The Thai Anesthesia Incidents Study (THAI Study) of Anesthetic Outcomes:
I Description of Methods and Populations

Somrat Charuluxananan MD*, Suwannee Suraseranivongse MD**, Yodying Punjasawadwong, MD***, Wanna Somboonviboon MD*, Thana Nipitsukarn MD***, Thepakorn Sothikarnmanee MD****, Mayuree Vasinanukorn MD******, Thewarug Werawatganon MD*, Surasak Tanudsintum MD*******, Varinee Lekprasert MD********, Thanoo Hintong MD***

* Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, Bangkok.
** Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok.
*** Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai.
**** Department of Anesthesiology, Khon Kaen University, Khon Kaen.
***** Department of Anesthesiology, Prince of Songkla University, Songkhla.
****** Department of Anesthesiology, Phramangkutklao College of Medicinal, Bangkok.
******* Department of Anesthesiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Background and rationale: Since anesthesia, unlike medical or surgical specialties, does not constitute treatment, The Royal College of Anesthesiologists of Thailand host the Thai Anesthesia Incidents Study (THAI Study) of anesthetic outcomes to determine factors related to anesthesia related adverse events.

Material and Method: A prospective descriptive study of occurrence screening was conducted in 20 hospitals comprised of 7 university, 4 general and 4 district hospitals across Thailand. Anesthesia personnel were required to fill up patient-related, surgical-related, anesthesia-related variables and adverse outcomes on a structured data entry form. The data included preanesthetic evaluation intraoperative period and 24 hr postoperative period. Adverse events specific form was recorded when adverse events occurred. All data were keyed in data management unit with double entry technique and descriptive statistics was used in the first phase of this study.

Results: A total of 163403 consecutive cases were recorded in one year. The mean (S.D.) of age, weight and height of patients were 38.6(2.3) yrs, 53.9(17.7) kgs and 153.4(22.7) cm respectively. There were more female (52.9%) than male (47.1%) patients with ASA PS 1, 2, 3, 4, 5 = 50.8%, 36.3%, 10.7%, 2.0%, 0.2% respectively. Hypertension (11.6%), anemia (7.7%) and diabetes melitus (6.8%) were the three most common abnormalities in preanesthetic history taking. Mallampati score of 111870 patients grade 1, 2, 3, 4 were 54.0%, 39.7%, 5.6%, 0.7% and laryngoscopic grade 1, 2, 3, 4 of 74888 patients were 81.0%, 15.5%, 3.0% and 0.5% respectively.

Conclusion: The first phase of THAI study epidemiological project can represent both the anesthesia and surgical profiles in Thailand. The collected data available should be useful for the improvement of the quality of anesthesia, guidelines for clinical practices, medical education and for further research.

Keywords: Anesthesia, outcome, Complication, Adverse events, Multicenter, Epidemiology

Full text. e-Journal: http://www.medassocthai.org/journal

The maintenance of quality in medical practice requires that those providing care define an acceptable standard of care, and take steps to meet that standard. Unfortunately the recognition of quality is not always easy in practice particularly in a specialty such as anesthesia which does not deal directly
with the diseases or cures, and facilitates treatments of patients rather than providing primary therapeutic benefit. To overcome such a problem the specialty has chosen to utilize indicators of quality care, usually the presence or absence of adverse outcomes, as reflections of the care provided. If these measures are to be at all useful in comparisons between individuals or departments they must be shown to be both reliable (reproducible) and valid reflections of the care provided. It has been estimated that around one million anesthesia per year are conducted in Thailand, however there has not been any large-scale study of anesthesia related adverse outcome. Therefore, The Royal College of Anesthesiologists of Thailand initiated a multicentered study of anesthetic outcomes to develop and institute a methodology for the study of anesthetic outcomes which could be used as a basic for quality improvement activities. The results of the outcome analyses will be presented in subsequent manuscripts.

Material and Method

This study has been approved by all the institutional ethic committees of hospitals and medical institutes affiliated with the study. The basic design of the study was occurrence screening that is, all consecutive patients receiving an anesthetic at any of 20 hospitals were followed and included in the study. The hospitals in this multicentered study comprised of 7 university hospitals (Chiang Mai University, Chulalongkorn University, Khon Kaen University, Mahidol University : Siriraj Hospital and Ramathibadi Hospital, Pramongkutklao Medical College, Prince of Songkhla University), 5 tertiary hospitals (Buddhachinaraj Hospital, Ratchaburi Hospital, Nakon Sri Thammarat Hospital, Khon Kaen Hospital and Neurology Institution), 4 general hospitals (Lampoon Hospital, Pichit Hospital, Baanpong Hospital and Trang Hospital) and 4 district hospitals (Sanpatong Hospital, Nakorn-Thai Hospital, Kranuan Hospital and Nampong Hospital) across Thailand. In this study, adverse events are determined in a prospective manner and since all patients are included, the advantage of the study design is that important events are much less likely to be missed.

