75.

Wiwanitkit V. Benzene exposure and spermatotoxicity. Sexuality and Disability 2006; 24(3): 179-82.

Received 28 November 2014
Accepted 31 March 2015

Correspondence to
Assistant Professor Dr. Sunisa Chaiklieng
Faculty of Public Health, Khon Kaen University, Khon Kaen, 10400 Thailand
Tel: +6681 7021307
Fax: +6643 262076
E-mail: csunis@kku.ac.th