The Retrogradation of Canned Rice During Storage

Woatthichai Narkrugsa1* and Mayyawadee Saeleaw 2

1 Faculty of Agro Industry, King Mongkut Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand
2 Faculty of Home Economic Technology, Rajamongkala University of Technology Krungthep, Chareonkrung Road, Bangkok 10120, Thailand

Abstract

The retrogradation of canned rice products from three milled rice varieties, i.e., Thai Hom Mali (17.25% amylose, db.), Kaotahang (33.52% amylose, db.) and Koshihikari (15.55% amylose, db.) during storage at room temperature (27-29°C) for 8 months was conducted. Canned rice was sterilized at 116 °C with F0 1 and 5 min. Retrogradation of gelatinized canned rice was studied by measuring hardness of rice kernel with Modified Single Kernel method. It was found that during storage the hardness of the rice kernels increased with the duration of the storage time (r=0.48 at p<0.05). Canned rice produced from high amylose rice variety (Kaotahang) had significantly higher retrogradation than the low amylose rice (Thai Hom Mali) (r=0.85 at p<0.01). Comparing the effects of sterilization (F0) and storage time on hardness of the low amylose rice varieties, Koshihikari (L/W= 1.67, short grain) and Thai Hom Mali rice (L/W =3.19, long grain), both varieties had similar characteristics of retrogradation throughout the storage time even though the L/W ratio was different. The hardness of rice kernel sterilized at F0 5min was lower than at F0 1min. The longer the rice products were stored, the higher the retrogradation (r = 0.90 at p<0.01).

Keywords: retrogradation, hardness, canned rice, storage

1. Introduction

Canned rice is a ready-to-eat product consumed as a whole grain cereal product. It is produced by packing cleaned milled rice into a can together with liquid, such as soup or water (wet pack) or without liquid (dry pack), and then sterilizing as described by Luh [1]. Starch gelatinization in the rice kernels during thermal processing by steam contribute to the change of texture as reported by Morrison and Tester [2], Narkrugsa [3, 4], Perdon et al. [5] and Sasaki et al. [6]. During storage or cooling, the starch in the cooked milled rice undergoes retrogradation. The amylase fraction retrogrades immediately while the amyllopectin remain in an amorphous state. The amyllopectin fraction either reassociates or recrystalizes during storage and contributes to starch retrogradation as shown by Juliano et al. [7], Fedriksson et al. [8], Singh et al.[9]. The texture of cooked milled rice...
rice kernels is also changed. Most of the retrogradation studies is related to the texture or mechanical change, especially hardness and the changes of gelatinized starch in the rice kernels [5-7, 10-16]. The objective of this experiment was to determine the effects of the amylose content, sterilization (F₀) and the shape of the rice kernel (L/W ratio) on starch retrogradation in three varieties of canned rice during storage.

2. Materials and Methods

2.1 Materials
Three milled rice varieties used in the experiments were bought from various Thai companies. Thai Hom Mali, a low amylose indica rice variety was bought from Capital Rice Co., Ltd, Thailand; Kaotahang, a high amylose indica rice variety was bought from Chia Meng Rice Mill Co, Ltd, Thailand, and Koshihikari, a low amylose japonica rice variety was bought from Asia Inter Rice Company, Thailand.

2.2 Methods
2.2.1 Analysis of nutrients, physicochemical properties and cooking quality
Proximate analysis was determined by the method of AOAC [17] and carbohydrate computed by total difference. Amylose was analysed by the method of Juliano [18]. L/W ratio, weight per 1,000 grains were measured while cooking quality test was performed according to the method of Batchet et al. [19].

2.2.2 Canned rice production
Canned rice was prepared according to the method described by Narkrugsa [3, 4] as shown in Figure1. Milled rice was cleaned by washing with water before cooking in a steam jacket kettle at 85°C for 5 min with excess water. After cooking the liquid part was drained from the partial cooked rice kernels. Cooked rice (180g) was then packed into cans (307x113). Then passed through the exhauster with steam temperature at 80-85°C for 10min and the cans were steamed. The partial cooked rice was sterilized in a retort at 116°C for F₀ =1 and 5min. The canned rice was cooled with tap water until the temperature of the cans dropped to 60-65°C.
2.2.3 Determination of retrogradation of rice kernels
Hardness was used to express the retrogradation of cooked milled rice in the can during storage at room temperature (27°-29°C). Texture Analyzer TA-XT2i (Stable Micro Systems, SMS Surrey, England) was used to measure the hardness by the Modified Single Kernel Method of Okabe [20]. Three grains of rice kernels from the center of can were placed on the measurement stage 1 cm equidistant from each other. The kernels were compressed with a 75mm diameter probe at a speed of 1.5mm/sec. Hardness of rice kernels was measured every 0, 1, 2, 4, 6 and 8 months.
2.2.4 Effects of sterilization level (Fo) and amylose content on retrogradation
This experiment used the 2^2 factorial design in CRD and contained 2 factors, amylose content (Thai Hom Mali, a low amylose rice; and Kaotahang, a high amylose rice) and the sterilizing values (Fo) 1 and 5 minutes. Canned rice stored at room temperature for 8 months was measured for retrogradation. Analysis of the experimental data was performed using ANOVA at 1 and 5% levels. The correlation coefficient (r) between hardness and the storage time were statistically analysed. The multiple regression model of the retrogradation was also simulated by computer software program, Trial Statgraphics Plus version 5 (Statistical Graphics Corps).