For each patient undergoing a surgical procedure, anesthesiologist or nurse anesthetist completed a preplanned structured data entry form (form 1) which included a series of patient-related, surgical-related and anesthesia-related variables. Anesthesiologists or nurse anesthetists used form 1 in addition to the usual anesthetic record.

The early phase of the study was to develop the preplanned structure data entry form (form 1). The form had to be relatively short and allow enough space for hand-written documentation. Several meetings were held to determine the items that would be included and to set definitions for the variables. Since we were relying on compliance by all anesthesia personnel, not just volunteers, workshop and internal audit were held to acquaint the anesthesia personnel with form 1 and the interpretation of the variables. After the development of form 1, the new form was piloted in 6 university hospitals before adoption at the other sites.

For the recording of patient-related variables, the attending anesthesia personnel or site managers were requested to check-off preoperative medical conditions, preoperative factors which may have affected the administration of that anesthetic such as smoking, alcohol or drug dependency. They also rated each patient preoperatively by the American Society of Anesthesiologists physical status scores. Moreover, demographic characteristics of the patients including age and sex, preanesthetic airway assessment and laryngoscopic view were also recorded. With regard to the surgical procedure, the operations were recorded by converting the written operative procedure into groups of sites of operation.

The factors recorded relating to anesthesia included anesthesia team, monitors, main anesthetic technique, additional anesthetic technique employed, airway equipment, special anesthetic technique, performer of intubation or regional anesthesia and drugs utilized.

For in-patients, within 24 hr after the surgical procedure, the anesthesia personnel or research nurses visited the patient to record 24-hr anesthesia related adverse outcomes. For outpatients, however, follow-up of all patients was not possible. The adverse outcomes of interested included. To ensure the reliability of data among participating institutions, there were training in each centre, and the project manager visited each hospital to help institute the study protocols. As well, internal audit was done by project quality assurance team. External audit was also done in 6 university hospitals by external evaluators from the

Correspondence to : Somrat Charuluxananan MD, Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand. TEL (662) 256-4215, (662) 256-4295, FAX (662) 254-1931 E-mail : somratcu@hotmail.com
Clinical Research Collaboration Network.

All forms were reviewed by research nurse and/or site manager for completeness. Corrections were then made by each centre including verification of the major adverse event recorded. In addition, further data quality checking and the addition of missing data were made at the end of the data collection period by the site managers. To allow for problems with training of staff, the first month of data for each hospital were not used.

Data analysis. The data collected from each hospitals were keyed at the data management centre with double entry technique to ensure the reliability of data entry. Descriptive statistics was used for demographic, surgical anesthetic data.

Results

At 20 hospitals in Thailand from February 2003 to January 2004, a total of 163403 anesthetics were enrolled. Table 1 shows some of the characteristics of the study hospitals classified by geographical distribution.

There were 98839 (60.5%), 43126 (26.4%), 19536 (12.0%) and 1902 (1.2%) anesthetics in university, regional (tiirty), general (or provincial) and district hospitals respectively. Regarding the demographic characteristics the mean (S.D.) of age, weight and height of the population were 38.6 (2.3) yrs., 53.9 (17.7) kgs. and 153.4 (22.7) cm. respectively. Percentages of patients classified by age groups in each type of hospitals were shown in Figure 1. There were more female (52.9%) than male (47.1%) with detailed gender distribution classified by type of hospitals as shown in Figure 2. The patients in this study were generally healthy; 87.1% of them were ASA Physical status 1 or 2. The ASA physical status of patients stratified by type of hospital and emergency status is shown in Table 2. The anesthesia services were provided during official times for 114902 (71.9%) anesthetics and classified to be 152679 (95.0%) in-patients and 7971 (5.0%) out-patients or ambulatory surgery. Types of operation and sites of surgery are shown in Table 3.

