Case Report

New PFO Device for Closure of Patent Foramen Ovale in Patients Who had a History of Cryptogenic Stroke; a Report of 14 Cases

Suphot Srimahachota MD*, Nakarin Sansanayudh MD**, Vorarit Lertsuwunseri MD*, Jiranut Cholteesupachai MD*, Pornthep Lertsapcharoen MD***

* Cardiac Center and Division of Cardiovascular Disease, Department of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand
** Cardiology Unit, Department of Medicine Phramongkutklao Hospital, Bangkok, Thailand
*** Division of Pediatrics Cardiology, Department of Pediatrics, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand

Objective: The Cocoon PFO Occluder is a device for percutaneous closure of inter-atrial communications. Its self-centering characteristics make it attractive for closure of patent foramen ovales (PFOs) with or without atrial septal aneurysms. The goal of this study is to report the immediate and follow-up results of the first 14 patients in implanted with the Cocoon PFO Occluder.

Material and Method: This is a retrospective report of immediate and short-term clinical and echocardiographic outcome of patients who underwent transcatheter closure of PFO because of paradoxical embolism. Procedural success was defined as successful deployment of the device and effective occlusion (no, or trivial, shunt after device placement). All patients had a transesophageal echocardiography (TEE) with saline contrast injection at baseline and clinical follow-up at 6 months.

Results: Between September 2012 and March 2014, 14 patients had successfully undergone transcatheter closure of PFO using Cocoon® device. During follow-up none of the patients had a recurrence of stroke after device closure. No residual shunt was observed in any patients at follow-up.

Conclusion: Transcatheter closure of PFO with the Cocoon PFO device is safe and effective and can be used for preventing recurrent strokes in patients who present with cryptogenic stroke and PFO.

Keywords: Patent foramen ovale, Closure device, Cryptogenic stroke

Patent foramen ovale (PFO) is a commonly associated finding in patients presented with cryptogenic stroke(1-3). Pathogenesis of stroke may be caused by the paradoxical emboli from right atrium to left atrium crossing the PFO. Percutaneous transcatheter closure of PFO with device seems to prevent recurrent strokes in previous studies. This is the first report in Thailand using new Cocoon PFO closure device® (Vascular Innovations, Thailand) to close PFO in patients who presented with cryptogenic stroke. The device is made from braided nitinol wires and then coated with platinum using nanofusion technology. The device is then filled with polypropylene fabric to assist thrombogenicity (Fig. 1).

Material and Method
This is a retrospective study of immediate and short-term clinical and echocardiographic outcome of patients who underwent transcatheter closure of PFO

Correspondence to:
Srimahachota S, Division of Cardiovascular Diseases, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand.
Phone & Fax: 0-2256-4291
E-mail: s_srimahachota@yahoo.co.th

Fig. 1 Cocoon PFO device.
because of paradoxical embolism. Procedural success
was defined as successful deployment of the device
and effective occlusion (no, or trivial, shunt after
device placement). All patients had a transesophageal
and clinical follow-up at 6 months.

Results
The patient population of 14 who had
transcatheter PFO closure included 7 male and 7 female.
The average patient age was 53 years. All patients had
history of transient ischemic attack (TIA) or embolic
stroke. Ten of them had repeated TIA or stroke by
clinical or imaging. One had embolic stroke along
with a submassive pulmonary embolism. Table 1
demonstrates the characteristics of the patients. All
patients underwent transesophageal echocardiography
(TEE) evaluation at baseline and 6 months follow-
up. Patients’ evaluations varied but included the
following: neurological examination, 12-lead ECG, 24-
and 48-hour Holter monitoring, 2D echocardiography
with micro bubble test with the Valsalva maneuver, TEE
and standard blood tests.

The PFO was closed using the Cocoon PFO
Occluder. A Cocoon sizing balloon catheter was
advanced to the PFO, and stretched balloon sizing of
the PFO was performed by fluoroscopy and TEE. A
Cocoon PFO Occluder device diameter was chosen
by using PFO stretch diameter plus 14 and, advanced
through the Cocoon sheath, then deployed under
fluoroscopy and TEE guidance. Good placement of the
device was verified by TEE and by the presence of
none or minimal shunt after deployment by color flow
Doppler (Fig. 2 and 3).

