Case Report

Neurological Manifestation of Methyl Bromide Intoxication†

Kanokrat Suwanlaong MD*,
Kammant Phanthumchinda MD*

†This manuscript was presented at Annual Meeting of the Neurological Society of Thailand, March 2006
*Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok

Methyl bromide is a highly toxic gas with poor olfactory warning properties. It is widely used as insecticidal fumigant for dry foodstuffs and can be toxic to central and peripheral nervous systems. Most neurological manifestations of methyl bromide intoxication occur from inhalation. Acute toxicity characterized by headache, dizziness, abdominal pain, nausea, vomiting and visual disturbances. Tremor, convulsion, unconsciousness and permanent brain damage may occur in severe poisoning. Chronic exposure can cause neuropathy, pyramidal and cerebellar dysfunction, as well as neuropsychiatric disturbances. The first case of methyl bromide intoxication in Thailand has been described. The patient was a 24-year-old man who worked in a warehouse of imported vegetables fumigated with methyl bromide. He presented with unstable gait, vertigo and paresthesia of both feet, for two weeks. He had a history of chronic exposure to methyl bromide for three years. His fourteen co-workers also developed the same symptoms but less in severity. Neurological examination revealed ataxic gait, decreased pain and vibratory sense on both feet, impaired cerebellar signs and hyperactive reflex in all extremities. The serum concentration of methyl bromide was 8.18 mg/dl. Electrophysiological study was normal. Magnetic resonance imaging of the brain (MRI) revealed bilateral symmetrical lesion of abnormal hypersignal intensity on T2 and fluid-attenuation inversion recovery (FLAIR) sequences at bilateral dentate nuclei of cerebellum and periventricular area of the fourth ventricle. This incident stresses the need for improvement of worker education and safety precautions during all stages of methyl bromide fumigation.

Keywords: Methyl bromide, Intoxication

J Med Assoc Thai 2008; 91 (3): 421-6
Full text. e-Journal: http://www.medassocthai.org/journal

Methyl Bromide (MB) is a halogenated aliphatic hydrocarbon commonly used as an insecticide in the form of gas(1). It is generally used for dry foodstuffs and as a soil fumigant in greenhouses and fields for the control of nematodes, fungi and weeds(2). Route of human exposure to MB is inhalation and dermal contact(3). Signs and symptoms of inhalation exposure depend on the concentration and duration of exposure(3,4). Target organs of intoxication include the nervous system, respiratory system, kidney, eye and skin(5,6). Acute MB intoxication mainly involves the central nervous system (CNS) and is often related with poor outcome such as coma and seizures(6). Chronic intoxication includes syndrome in acute exposure plus visual and hearing disorders, axonal polyneuropathy, ataxia and psychological symptoms(6,7). Most of the cases of MB intoxication reported in the literature are due to acute intentional and accidental poisoning during fumigation or manufacturing(5,8,9). In the present report, the first case of chronic MB intoxication in Thailand has been documented. Neuroimaging study, which has been rarely reported, was also described.

Case Report

Two weeks before admission, a 24-year-old healthy man developed paresthesia of both legs,
progressive unstable gait and paroxysmal vertigo, which was not related to positional change. He had a 3-year history of working in a warehouse of imported vegetables, fumigated with MB. His 14 co-workers also developed the same symptoms but were less in severity. On admission, his vital signs and general physical examination were unremarkable. Neurological examination revealed normal mental status and cranial nerves. His motor power was normal but increased muscle tone and brisk deep tendon reflexes were noted in all extremities. Babinski’s signs were plantar flexion bilaterally. Loss of pain and vibration sensation on both lower extremities and positive Romberg’s test were observed. He had severe ataxic gait, impaired tandem walk as well as bilateral impaired finger to nose and heel to knee tests. Laboratory tests included complete blood count, serum electrolytes, plasma glucose, BUN/Cr and liver function tests were within normal limits. Sensory nerve conduction studies (NCS) including right median, ulnar, radial nerve and bilateral sural responses were unremarkable. Normal motor NCS on deep peroneal, tibial, median and ulnar nerves were observed on both sides. Segmental stimulation performed up to the Erb’s point on both sides and F-wave latencies obtained on all of these motor nerves revealed no abnormalities. Normal H-reflexes to gastrocnemius-soleus muscles were documented on both sides. Needle electromyography of the selected proximal and distal muscles of the three limbs revealed no evidence of denervation or myopathic pattern. Magnetic resonance imaging (MRI) of the brain revealed normal T1 weighted image (T1WI). Bilateral symmetrical high signal intensity on T2 weighted image (T2WI) and fluid-attenuation inversion recovery (FLAIR) sequences were observed at bilateral arcuate-dentate nuclei of the cerebellum, periventricular area of the fourth ventricle (Fig. 1), inferior olivary nuclei, periaqueductal gray, superior and inferior colliculi. There was no detectable abnormality on diffusion weighted image (DWI) study. Post-gadolinium study depicted no enhanced lesions. MRI of the spinal cord was normal. Cerebrospinal fluid study revealed no abnormal profiles. Serum bromide level of 8.18 mg/dl was obtained (normal < 0.5 mg/dl). Toxic and nutritional causes of the neurological syndrome were ruled out by tests for serum lead, arsenic, folate and vitamin B12.