Table 1. Characteristics of 20 study hospitals classified by geographic distribution (2003)

<table>
<thead>
<tr>
<th>Type of hospital</th>
<th>No. of beds</th>
<th>Anesthesiologists (n)</th>
<th>Residents</th>
<th>Nurse Anesthetists</th>
<th>Operating room</th>
<th>Case per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Thailand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chulalongkorn university</td>
<td>1500</td>
<td>24</td>
<td>27</td>
<td>14</td>
<td>45</td>
<td>80-90</td>
</tr>
<tr>
<td>Phramongkutklao university</td>
<td>800</td>
<td>5</td>
<td>2</td>
<td>37</td>
<td>16</td>
<td>30-40</td>
</tr>
<tr>
<td>Ramathibodi university</td>
<td>1000</td>
<td>26</td>
<td>28</td>
<td>38</td>
<td>30</td>
<td>50-80</td>
</tr>
<tr>
<td>Siriraj university</td>
<td>2400</td>
<td>57</td>
<td>53</td>
<td>55</td>
<td>48</td>
<td>100</td>
</tr>
<tr>
<td>Ratchaburi regional</td>
<td>899</td>
<td>4</td>
<td>2</td>
<td>26</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Banpong general</td>
<td>420</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td>10-15</td>
</tr>
<tr>
<td>Neurological institute</td>
<td>300</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>6-8</td>
</tr>
<tr>
<td>The North</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buddhachinaraj regional</td>
<td>948</td>
<td>6</td>
<td>0</td>
<td>22</td>
<td>14</td>
<td>30-40</td>
</tr>
<tr>
<td>Chiang Mai university</td>
<td>2000</td>
<td>16</td>
<td>30</td>
<td>51</td>
<td>22</td>
<td>43</td>
</tr>
<tr>
<td>Lamphun general</td>
<td>402</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>8-24</td>
</tr>
<tr>
<td>Nakhonthai district</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phichit general</td>
<td>405</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Sanpatong district</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2-3</td>
</tr>
<tr>
<td>The North-eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khon Kaen regional</td>
<td>900</td>
<td>6</td>
<td>0</td>
<td>24</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>Kranuan district</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2-3</td>
</tr>
<tr>
<td>Nampong district</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>Srinagarind university</td>
<td>770</td>
<td>12</td>
<td>12</td>
<td>37</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>The South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakon Si Thammarat regional</td>
<td>863</td>
<td>3</td>
<td>62</td>
<td>28</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Songklanagarind university</td>
<td>799</td>
<td>13</td>
<td>13</td>
<td>33</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>Trang general</td>
<td>500</td>
<td>2</td>
<td>0</td>
<td>15</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>
Table 2. ASA physical status and elective or emergency anesthesia stratified by types of hospitals

<table>
<thead>
<tr>
<th>Type of hospital</th>
<th>ASA Physical Status</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>emergency</th>
<th>elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>University hospital</td>
<td></td>
<td>45250</td>
<td>37647</td>
<td>11647</td>
<td>1882</td>
<td>215</td>
<td>22210</td>
<td>74607</td>
</tr>
<tr>
<td></td>
<td>(46.8%)</td>
<td>(39.0%)</td>
<td>(12.1%)</td>
<td>(1.9%)</td>
<td>(0.2%)</td>
<td>(22.9%)</td>
<td>(77.1%)</td>
<td></td>
</tr>
<tr>
<td>Regional hospital</td>
<td></td>
<td>24370</td>
<td>13222</td>
<td>4361</td>
<td>1019</td>
<td>121</td>
<td>18373</td>
<td>24750</td>
</tr>
<tr>
<td></td>
<td>(56.6%)</td>
<td>(30.7%)</td>
<td>(10.1%)</td>
<td>(2.4%)</td>
<td>(0.3%)</td>
<td>(42.6%)</td>
<td>(57.4%)</td>
<td></td>
</tr>
<tr>
<td>General hospital</td>
<td></td>
<td>10767</td>
<td>7203</td>
<td>1188</td>
<td>307</td>
<td>34</td>
<td>9052</td>
<td>10483</td>
</tr>
<tr>
<td></td>
<td>(55.2%)</td>
<td>(36.9%)</td>
<td>(6.1%)</td>
<td>(1.6%)</td>
<td>(0.2%)</td>
<td>(46.3%)</td>
<td>(53.7%)</td>
<td></td>
</tr>
<tr>
<td>District hospital</td>
<td></td>
<td>1433</td>
<td>415</td>
<td>52</td>
<td>2</td>
<td>0</td>
<td>1084</td>
<td>818</td>
</tr>
<tr>
<td></td>
<td>(75.3%)</td>
<td>(21.8%)</td>
<td>(2.7%)</td>
<td>(0.1%)</td>
<td>(0.0%)</td>
<td>(57.0%)</td>
<td>(43.0%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>81820</td>
<td>58487</td>
<td>17248</td>
<td>3210</td>
<td>370</td>
<td>44810</td>
<td>114902</td>
</tr>
<tr>
<td></td>
<td>(50.8%)</td>
<td>(36.3%)</td>
<td>(10.7%)</td>
<td>(2.0%)</td>
<td>(0.2%)</td>
<td>(28.1%)</td>
<td>(71.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Fig 1. Percentages of patients classified by age groups within each type of hospital
The anesthesia personnels performed preanesthetic visit at the hospital wards or emergency rooms for 62080 (38.0%) patients while 97853 (59.8%) patients received initial preanesthetic evaluation at the operating room. There were 83330 (51.3%) of patients who were assessed as normal preanesthetic condition. The details of preanesthetic history are shown in Table 4.