2.2.5 Effects of sterilization level (Fo) and shape of rice kernel (L/W ratio) on retrogradation
Rice with low amylose i.e. Thai Hom Mali (L/W ratio =3.19) and Koshihikari (L/W ratio =1.67) were studied. The 2^2 factorial design in CRD with Fo (1, 5 min) and L/W ratio (1.67, 3.19) as factors was used. Measurement of hardness during storage at room temperature for 8 months was performed. The correlation coefficient (r) between the hardness of the rice kernels and storage time was also computed.

3. Results and Discussion

Milled rice of three varieties used in this experiment had very low fat, ash and crude fibers while carbohydrate was very high (about 80%) as shown in Table1. Protein values were 6.63% (Thai Hom Mali), 5.75% (Kaotahang) and 6.36% (Koshihikari). Kaotahang variety had the highest amylose (33.52%) while Thai Hom Mali (17.25%) and Koshihikari (15.5%) had low amylose values.

Table 1 Nutrients and amylose content of the three milled rice varieties.

<table>
<thead>
<tr>
<th>Rice variety</th>
<th>Moisture content (%)</th>
<th>Fat (%)</th>
<th>Protein (%)</th>
<th>Ash (%)</th>
<th>Crude Fiber (%)</th>
<th>Carbohydrate (%)</th>
<th>Amylose (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Hom Mali</td>
<td>11.92±0.01</td>
<td>0.27±0.01</td>
<td>6.63±0.02</td>
<td>0.24±0.01</td>
<td>0.28±0.02</td>
<td>80.66±0.02</td>
<td>17.25±0.03</td>
</tr>
<tr>
<td>Kaotahang</td>
<td>12.82±0.02</td>
<td>0.38±0.01</td>
<td>5.75±0.02</td>
<td>0.31±0.01</td>
<td>0.32±0.01</td>
<td>80.42±0.02</td>
<td>33.52±0.03</td>
</tr>
<tr>
<td>Koshihikari</td>
<td>12.68±0.02</td>
<td>0.21±0.02</td>
<td>6.36±0.02</td>
<td>0.22±0.01</td>
<td>0.19±0.01</td>
<td>80.34±0.02</td>
<td>15.55±0.02</td>
</tr>
</tbody>
</table>

*The data in the table are means and standard deviations from 3 replicates.

From Table 2, the results indicate that Thai Hom Mali (L/W=3.20) and Kaotahang (L/W= 3.31) were long grain rice (Indica type) while Koshihikari (L/W=1.67) was short grain (Japonica type). Kaotahang had the highest volume expansion (2.92 times), water absorption (3.30 times) and total soluble solid (TSS, 6.49%). Koshihikari had the highest weight per 1,000 grains (20.30%) but the lowest water absorption (2.64 times) and volume expansion (2.50 times).
Table 2: Some physicochemical properties and cooking qualities of the three milled rice varieties.

<table>
<thead>
<tr>
<th>Rice variety</th>
<th>Length, L (mm)</th>
<th>Width, W (mm)</th>
<th>L/W ratio</th>
<th>Weight/1000 grains, g.</th>
<th>Water adsorption</th>
<th>Volume expansion</th>
<th>Total soluble solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Hom Mali</td>
<td>7.42±0.005</td>
<td>2.32±0.03</td>
<td>3.20±0.05</td>
<td>17.98±0.02</td>
<td>2.80±0.02</td>
<td>2.67±0.03</td>
<td>5.18±0.03</td>
</tr>
<tr>
<td>Kaotahang</td>
<td>6.95±0.03</td>
<td>2.10±0.02</td>
<td>3.31±0.04</td>
<td>19.52±0.03</td>
<td>3.30±0.01</td>
<td>2.92±0.05</td>
<td>6.49±0.03</td>
</tr>
<tr>
<td>Koshihikari</td>
<td>4.60±0.02</td>
<td>2.76±0.03</td>
<td>1.67±0.02</td>
<td>20.30±0.02</td>
<td>2.64±0.02</td>
<td>2.50±0.05</td>
<td>6.20±0.02</td>
</tr>
</tbody>
</table>

Note: The data in the table are means and standard deviations from 3 replicates.