Termination of gas exposure, resulted in gradual improvement in ataxia, impaired finger to nose, heel to knee and Romberg’s tests. After 3 months, only mild gait imbalance on tandem walking, paresthesia of lower extremities, reduced proprioceptive pain, and touch sensation in the feet were detected.

Discussion

MB is a colorless and odorless volatile liquid with a boiling point of 3.6°C(1). It is easily toxic because of poor olfactory warning properties(3). Symptoms of acute mild MB poisoning are often non-specific and include headache, dizziness, abdominal pain, nausea, vomiting, visual disturbances and ataxia(10). Tremor,
convulsion, unconsciousness and permanent brain damage are observed in severe poisoning\(^6\,10\). The severity of intoxication depends on the dose and duration of exposure\(^4\). Chronic intoxication of low level MB exposure causes progressive neurological dysfunction, which may be difficult to diagnose\(^11\,12\). The main symptoms include visual and hearing disturbances, axonal polyneuropathy, incoordination, ataxia\(^7\) and psychological symptoms including loss of initiative, depressed libido, personality changes and hallucinations\(^13\). Symptoms generally disappear after the exposure is terminated, but numbness of the extremities and visual disturbances may persist for 2-5 months or more\(^7\). Measurable levels of the parent agent in the blood are rapidly reduced, probably as a result of direct tissue chemical reaction\(^6\,10\). Therefore, it is often difficult to diagnose this condition without obtaining an occupational history of exposure, especially in chronic cases. Serum bromide level is also poorly correlated with toxic effects and asymptomatic high level is possible\(^11\,13\). The clinical syndrome of the presented patient was compatible with chronic MB toxicity. History of exposure and high serum bromide level of 8.18 mg/dl (normal < 0.5) confirmed the diagnosis. After a complete electrophysiologic investigation, evidence of peripheral neuropathy had not been demonstrated. The neurological syndrome in this patient related to CNS intoxication has been demonstrated by MRI.

MRI findings of MB intoxication have been recently reported\(^14\)-\(^16\). Rhinshu S. demonstrated symmetric T2 signal abnormalities in posterior putamen, subthalamic nuclei, restiform bodies, vestibular nuclei, inferior colliculi, and periaqueductal gray\(^14\). Howard L. reported symmetric brainstem and cerebellar MRI lesions at inferior colliculi, periaqueductal gray, dentate nuclei, dorsal pons, and inferior olives\(^15\). Kang K also depicted involvement of corpus collosum\(^16\). MRI in the presented patient revealed symmetric involvement of bilateral arcuate-dentate nuclei of cerebellum and periventricular area of the fourth ventricle, inferior olivary nuclei, periaqueductal gray, superior and inferior colliculi. Pathological abnormalities in an autopsy study following lethal MB intoxication included bilateral symmetrical hemorrhagic damages and petechial hemorrhage of mammillary bodies, inferior colliculi and cerebellar dentate nuclei\(^17\,18\). Nonlethal intoxication with the syndrome of ataxia and paralysis have been observed in laboratory animals and tissue degeneration included nasal tissue, adrenal glands and brains\(^19\). Changes in brain catecholamines and tyrosine hydroxylase activity were also documented in these animal models\(^19\).