Preanesthetic airway assessment based on Mallampati classification is shown in Table 5. The overall results of Mallampati classification are also shown in Figure 2. Thyromental distance was not evaluated in 109427 (70.3%) patients of 146068 patients, 85.6% (39450 patients) had thyromental distance more than 5 cm or 3 fingerbreadths and 14.3% (6618 patients) had thyromental distance equal or less then 5cm or 3 fingerbreadths. Grading of laryngoscopic view of 78888 intubated patients were shown in Figure 3.

Discussion

It is generally agreed that the outcome study combined with a process review is a state of the art with regard to studies of the quality of medical care.5,6,7 Since anesthesia does not deal with the treatment of...
any specific diseases, the specialty has chosen to utilize indicators of quality care such as the presence or absence of adverse outcomes, as reflection of the care provided.

In the planning of this study, there were several research design which we considered. First was voluntary reporting of adverse events as done in the CEPOD study.\(^{(8)}\) This has the advantages of cooperation and it is relatively less costly. However, the main problems with this approach are an underreporting bias, missing information due to the retrospective approach of data collection and the limitation in the inclusion of adverse events. As well the viewpoint of the consumer (the patient) cannot be determined through this approach.

The next design considered was that of studying a sample of anaesthetics either in each hospital or all anaesthetics in each hospital for a limited period of time.\(^{(9)}\) Again, this approach had the advantage of being less costly, but had a drawback in the reliability of the data collectors. By the time the data collectors would be fully trained, the time for data collection would have elapsed. The sample size would also be limited, and seasonal variations might be missed.

The third design considered was that of the retrospective approach. All record such as hospital logs, hospital charts, PACU data and anaesthetic records would be searched for adverse events. Once found, the appropriate information could be assessed by a panel of experts to determine the anesthetic

Table 4. Preanesthetic history stratified by types of hospitals

<table>
<thead>
<tr>
<th></th>
<th>university</th>
<th>regional</th>
<th>general</th>
<th>district</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>47448 (48.0%)</td>
<td>23865 (55.3%)</td>
<td>10752 (55.0%)</td>
<td>1265 (66.5%)</td>
<td>83330 (50.9%)</td>
</tr>
<tr>
<td>Abnormal or Risky</td>
<td>49201 (5.0%)</td>
<td>19240 (44.6%)</td>
<td>8765 (44.9%)</td>
<td>635 (33.4%)</td>
<td>77841 (47.6%)</td>
</tr>
</tbody>
</table>

- **Respiratory**
 - Upper airway obstruction
 - university: 659 (0.7%)
 - regional: 127 (0.3%)
 - general: 24 (0.1%)
 - district: 0 (0.0%)
 - Total: 810 (0.5%)
 - Upper respiratory tract infection
 - university: 438 (0.4%)
 - regional: 141 (0.3%)
 - general: 188 (0.9%)
 - district: 1 (0.1%)
 - Total: 768 (0.5%)
 - Lower respiratory tract infection
 - university: 640 (0.6%)
 - regional: 467 (1.0%)
 - general: 67 (0.3%)
 - district: 1 (0.1%)
 - Total: 1175 (0.7%)
 - Restrictive lung disease
 - university: 400 (0.4%)
 - regional: 372 (0.9%)
 - general: 48 (0.2%)
 - district: 5 (0.3%)
 - Total: 825 (0.5%)
 - Asthma
 - university: 1422 (1.4%)
 - regional: 569 (1.3%)
 - general: 274 (1.4%)
 - district: 16 (0.8%)
 - Total: 2281 (1.4%)
 - COPD
 - university: 846 (0.9%)
 - regional: 362 (0.8%)
 - general: 159 (0.8%)
 - district: 10 (0.5%)
 - Total: 1377 (0.8%)
 - Difficult airway
 - university: 749 (0.8%)
 - regional: 351 (0.8%)
 - general: 70 (0.3%)
 - district: 2 (0.1%)
 - Total: 1172 (0.7%)
 - Respiratory failure
 - university: 385 (0.4%)
 - regional: 393 (0.9%)
 - general: 140 (0.7%)
 - district: 1 (0.1%)
 - Total: 919 (0.6%)

