Localization of Tubulin from the Carcinogenic Human Liver Fluke, Opisthorchis viverrini

Natthawut Kaewpitoon PhD**,***
Soraya J. Kaewpitoon MD****

* Parasitic Disease Research Unit, Suranaree University of Technology, Nakhon Ratchasima, Thailand
** Faculty of Public Health, Vongchawalitkul University, Nakhon Ratchasima, Thailand
*** Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand

Background: Opisthorchiasis caused by Opisthorchis viverrini, is of considerable public health importance in Southeast Asia, particularly in Lao People’s Democratic Republic and Thailand. The infection is associated with a number of hepatobiliary diseases including cholangitis, obstructive jaundice, hepatomegaly, cholecystitis, cholelithiasis and cholangiocarcinoma.

Objective: This study aims to localize the expression sites of O. viverrini tubulin using immunohistochemistry by monoclonal anti α-tubulin (MAαT) and anti β-tubulin (MAβT).

Material and Method: The adult worms of O. viverrini, and the adult worm of O. viverrini in biliary system of hamsters were fixed, cryo-sectioned and then immunohistochemically stained. The sections were incubated with MAαT or MAβT. A positive test required the observation of brown-staining in the fluke’s organs.

Results: The immunohistochemistry of MAαT and MAβT in adult worms of O. viverrini, and the adult worm of O. viverrini in biliary system of hamsters strongly expresses in the sperm and seminal vesicles of the worm. MAαT and MAβT expressed slightly in sub-tegumental tissue, stromal parenchyma, muscle fibers, and miracidium in the mature egg of the worm. No staining in the spermatogonia, gut epithelium, immature egg, tegument or vitelline glands of the worm nor in the hamster bile duct epithelium was seen.

Conclusion: The present study indicates that O. viverrini tubulin is present in the reproductive organs and other important organs of the worm. Because it plays a key role in the biological processes of cellular motility and fertility it should be further studied in detail including the characterization, production of recombinant proteases, and their application in immunodiagnosis.

Keywords: Localization-Tubulin-Carcinogenic human liver fluke-Opisthorchis viverrini

Opisthorchiasis caused by Opisthorchis viverrini, is of considerable public health importance in Southeast Asia, particularly in Lao People’s Democratic Republic and Thailand(1). In Thailand, the first nationwide survey of the four regions of Thailand during the years of 1980-1981 revealed an overall prevalence of O. viverrini infection of 14%; the Northeast (34.6%), the Central (6.3%), the North (5.6%) and the South (0.01%) regions(2). It is estimated that 6 million people are infected with the O. viverrini(3). Human have been infected by ingesting undercooked fish containing infective metacercariae; this is very common in the northeastern and northern regions, particularly in rural areas(4-7). The infection is associated with a number of hepatobiliary diseases including cholangitis, obstructive jaundice, hepatomegaly, cholecystitis and cholelithiasis(8,9). Experimental and epidemiological evidence strongly implicates liver fluke infection in the etiology of cholangiocarcinoma (CCA) the bile duct cancer(10-12).

Tubulin is one of several members of a small family of globular proteins. The most common members of the tubulin family are α-tubulin and β-tubulin, the proteins that make up microtubules. Microtubules are assembled from dimmers of α- and β-tubulin, a heterodimer of two globular subunits that are highly conserved across species. Microtubules play a key role in many important biological processes, such as cell division, cellular motility, intracellular transport of materials, and cell configuration in eukaryotic cells(13). Tubulins are a major target of medications treating cancer, gout, as well as fungal and helminth infections(14-16). Tubulins are found in many parasites
as components in structures such as muscle, tegument, egg, etc. Tubulin of human trematodes has been found in the tegumental syncytium, the tegumental cell bodies and their cytoplasmic connections with the surface syncytium of Fasciola hepatica. Tubulin was also demonstrated in the tegumental cell bodies, their cytoplasmic processes, and the basal layer of the tegumental syncytium of F. gigantica. In Schistosoma mansoni tubulin appears as vertical lines stretching across the whole thickness of the syncytium. Researchers have identified five alpha-tubulin and six beta-tubulin isotypes that are expressed in adult F. hepatica. Phylogenetic analysis indicates that two of the alpha-tubulins and two of the beta-tubulins are distinctly divergent from other trematode and nematode tubulin sequences. Clonorchis sinensis, the Chinese liver fluke, it was reported that two beta-tubulin cDNAs, CsTB1 and CsTB3 have been successfully cloned. The CsTB1 and CsTB3 cDNA were 2,082 and 1,486 basepair long and encoded 445 and 444 amino acids, respectively. The two clones were identical in 78% in their coding sequences and 97% in deduced sequences.