After storage of canned rice at room temperature for 8 months, the hardness of the rice kernels with high amylose rice (Kaotahang) was higher than low amylose rice (Thai Hom Mali) from the beginning till the end of storage. As reported by Perdon et al. [14], the high amylose rice was able to retrogradate quicker and higher than the low amylose rice. The effects of the amylose and the storage time on hardness of the cooked rice kernels were highly significant (r=0.85 at p<0.01) and significant (r=0.48 at p<0.05) respectively, while the sterilizing values (Fo) had no significant effect (Table 3). But for low amylose rice (Thai Hom Mali and Koshihikari), the hardness of the rice kernels of canned rice sterilized at Fo=1 was higher than for Fo=5 (Figure 2). Retrogradation of canned rice (Y) with the regression equation of the significated factors (amylose, X1) and storage time (X2) with a model of fitted (r^2) equal to 0.94 is shown below and in Figure 3.

\[Y = 1.206 + 0.187 X_1 + 0.295 X_2 + 0.0015 X_1 X_2 \quad (r^2 = 0.94) \]

Table 3: Correlation coefficients between processing factors and storage time on the retrogradation of rice kernels.

<table>
<thead>
<tr>
<th>Processing factors/ Storage time</th>
<th>Retrogradation (Hardness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylose content, X1</td>
<td>0.85**</td>
</tr>
<tr>
<td>Sterilizing value(Fo), X2</td>
<td>-0.08ns</td>
</tr>
<tr>
<td>X1 * X2</td>
<td>0.32ns</td>
</tr>
<tr>
<td>Storage time</td>
<td>0.48*</td>
</tr>
</tbody>
</table>

Note: ns = non significant correlation
* = significant correlation at p<0.05
** = highly significant correlation at p<0.01

The correlation coefficients were calculated from 72 observations.
Figure 2 Hardness of the cooked milled rice during storage at room temperature.

\[Y = 1.206 + 0.187 X_1 + 0.295 X_2 + 0.0015 X_1 X_2 \quad \ldots \ldots \quad (r^2=0.94) \]

Figure 3 Response surface plot of the retrogradation (hardness) of canned rice during storage at room temperature.
With rice containing a similar amount of amylase (17.25% for Thai Hom Mali Rice and 15.5% for Koshohikari), the results indicate that the shape of the rice kernel (L/W ratio) and sterilization (Fo) did not affect the retrogradation of rice kernels while the storage time was correlated with $r=0.90$ ($p<0.01$) (Table 4). The hardness of the canned rice produced at the same Fo from the two varieties was nearly the same from the beginning of storage till the end (Figure 2).

The effects of sterilization time (Fo) and storage time on the retrogradation were more marked for the low amylose rice varieties than for high amylose rice. Fredriksson et al. [8] and Vandeputte et al. [17] have shown that the amylepectin fraction of the rice starch may play an important role in changing or recrystalisation in the rice kernels during storage. This would affect the texture of the rice kernels making them harder, especially the high amylose rice, like the results shown in the experiments of Champagne et al. [10], Lima and Singh [8], Okabe [13], Perdon et al. [14], Perez and Juliano [15] and Singh et al. [19].

Table 4 Correlation coefficients between factors and storage time on the retrogradation of canned low amylose rice

<table>
<thead>
<tr>
<th>Factors/Storage time</th>
<th>Retrogradation(Hardness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilizing value(Fo) , X₁</td>
<td>-0.28ns</td>
</tr>
<tr>
<td>L/W ratio , X₂</td>
<td>0.02ns</td>
</tr>
<tr>
<td>X₁*X₂</td>
<td>-0.22ns</td>
</tr>
<tr>
<td>Storage time</td>
<td>0.90**</td>
</tr>
</tbody>
</table>

Note: ns = non significant correlation
* = significant correlation at $p<0.05$
** = highly significant correlation at $p<0.01$

*The correlation coefficients were calculated from 72 observations.

4. Conclusions

Retrogradation of cooked milled rice from low and high amylose rice occurred during storage at room temperature. Amylose content and storage time significantly affected the hardness of the rice kernels, especially for high amylose rice. Sterilizing value (Fo) and kernel shape (L/W ratio) did not significantly affect retrogradation. The longer the storage time the higher the retrogradation.

References