- **Cardiovascular**
 - Hypertension
 - university: 13674 (13.8%)
 - regional: 3346 (7.7%)
 - general: 1807 (9.2%)
 - district: 114 (6.0%)
 - Total: 18941 (11.6%)
 - CHF
 - university: 624 (0.6%)
 - regional: 139 (0.3%)
 - general: 57 (0.3%)
 - district: 5 (0.3%)
 - Total: 825 (0.5%)
 - Congenital
 - university: 1974 (2.0%)
 - regional: 56 (0.1%)
 - general: 13 (0.1%)
 - district: 2 (0.1%)
 - Total: 2045 (1.2%)
 - Shock impending shock
 - university: 645 (0.7%)
 - regional: 659 (1.5%)
 - general: 257 (1.3%)
 - district: 10 (0.5%)
 - Total: 1571 (1.0%)
 - Vascular disease
 - university: 823 (0.8%)
 - regional: 70 (0.2%)
 - general: 19 (0.1%)
 - district: 1 (0.1%)
 - Total: 913 (0.5%)
 - Ischemia MI
 - university: 2487 (2.5%)
 - regional: 388 (0.9%)
 - general: 147 (0.8%)
 - district: 10 (0.5%)
 - Total: 3032 (1.8%)
 - Arrhythmias
 - university: 1513 (1.5%)
 - regional: 1402 (3.2%)
 - general: 615 (3.1%)
 - district: 16 (0.8%)
 - Total: 3346 (2.2%)
 - Valvular heart disease
 - university: 1828 (1.8%)
 - regional: 131 (0.3%)
 - general: 38 (0.2%)
 - district: 2 (0.1%)
 - Total: 1999 (1.2%)

- **Neuro-muscular**
 - Alteration of consciousness
 - university: 1843 (1.9%)
 - regional: 2261 (5.2%)
 - general: 391 (2.0%)
 - district: 4 (0.2%)
 - Total: 4499 (2.7%)
 - Previous or current CVA TIA
 - university: 1230 (1.2%)
 - regional: 563 (1.3%)
 - general: 135 (0.7%)
 - district: 4 (0.2%)
 - Total: 1932 (1.2%)
 - Spinal cord injury disease
 - university: 409 (0.4%)
 - regional: 276 (0.6%)
 - general: 42 (0.2%)
 - district: 0 (0.0%)
 - Total: 727 (0.4%)
 - Peripheral neuropathy myopathy
 - university: 341 (0.3%)
 - regional: 161 (0.4%)
 - general: 128 (0.6%)
 - district: 0 (0.0%)
 - Total: 630 (0.4%)
 - Increased ICP
 - university: 2160 (2.1%)
 - regional: 1948 (4.5%)
 - general: 587 (3.0%)
 - district: 0 (0.0%)
 - Total: 4695 (2.9%)
 - Convulsion
 - university: 452 (0.5%)
 - regional: 117 (0.3%)
 - general: 94 (0.5%)
 - district: 7 (0.4%)
 - Total: 670 (0.4%)
 - Myasthenia gravis
 - university: 107 (0.1%)
 - regional: 15 (0.0%)
 - general: 1 (0.8%)
 - district: 0 (0.0%)
 - Total: 123 (0.1%)
Table 4. Preanesthetic history stratified by types of hospitals (continued)