Based on Laha et al., Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, which is presently the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families include those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini is more similar to other parasitic flukes (C. sinensis and S. japonicum) compared with free-living (Schmidtea mediterranea) flatworms, and 105 sequences have close homologues in both parasitic species but not in S. mediterranea. Sripa and Kaewkes have reported that a positive reaction to the immunoperoxidase staining for Opisthorchis antigens is recognized by reddish-brown deposits. Two antiserum preparations (i.e. anti-ES and anti-somatic antibodies) produce strongly positive staining in the tegument, muscle, digestive tract and reproductive organs, including eggs, of the liver fluke. The anti-ES antibody exhibited less activity for the parasite eggs than that of the anti-somatic. From this data and the existence of cross-reacting species in the excretory secretory (E/S) of C. sinensis makes the presence of such tubulin of O. viverrini highly probable. Therefore, we intended to localize the expression sites of O. viverrini tubulin using immunohistochemical staining by MAαT and MAβT.

Material and Method

The study protocol was approved by the Suranaree University Biotechnological Review Committee (2011). O. viverrini metacercariae were obtained from naturally infected cyprinoid fish captured from an endemic area of Khon Kaen province, Thailand. The fish were digested with pepsin-HCl at 37°C for 2 hours and then the metacercariae were collected and identified under a dissecting microscope. Moving viable metacercariae was used to infect hamsters, and then bed for each 2 weeks and a month. The adult worm of O. viverrini was recovered from infected hamsters, and the adult worm of O. viverrini in biliary system of hamsters, were mounted in paraffin (Sakura Tissue-Tek® TEC™) and sectioned as described. The sections were deparaffinized in xylene three times for 5 minutes each. After deparaffinization, slides were deparaffinized in decreasing concentrations of ethanol; absolute ethanol three times, 5 minutes each, 95% ethanol two times, 3 minutes each, 70% ethanol one time, 3 minutes, and a final rinse with tap water for 1-2 minute. Slides were then washed in PBS twice, 5 minutes each time, then rinsed with tap water for 5 minutes. Slides were then exposed to 30% H2O2 in methanol for 30 minutes to block non-specific endogenous peroxidase activity. Sections were then blocked for non-specific binding with normal horse serum diluted 1:20 in PBS/NaN3 for 30 minutes at room temperature in a humid chamber. The sections were probed with MAαT or MAβT antibodies (Amersham International plc, Amersham, Buckinghamshire, England, UK) at a dilution of 1:100 in PBS/NaN3, in a humid chamber at 4°C overnight. Sections were then incubated in a secondary antibody (HRP-goat anti-rabbit IgG) diluted 1:200 in PBS for 1 hour at room temperature. To develop color, slides were submerged in freshly prepared 0.05% diaminobenzidine tetrahydrochloride (DAB) in 0.003% H2O2 solution for 5 minutes. The reaction was stopped with tap water and slides counterstained with Mayer hematoxylin for 1 minute. After counterstaining, the slides were washed with tap water and dehydrated as follows: 70% alcohol once for 3 minutes; 95% alcohols twice, 3 minutes each;
final dehydration in absolute alcohol three times, 3 minutes each, and then slides were cleared and mounted. Slides were then examined and photographed with the aid of 100X and 400X objectives fitted to an Olympus model BX40 compound microscope connected to a digital camera (Nikon DXA1200C). A positive test required the observation of brown-staining in the fluke’s organs.

Results

Immunohistochemistry staining and sequential tubulin localization in the adult worm of *O. viverrini*, and the adult worm of *O. viverrini* in biliary system of hamsters as detected by immunoperoxidase staining using MAαT and MAβT. Immunoperoxidase staining were original magnification with 200 and 1,000x.