The pathology in the CNS after MB intoxication has some features resembling Wernicke’s encephalopathy and Leigh’s disease\(^19\). The exact mechanism of MB induced CNS toxicity is unclear and is proposed to be related to the disruption of enzymes involved in metabolic pathways responsible for the generation of energy\(^15\,20\,21\). MB intoxication should be classified as one of the energy deprivation syndrome (EDSs). EDSs are disorders with diverse etiologies i.e. toxic, genetic and nutritional. EDSs share a characteristic anatomic distribution of abnormalities with preferential damage to periventricular, cerebellar and brainstem areas\(^22\). These areas appear to be selectively vulnerable to metabolic-energy derailment\(^22\). Well known nutritional and genetic EDSs are Wernicke’s encephalopathy and Leigh’s disease respectively\(^23\). These two disorders produce a similar distribution of brain abnormalities. In Wernicke’s encephalopathy, a deficiency of thiamine which is a necessary cofactor in glycolysis, the lesions are commonly located at periventricular areas of thalamus, hypothalamus, brainstem, mammillary bodies, periaqueductal grey and cerebellar cortex\(^23\). In Leigh’s disease, a mitochondrial disorder, neuropathological findings are similar to those of Wernicke’s encephalopathy, except the sparing of mammillary bodies\(^24\). In the literature, there are two reported cases of MB intoxication with Wernicke-like brain MRI\(^24\,25\). In Wernicke’s encephalopathy prominent involvement of the inferior colliculi and periaqueductal area are usually detected in DWI\(^26\,27\). However, MRI in MB intoxication revealed no abnormality in DWI at these areas and this pattern can be used to differentiate the two conditions\(^26\,27\). In the last ten years, cases of acute and chronic MB intoxication have been reported and are summarized in Table 1.

Conclusion

A patient with MB intoxication who presented with signs and symptoms of cerebellar and brainstem abnormalities has been described. MRI of the brain showed bilateral symmetrical lesions of abnormal signal intensity on T2WI and FLAIR sequence at bilateral dentate nuclei of the cerebellum and periventricular area of the fourth ventricle. The patient gradually improved after termination of the exposure. Awareness of this syndrome and occupational history of MB exposure is necessary for the correct diagnosis. The MRI findings are characteristic for MB intoxication but must be differentiated from Wernicke’s encephalopathy. The
Table 1. Case reports of acute and chronic MB intoxication in last ten years

<table>
<thead>
<tr>
<th>Patient no. (Ref)</th>
<th>Sex/Age (yr)</th>
<th>Duration/Route</th>
<th>Symptoms and signs</th>
<th>Serum bromide level (microgram/ml)</th>
<th>Neuroimaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (3)</td>
<td>M/32</td>
<td>A/D</td>
<td>Dermal burns, vesicles, weakness-brisk deep tendon reflex, paresthesia lower extremities, Babinski signs, ataxia</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>2 (4)</td>
<td>-</td>
<td>A/I</td>
<td>Seizure, fever, multiorgan failure, dead</td>
<td>270</td>
<td>-</td>
</tr>
<tr>
<td>3 (5)</td>
<td>F/12</td>
<td></td>
<td>Ataxia, severe action myoclonus, dysarthria</td>
<td>113.0</td>
<td>-</td>
</tr>
<tr>
<td>4 (8)</td>
<td>M/39</td>
<td>A/I</td>
<td>Dizziness, vomiting, myoclonus, akinetic mutism</td>
<td>72.9</td>
<td>-</td>
</tr>
<tr>
<td>5 (8)</td>
<td>F/34</td>
<td>A/I</td>
<td>Dizziness, vomiting, myoclonus, akinetic mutism, delirium, convulsion, behavioral changes</td>
<td>67.8</td>
<td>-</td>
</tr>
<tr>
<td>6 (8)</td>
<td>F/5</td>
<td>A/I</td>
<td>Dizziness, vomiting, myoclonus, convulsion</td>
<td>91.5</td>
<td>CT - enlarged sulci, cerebral atrophy</td>
</tr>
<tr>
<td>7 (14)</td>
<td>M/30</td>
<td>A/I</td>
<td>Paresthesia feet, unstable gait, blephaloptosis</td>
<td>43.7</td>
<td>MRI - high SI at putamen, subthalamic nuclei, dorsal medulla oblongata, inferior colliculi, periaqueductal gray</td>
</tr>
<tr>
<td>8 (15)</td>
<td>M/30</td>
<td>C/I</td>
<td>Ataxia, acral paresthesias, vertigo, horizontal diplopia, pain-vibratory sense loss, absent ankle reflexes</td>
<td>29</td>
<td>MRI - high SI on T2 and FLAIR in dentate nuclei, periaqueductal grey, dorsal midbrain, pons, inferior olives</td>
</tr>
<tr>
<td>9 (16)</td>
<td>M/31</td>
<td>C/I</td>
<td>Dizziness, vomiting, walking difficulty, urinary incontinence, paresthesia extremities, simpaired comprehension of language</td>
<td>-</td>
<td>MRI - high SI on T2 at splenium of corpus callosum</td>
</tr>
<tr>
<td>10 (16)</td>
<td>M/32</td>
<td>C/I</td>
<td>Dizziness, vomiting, headache, dysarthria, confusion, seizure</td>
<td>-</td>
<td>MRI - bilateral symmetric high SI on T2 in splenium of corpus callosum, globus pallidus, periaqueductal grey, pontine tegmentum, dentate nuclei, medulla oblongata</td>
</tr>
<tr>
<td>11 (28)</td>
<td>M/45</td>
<td>C/I</td>
<td>Visual disturbance, dysarthria, decreased muscle strength, gait disturbance, erectile dysfunction</td>
<td>11.2</td>
<td>-</td>
</tr>
<tr>
<td>12 (present case)</td>
<td>M/24</td>
<td>C/I</td>
<td>Vertigo, cerebellar ataxia, paresthesia, spasticity all extremities</td>
<td>8.18</td>
<td>MRI - High SI T2w1 FLAIR bilateral arcuate-dentate nuclei, periventricular of 4th ventricle, inferior olivary nuclei, periaqueductal gray, superior-inferior colliculi</td>
</tr>
</tbody>
</table>