<table>
<thead>
<tr>
<th></th>
<th>Amount of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>university n=98839</td>
</tr>
<tr>
<td></td>
<td>regional n=43126</td>
</tr>
<tr>
<td></td>
<td>general n=19536</td>
</tr>
<tr>
<td></td>
<td>district n=1902</td>
</tr>
<tr>
<td></td>
<td>Total n=163403</td>
</tr>
<tr>
<td>Hematology/Infection</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>8071 (8.2%)</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>712 (0.7%)</td>
</tr>
<tr>
<td>Hepatitis viral antigen</td>
<td>626 (0.6%)</td>
</tr>
<tr>
<td>(HBV, HAV, ...)</td>
<td>712 (0.7%)</td>
</tr>
<tr>
<td>Platelets < 100,000</td>
<td>497 (0.5%)</td>
</tr>
<tr>
<td>HIV+</td>
<td>542 (0.5%)</td>
</tr>
<tr>
<td>Endocrine/metabolic</td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>7634 (7.7%)</td>
</tr>
<tr>
<td>Electrolyte Acid-base imbalanced</td>
<td>1502 (1.5%)</td>
</tr>
<tr>
<td>Hyperthyroid</td>
<td>639 (0.6%)</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>326 (0.3%)</td>
</tr>
<tr>
<td>Current Medication</td>
<td></td>
</tr>
<tr>
<td>Antihypertensive</td>
<td>6564 (6.6%)</td>
</tr>
<tr>
<td>Hypoglycemic drug</td>
<td>3222 (3.2%)</td>
</tr>
<tr>
<td>Bronchodilator</td>
<td>444 (0.4%)</td>
</tr>
<tr>
<td>Steroid (¿π 7π)</td>
<td>954 (1.0%)</td>
</tr>
<tr>
<td>Anticoagulant (¿π 5π)</td>
<td>508 (0.5%)</td>
</tr>
<tr>
<td>NSAID including aspirin</td>
<td>390 (0.4%)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td>666 (0.7%)</td>
</tr>
<tr>
<td>Renal impairment</td>
<td>3974 (4.0%)</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>217 (0.2%)</td>
</tr>
<tr>
<td>Post-cardiac arrest</td>
<td>142 (0.1%)</td>
</tr>
<tr>
<td>Liver disease (cirrhosis, Abnormal LFT, jaundice)</td>
<td>2161 (2.2%)</td>
</tr>
<tr>
<td>Ascites</td>
<td>267 (0.3%)</td>
</tr>
<tr>
<td>Morbid obesity</td>
<td>1012 (1.0%)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>5042 (5.1%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>6069 (6.1%)</td>
</tr>
<tr>
<td>Alcohol</td>
<td>2704 (2.7%)</td>
</tr>
</tbody>
</table>

contribution. This method had the advantage of being relatively inexpensive. However, the disadvantages of the approach are bias in underreporting, missing information, small sample size and limited inclusion of events. Moreover, the participation of the attending staff would be limited, and may lead to noncooperation.

After considering various potential designs, we opted for occurrence screening where virtually all cases were followed up. The advantages of occurrence screening are less problems with bias in reporting or case finding, and less problem with missing data. Many different outcomes can be considered including minor outcomes. Nevertheless, we encountered various barriers during the execution of this research. The first concerned was the design of structured data collection form (form 1) which was accomplished after months of consultation and meeting among principal investigators from several institutes. We tried to design the form to meet the requirements of both the investigator and attending anesthesiologists as well as nurse anesthetists; we were successful in
having all hospital use exactly the same form. For details of adverse outcomes, we also used event specific data collection form (form 2) in all 20 hospitals. The next problem concerned compliance and reliability of anesthesia personnel. There were also other concerns such as possible medico-legal problems and difficulties with definitions. Therefore we organized workshop and internal audits in all sites and form 1 was piloted by staff of 6 university hospitals before it was employed at all sites.

According to geographic distribution all sites comprised of university hospitals, tertiary or regional hospitals, general or provincial hospitals and district hospitals across the country. This can represent anesthesia practice in the whole country. Proportion of cases anesthetized in university hospital was 60% because the first group of investigators was researchers from university hospitals and attending anesthesiologists from the ministry of public health were invited to join the study thereafter. For demographic characteristics, the mean (SD) of age, weight and height of cases represent data of Thai population. There were some missing data of some variables in form 1 particularly on height of the patients. These might be due to non-compliance of attending personnel or there were some situation that we could not obtain data such as emergency situation. The explanation of more proportion of extreme age patients in university and regional

Fig 2. Mallampati classification of total 111,870 cases
hospitals was that these hospitals were set up as referral centers. Therefore, these hospitals should provide special or specific services in both equipment and personnel such as anesthesiologists who had experience in pediatric anesthesia. The possible reasons of high proportion of the female gender were: 1) there are more women in Thailand\(^\text{12}\) 2) there are more female specific operation such as gynecological surgery and cesarean section; and 3) in Thailand, women have longer life expectation.\(^\text{12}\)

There were statistically significant differences in percentages of patients with different American Society of Anesthesiologists Physical Status or ASA PS \((p<0.001)\) District hospitals had less severe ASA PS because of the fact that more severe patients were transferred to higher level hospitals in the ministry of public health's referral system due to lack of personnel and equipments. The problem of shortage of anesthesiologists and maldistribution of anesthesiologists still exists in Thailand. Despite there are more than 600 board qualified anesthesiologists in 2005, half of them are practising in the capital and big cities in each region of Thailand. There are several general or provincial hospitals with no board certified anesthesiologists which need some policy or strategy to cope with this problem. About half of patients in ministry of public health's hospital; regional hospitals, general hospitals and district hospitals, were anesthetized in emergency situation. Therefore, emergency anesthetization and surgery setting should be set up in these hospitals. About three quarters of the patients in university hospitals (Table 2) were anesthetized under elective schedule. This might be due to super-tertiary condition of university hospitals with had less space for emergency services.