1) Immunohistochemistry of MAαT in the adult worm of *O. viverrini* and the adult worm of *O. viverrini* in biliary system of hamsters: Negative control shows no staining in the fluke and bile duct epithelium (Fig. 1A, 1B). MAαT stained in sub-tegumental tissue, stromal parenchyma, muscle fibers, and miracidium in mature eggs (Fig. 1C, 1D, 2A-2D). MAαT strongly stains in sperm in both the testis and the seminal vesicle (Fig. 2). No staining was seen in spermatogonia, gut epithelium, immature egg, tegument or vitelline glands, nor in the hamster bile duct epithelium (Fig. 1A).

2) Immunohistochemistry of MAβT in the adult worm of *O. viverrini* and the adult worm of *O. viverrini* in biliary system of hamsters: Negative control shows no staining in the fluke and bile duct epithelium (Fig. 3A). MAβT also slightly stained in the sub-tegumental tissue and the stromal parenchyma, and strongly stained in sperm in the testis (Fig. 3B, 2C). No staining was seen in spermatogonia, gut epithelium, immature egg, tegument or vitelline glands, nor in the hamster bile duct epithelium (Fig. 3A).

Discussion

Tubulins are targets for medications treating cancer, gout as well as fungal and helminthic infections. One example would be colchicines in gout binds to tubulin and inhibits microtubule formation, arresting neutrophil motility and...
decreasing inflammation. Another is the anti-fungal drug Griseofulvin which targets microtubule formation and also has applications in cancer treatment(14-16). Tubulin is one of several members of a small family of globular protein. The most common members of the tubulin family are α-tubulin and β-tubulin, the proteins that make up microtubules. Microtubules are assembled from dimers of α- and β-tubulin. Tubulin was long thought to be specific to eukaryotes. To form microtubules, the dimers of α- and β-tubulin bind to GTP and assemble onto the (+) ends of microtubules while in the GTP-bound state. After the dimer is incorporated into the microtubule, the molecule of GTP bound to the β-tubulin subunit eventually hydrolyzes into GDP through inter-dimer contacts along the microtubule protofilament(13).

Many parasitic organisms contain tubulins as components of structures such as muscle fibers, tegument, tegumental syncytium, tegumental cell bodies, seminal receptacles, seminal vesicles, and testes(17-20,23). The present study shows that tubulin strongly stains in numerous mature sperm within testes of the O. viverrini worm in the biliary system of hamsters, and the adult worm. These results were similar to where tubulin was localized in Echinostoma caproni and Pseudodactylogyrus sperm where it is used for reproductive processes(23,24). In eukaryotic cells, there is plenty of evidence for the presence of tubulins in spermatocytes and spermatids during mammalian spermatogenesis(25-27) and also in mature spermatozoa(28-30). However, because of the large diversity in the tubulin superfamily there is a gap in the field covering spermatogenesis and mature sperm undergoing changes prior to fertilization. Most eukaryotic cells can express multiple isotypes of α- and β-tubulin and this diversity is further expanded by a number of post-translational modifications(31). Although the functional significance of tubulin diversity is still difficult to associate with consistent biological functions, there is increasing evidence that different α- and β-tubulin isotypes and post-translational modifications can impact microtubule

Fig. 2 Photomicrograph of immunohistochemistry staining and the expression sites of tubulin in the adult worm of O. viverrini as detected by immunoperoxidase staining. MAαT expresses in sub-tegumental tissue, stromal parenchyma, muscle fiber, and sperms in both testis (Tt) (A) and seminal vesicle (SV) (B), and miracidium in mature egg (e) (B). No staining in spermatogonia (Sg) (A), gut epithelium (g) (C), immature egg (e) (C), tegument (t) and vitelline glands (v) (D), and hamster bile duct epithelium (b) (D). (A-D: Magnification 400X).
structure and function(26).

The present results also show that MAαT and MAβT are expressed in the sub-tegumental tissue and the stromal parenchyma of *O. viverrini*, which is also similar to the previously study of *Fasciola* spp. In *Fasciola* spp., the tegument plays crucial roles in maintaining homeostasis, including absorption of nutrients, exchange of waste molecules, regulation of ionic equilibrium, and protection from host immune responses(32). In addition, tegument is the major site from which antigens are released to stimulate host immune responses(33,34). *F. hepatica* tubulins have been reported and demonstrated in the tegumental syncytium and in the tegumental cell bodies and their cytoplasmic connections with the surface syncytium(17). In *F. gigantica*, the presence of microtubules and actin filaments in the tegumental cells and their processes as well as in the syncytium could mediate the movement of secretory granules from the cell bodies toward the basal as well as the apical layer of the tegument(19). In *O. viverrini* tubulins are now also shown to be localized in these vital organs similar to other important human trematodes.