A = acute, C = chronic, I = inhalation, D = dermal exposure, M = male, F = female, Ref = reference
presented case emphasizes the need for the improvement of worker education and safety precautions during all stages of MB fumigation.

References
อาการแสดงทางระบบประสาทของการเกิดพิษจากสารเมททิลโบรไมด์: รายงานผู้ป่วย

กนกรัตน์ สุวรรณละออง, กัมมันต์ พันธุมจินดา

เมททิลโบรไมด์เป็นแก๊สซึ่งมีความเป็นพิษสูง มีคุณสมบัติการเตือนด้านกลิ่นที่ไม่ดี เมททิลโบรไมด์ เป็นสารที่ใช้อย่างแพร่หลายในการอบฆ่าแมลงและอบแห้งอาหาร และสามารถทำใหเกิดพิษได้ทั้งระบบประสาทส่วนกลางและระบบประสาทส่วนปลาย อาการแสดงของการเกิดพิษต้องระบบประสาทส่วนใหญ่เกิดจากการสูดดมพิษอย่างหลงหลัง ได้แก่อาการปวดศีรษะ เขย่าศีรษะ ปวดท้อง คลื่นไส้ อาเจียน และความผิดปกติด้านการมองเห็น อาการสั่น ขัดไม่รู้สึกตัว และสมองถูกทำลายอย่างเรื้อรัง กรณีที่เกิดอาการเป็นพิษอย่างรุนแรง การได้รับสารพิษอย่างเรื้อรังสามารถทำใหเกิดอาการโรคติดต่อของปลายประสาท การเดินตึงใจ การทรงตัว รวมถึงอาการทางจิตประสาท รายงานผู้ป่วยที่เกิดพิษจากเมททิลโบรไมด์รายแรกในประเทศไทย เป็นผู้ป่วยชายอายุ 24 ปีท่ามายนั่งรถบัส เพื่อทำงานในโรงงานให้ส่งออกต่างประเทศ มีประวัติสัมผัสกับสารเมททิลโบรไมด์เป็นเวลา 3 ปี เพื่อขนส่งผลไม้และผัก 14 คน มีอาการคล้ายกันผู้ป่วยแต่ความรุนแรงน้อยกว่า การตรวจทางระบบประสาทพบ เดินเท้า ความรู้สึกลง แล้วและตัวสั่นของท่า 2 ข้างตรงกลาง การทรงตัวผิดปกติ และวิ่งไม่ได้ทุกการร่าง ระดับเมททิลโบรไมด์ในเลือด วัดได้ 8.18 มก./ดล. การตรวจสมอง แสดงถึงผิดปกติ ด้วยความมีความช้าในการทำงาน 2 และแต่เพียงจิตใจ ทางเดินประสาท พบร่องเป็นแนวทรายสัมผัสที่เพิ่มขึ้น การตรวจเก็บเลือดจากสมอง พบภาพที่ไม่เป็นที่ทุกขั้นตอนของการใช้เมททิลโบรไมด์เป็นสารช่วยแทน