For sites of operations and/or procedure, the top five most common sites were extremities (22.0%), lower abdomen including kidney/ureter (7.0%), cesarean section (10.0%), upper abdomen (7.0%) and perineal-anal (6.0%). There were 6923 patients (5.0%) with intracranial operation under anesthesia which was the sixth most common sites of operation. This should be considered as important issue because this group of operations was conducted in many hospitals which lacked of neurosurgeons and/or anesthesiologists\(^\text{12}\). Policy-maker should improved this critical situation by increasing the number of neurosurgeons and anesthesiologists and improved curriculum concerning anesthesia for neurosurgery in both residency training and nurse anesthetists training programs. The service of anesthesia in remote area or outside operating rooms has been increasing especially in university hospitals. This may also happen in regional or some general hospitals of the ministry of public health in future.

The anesthesia services were provided during official times for 71.9% anesthesitics and classified to be 95% of the in-patients and only 5% of the out-patients. This was considered to be less proportion of the out-patients. Anesthesia for ambulatory surgery has

Table 5. Mallampati classification of patients

<table>
<thead>
<tr>
<th>Type of hospitals</th>
<th>Mallampati classification (n=111870)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cannot evaluate</td>
<td>no evaluation</td>
</tr>
<tr>
<td>university (n=98839)</td>
<td>8285 (5.1%)</td>
<td>39493 (24.7%)</td>
</tr>
<tr>
<td>regional (n=43126)</td>
<td>743 (3.8%)</td>
<td>8690 (44.5%)</td>
</tr>
<tr>
<td>general (n=19536)</td>
<td>3092 (7.2%)</td>
<td>14707 (34.1%)</td>
</tr>
<tr>
<td>district (n=1902)</td>
<td>4423 (4.5%)</td>
<td>16015 (16.2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mallampati classification</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>university</td>
<td>4423 (4.5%)</td>
</tr>
<tr>
<td>regional</td>
<td>3092 (7.2%)</td>
</tr>
<tr>
<td>general</td>
<td>743 (3.8%)</td>
</tr>
<tr>
<td>district</td>
<td>27 (1.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>8285 (5.1%)</td>
</tr>
</tbody>
</table>
potential to increase and become more important because of economic constrain.\(^{13}\)

Only 38.0% of the anesthesia personnels performed preanesthetic visit at the hospital ward or emergency room. This was quite low and should be an agenda for quality improvement especially in the ministry of public health's hospitals. Half of the patients were considered healthy which corresponded to ASA physical status classification of patients in this study. There were 7.5% and 3.4% of the patients who had history of cigarette smoking and alcoholic ingestion respectively. The three most common preanesthetic abnormalities detected by preanesthetic evaluation were hypertension (11.6%), anemia (7.7%) and diabetes melitus (6.8%) respectively. This should be considered to construct clinical practice guidelines by the Royal College of Anesthesiologists of Thailand.

It has been accepted that difficult or failed intubation is one of the most common causes of morbidity related to anesthesia.\(^{14,15}\) Preoperative identification of those surgical patients who were at risk of difficult intubation still remains a significant task for anesthesia personnels. If these patient could be identified in advance, an anesthetic plan for induction of anesthesia and intubation could be made, the necessary personnel and equipment assembled, and the patient's state optimized for the choice of intubation procedures. Alternately, consideration can be given to local or regional anesthetic techniques in order to avoid manipulation of the airway. In this study there were 47,888 of 159,758 (29.9%) patients who were not evaluated by mean of Mallampati classification of which 8,285 (5.1%) patients who could not be evaluated due to any reasons and 39,493 (24.7%) patients who were not evaluated despite possible conditions. A larger proportions of patients who were not evaluated for Mallampati score were in regional hospitals (34.1%) and general or provincial hospital (44.5%) with may be due to high work load of anesthesia personnels, few or no MD anesthesiologists and higher proportion of emergency surgery. These percentages of patients with Mallampati score 1, 2, 3 and 4 (54.0%, 39.7%, 5.6% and 0.7% respectively) were the results of largest ever preanesthetic survey in Thailand. The percentage of preanesthetic airway evaluation by mean of morphometric measurement of thyromental distance was quite low (29.3%). Laryngoscopic views of Thai patients receiving intubation for anesthesia of 1, 2, 3 and 4 were 81.0%, 15.5%, 3.0% and 0.5% respectively. According to the Mallampati score modified by Samsoon and Young\(^{16}\), the percentage of patients with score 3 and 4 with possible difficulty in laryngoscopy (6.3%) was similar to studies of Savva\(^{17}\) (n=350) and Freck\(^{18}\) (n=244) but this was lower than studies of Butler and Dhara\(^{19}\) (n=220) and higher than study of Oates\(^{20}\). In this study preanesthetic airway evaluation should be encouraged and be considered to be one of anesthesia quality indices in the country.
Fig 4. The number of female and male patients stratified by types of hospitals