Patients were followed clinically and
echocardiography at 24 hours, 1 month and 6 months
after device implantation. Residual shunt was
determined by 2D echocardiography and color flow
Doppler. Two patients showed trivial shunt at day 1,
which was completely closed at 1-month follow-
up. None of the patients had a recurrence of stroke
after 6 months of follow-up. Two initial patients were followed-up at 19
months and did not have any recurrent stroke.

Discussion
In non-randomized controlled trial for PFO
closure after cryptogenic stroke demonstrated the
reduction in recurrent stroke rate when compared with
medications alone. However, the CLOSURE I trial
did not demonstrate the benefit of PFO closure using
medications alone. However, the CLOSURE I trial

Table 1. Patient characteristics for patent foramen ovale (PFO) closure

<table>
<thead>
<tr>
<th>No.</th>
<th>Gender</th>
<th>Age</th>
<th>History of stroke or TIA</th>
<th>Repeated stroke or TIA</th>
<th>Present of septal aneurysm</th>
<th>Positive contrast echo at rest</th>
<th>Positive contrast echo on Valsava</th>
<th>PFO size (mm)</th>
<th>PFO after balloon sizing (mm)</th>
<th>Device Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>32</td>
<td>Yes</td>
<td>No</td>
<td>n/a</td>
<td>Yes</td>
<td>n/a</td>
<td>5.7</td>
<td>18/18</td>
<td>18/18</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>44</td>
<td>Yes</td>
<td>No</td>
<td>n/a</td>
<td>Yes</td>
<td>2.5</td>
<td>6.3</td>
<td>18/18</td>
<td>18/18</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>66</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.2</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>28</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>2.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>45</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.1</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>58</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>14</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>25</td>
<td>Yes</td>
<td>No</td>
<td>n/a</td>
<td>Yes</td>
<td>2.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>36</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>73</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>55</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>85</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>85</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>57</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>68</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
<td>3.5</td>
<td>6.2</td>
<td>25/18</td>
<td>25/18</td>
</tr>
</tbody>
</table>

F = female; M = male; TIA = transient ischemic attack; n/a = not available
high. Finally, the follow-up was too short to determine the outcomes. The RESPECT trial\(^9\) using St. Jude PFO device\(^8\), showed 50.8% relative risk reduction of developing recurrent fatal and nonfatal strokes in the device group (\(p\)-value = 0.0825, CI = 0.217-1.114) when compared with medically treated groups according to the intention to treatment analysis. However, 3 patients in the device group developed strokes before receiving PFO closure. When analyzed as treated cohort, the relative risk reduction was up to 72.7% (\(p\)-value = 0.007, CI = 0.100-0.747).

In the present cases, it is quite difficult to explain the cause of stroke from atherosclerosis, so closure PFO with device to prevent recurrent stroke is reasonable. The authors use the new design device with smaller left atrial disc to close PFO instead of an atrial septal occluder device. Consequently, thrombus formation in the left atrium and atrial arrhythmia, depending on the device, may be less.

Conclusion

Cocoon PFO device can be used to close PFO defect with right to left shunt for preventing recurrent strokes in patients who present with cryptogenic stroke and PFO. Less metal and a smaller LA disc is the benefit of new device to prevent high thrombogenicity and atrial arrhythmia.

Potential conflicts of interest

None.

References

Fig. 2 A) demonstrate patent foramen ovale (PFO) by transesophageal echocardiography (arrow). B) agitated saline injection filled in right atrial and demonstrated into left atrium (arrow). C) sizing balloon was used to evaluate the PFO tunnel. D) PFO device after detach from cable.

Fig. 3 A) small patent foramen ovale was detected during agitated saline injection. B) when catheter crossed the PFO and demonstrated the tunnel (arrow). C) sizing balloon showing the PFO tunnel. D and E) PFO device (arrow) position. F) PFO device after implantation as demonstrated by TEE.

Starflex device\(^8\). Many questions arose from this trial such as if the device itself was too bulgy and high thrombogenicity. The high-risk patients of developing venous thrombosis were excluded. This group of patients was supposed to receive the highest benefit from device closure. The cardiac arrhythmia and other complications during implantation were exceptional.