Conclusion

The present study was the first reports that *O. viverrini* tubulin is expressed in vital organs, therefore, we intend to pursue further study to systematically detail the characterization and production of recombinant proteases as well as their applications in immunodiagnosis.

What is already known on this topic?

Many parasitic organisms contain tubulins as components of structures such as muscle fibers, tegument, tegumental syncytium, tegumental cell bodies, seminal receptacles, seminal vesicles, and testes.

What this study adds?

O. viverrini tubulin is expressed in vital organs, both MAαT and MAβT expressed slightly in sub-tegumental tissue, stromal parenchyma, muscle fibers, and miracidium in the mature egg of the worm. The
present study indicates that \textit{O. viverrini} tubulin is present in the reproductive organs and other important organs of the worm.

Acknowledgement

This research was supported by the Institute of Research and Development, Suranaree University of Technology for supported the grants Fiscal year 2010. The authors would like to thank Prof. Dr. Banchob Sripa, Dr. Sutus Suttiprapa, Dr. Ratana Leksomboon and all the staff in Tropical Disease Research, Faculty of Medicine, Khon Kaen University, Thailand, for their kind help. Thanks are due to Asst. Prof. Dr. Ryan J. Loyd for his advice and assistance in writing this paper.

Potential conflicts of interest

None.

References

11. IARC. Infection with liver flukes (\textit{Opisthorchis viverrini}, \textit{Opisthorchis felineus} and \textit{Clonorchis sinensis}). IARC Monogr Eval Carcinog Risks of Hum; 1994: 61, 121-75;
20. Li S, Hong SJ, Choi MH, Hong ST. Identification
การศึกษาค้นพบข้อมูลเชิงพาณิชย์ในอินเทอร์เน็ต

ณัฐธ์วัชร แก้วพิบูลย์, สายยา แก้วพิบูลย์

อุปสรรค: พบว่าเนื้อหาบางบางส่วนที่สำคัญในเขตพื้นที่อาจต้องการรวมเข้าด้วย โดยเฉพาะในปัจจุบันกับการที่มีการเพิ่มเติมที่สูงสุดไปยังเว็บไซต์ต่างๆ การติดตั้งของพาณิชย์ไปในที่ไม่เหมาะสมที่เกี่ยวกับการคัดกรองข้อมูลและที่ตั้งต้นต้น อาทิ ท่อน้ำที่อ่อนสับ

คุณลักษณะ: ถูกต้อง ดูแลน้ำที่โต้งน้ำ และDevExpress

วัตถุประสงค์: เพื่อศึกษาค้นหาการตรวจสอบข้อมูลของพาณิชย์ในอินเทอร์เน็ต วิวัฒนาการวิเคราะห์ในอินเทอร์เน็ตโดยใช้งานโปรแกรม

ผลการวิจัย: ผลการวิเคราะห์เนื้อหาในอินเทอร์เน็ต พูดคุยกล่าวถึงการตรวจสอบข้อมูลทางธุรกิจและเวลาที่มีการเปลี่ยนแปลงในพาณิชย์ในที่ไม่เหมาะสมตัวอย่าง และพาณิชย์ไปในที่ไม่เหมาะสมตัวอย่างในระบบทางเดินเนื้อหาในตัวของพาณิชย์ไปในที่ไม่เหมาะสมที่เกี่ยวกับการคัดกรองข้อมูลและเวลาที่มีการเปลี่ยนแปลงในเวลาที่ผ่านไป

สรุป: การศึกษาค้นพบข้อมูลเชิงพาณิชย์ในอินเทอร์เน็ตบางส่วนข้อมูลขั้นต้นและข้อสรุปที่สำคัญของพาณิชย์ บริวารที่สำคัญสำหรับการเคลื่อนไหว เคียงข้างที่เจาะจงศึกษาเพื่อเดินเกี่ยวกับข้อมูลขั้นต้น กระบวนการเพื่อการสร้างและการประมวลผลทางระบบควบคุมอิเล็กทรอนิกส์