Conclusion

We have accomplished the first ever parallel occurrence screening of anesthesia adverse outcomes in 20 hospitals in Thailand. The first phase consisted of 163,403 consecutive anesthetics during a one-year period representing country data. More female patients were anesthetised. More extreme aged patients and elective setting were operated in university and tertiary hospitals. Outpatients or ambulatory surgery shared only 5% with potential to increase popularity ASA physical status was routinely used in all hospitals while half of patients were assessed to be healthy. Preanaesthetic visit and preoperative airway evaluation were done in low percentages which should be changed for quality improvement.

Acknowledgements

This research was accomplished by personal sacrifices and perpetual inspiration of attending anesthesiologists together with all personnel and by guidance of head of departments of all sites in this multicentered study. The Royal College of Anesthesiologists of Thailand and the THAI Study group wish to express deep gratitude to project advisors Professor Chitr Sitthi-Amorn and Associate Professor Joranit Kaewkungwal for their exceptionally wise, encourage criticism and advice. We also wish to thank Professor Pyatat Tatsanavivat, head of Clinical Research Collaborative Network (CRCN) for this continued support, encouragement and helpful suggestions.

The study was financially supported by Health Systems Research Institute (HSRI); Faculty of Medicine of Chiang Mai University, Chulalongkorn University, Khon Kaen University, Mahidol University (Ramathibodi Hospital and Siriraj Hospital), Prince of Songkla University and Thailand Research Fund.

References

การศึกษาอุปทิศการณ์เกิดภาวะแทรกซ้อนทางวิสัญญีในประเทศไทย (THAI Study) : วิธีการศึกษาและลักษณะประชากร

สมชัย จารุลักษณานันท์, สุรศักดิ์ ศรีสรรณวงค์, ยอดธิป ปัญจสวัสดิวงศ์, วรคณา สมบูรณ์วิบูลย์, ธนา นิพิฐสาชาการรัตนา, เทพนุทธิ์ ศักดิ์Storyboard, มณฑา วิศนุภูทร, เทวกิจ วิริยะภักดี, สุรศักดิ์ บันทิตศีลธรรม, วิไล เล็กประเสริฐ, ธน หินทอง

ที่มาและเหตุผล: งานวิเคราะห์วิสัญญีแตกต่างจากควรกระทำตามกับการศึกษาไทยในสมัยที่ผ่านมาที่ได้ผลวิเคราะห์การรักษาโรคเกิดขึ้นทางวิสัญญีในประเทศไทย (THAI Study) โดยให้ผู้ป่วยทุกกรณีที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญีได้รับการวินิจฉัยโรคต่างๆ

วัสดุและวิธีการ: เป็นการศึกษาแบบพรรณนามิติไปใช้หลักแบบคัดกรองอุปทิศการณ์ในผู้ป่วยทุกรายที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญีในประเทศไทย (THAI Study) โดยใช้เปรียบเทียบระหว่างผู้ป่วยที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญีในประเทศไทย (THAI Study)

ผลการศึกษา: ในระยะเวลา 12 เดือนของการศึกษาเกิดการขึ้นของผู้ป่วยที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญี 163,403 ราย คิดเป็น 12.6% ของผู้ป่วยที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญี 163,403 ราย คิดเป็น 12.6% ของผู้ป่วยที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญี

สรุป: ผลการศึกษาภาวะแทรกซ้อนทางวิสัญญีในประเทศไทย (THAI Study) ระดับต่ำเป็นตัวแปรประชากรที่ได้รับการรักษาโรคเกิดขึ้นทางวิสัญญี และผู้ป่วยในประเทศไทย ข้อมูลที่ได้สามารถใช้เป็นฐานสำหรับการพัฒนาคุณภาพบริการการส่งเสริมทางเวชปฏิบัติ การปรับปรุงการฝึกอบรม และการทำศึกษาวิจัยต่อไป