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ABSTRACT: We study a simple motion evasion differential game of many pursuers x1, . . . , xm and one evader y in the
plane. Maximum speeds of pursuers are equal to 1, and the control set of the evader is a sector S of radius greater than
1. We say that evasion is possible if x i(t) 6= y(t) for all t ¾ 0 and i = 1, . . . , m. We obtain conditions that guarantee the
evasion from any initial positions of the pursuers and evader.
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INTRODUCTION

The two-person differential game was initiated by
Isaacs1. Fundamental contributions were made in
Refs. 2–9, and further new methods were developed
in work such as in Refs. 10, 11.

A natural extension of a two-person differential
game is a differential game with many pursuers and
one evader. The latter was intensively studied in
Refs. 12–15 for simple motion differential games
with many pursuers. Further interesting results
were obtained in Refs. 16–19.

Grigorenko20 obtained the necessary and suf-
ficient condition of evasion when the control sets
of the players are convex compact sets. Evasion
problems were studied in Ref. 21 more generally,
where the game is described by

ż i = ui − v, z i ∈ Rk, z i(0) = z i
0, i = 1, . . . , n,

where ui ∈ Ui , v ∈ V , and Ui and V are compact sets.
Evasion is said to be possible if z i(t) /∈ Mi for all
i = 1, . . . , n and t ¾ 0, where Mi for i = 1, . . . , n are
given nonempty convex compact sets. An evasion
theorem was proved under some assumptions.

Differential games of many pursuers and one
evader described by

ẋ i = ui , x i(0) = x i
0, |ui |¶ ρi , i = 1, . . . , m,

ẏ = v, y(0) = y0, |v|¶ σ,

where x i , y, ui , v ∈ Rn, ρi ¾ 0, σ > 0, x i
0 6= y0,

i = 1, . . . , m, were studied in much work. If x i(τ) =
y(τ) at some i ∈ {1, . . . , m} and τ ¾ 0, pursuit is

said to be completed, and if x i(t) 6= y(t) for all
i = 1, . . . , m, and t ¾ 0, then evasion is said to
be possible. Without restriction of generality, we
can assume that σ = 1. The following cases were
studied.

Case 1. At least one of ρ1, . . . ,ρm, e.g., ρ1, is
greater than σ = 1. Then, clearly, the pursuer x1

can complete the game. There is no difficulty in this
case.

Case 2. ρi < 1 for all i = 1, . . . , m. According to
Ref. 13, evasion is possible in this case.

Case 3. ρ1 = · · · = ρk = 1, ρi < 1, i = k +
1, . . . , m. In this case, we construct the convex hull

X = conv{x1
0 , . . . , x k

0} := {β1 x1
0 + · · ·+βk x k

0 |
β1+ · · ·+βk = 1, β1 ¾ 0, . . . ,βk ¾ 0}

of the points x1
0 , . . . , x k

0 . If y0 ∈ int X , then by
Ref. 12, pursuit can be completed by the pursuers
x1, . . . , x k in a finite time. If y0 /∈ X , then by
modifying the method of Refs. 12, 13, it can be
easily shown that evasion is possible.

What if y0 is on the boundary of the set X?
This case has not been studied yet22. We give two
examples.

Example 1 There are m = 4 pursuers in R2 (i.e.,
n= 2).

x1
0 = (1,0), x2

0 = (−1,0), x3
0 = (0,−1),

x4
0 = (0, 1), y0 = (0, 0), ρ1 = ρ2 = ρ3 = 1,

ρ4 = 0, σ = 1.
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Fig. 1 The evader is on ∂ X , X ⊂ R2.

Since ρ4 = 0, the pursuer x4 cannot move at all
(Fig. 1). Nevertheless, pursuit can be completed.
We give the scheme of the proof. First, set u1(t) =
u2(t) = u3(t) = (0, 1), u4(t) = (0, 0). Then either
v2(t) = 1 for almost all of t ¾ 0, or |v2(t)| < 1 on
some set I with mes I > 0. In the former case, the
evader will be hit the pursuer x4 at the time t = 1,
and hence pursuit is completed. In the latter case,
y(t) ∈ int conv{x1(t), x2(t), x3(t)} at some t > 0,
and therefore by Ref. 12 pursuit will be completed.

In general, the case y0 ∈ ∂ X , where ∂ X is the
boundary of the set X , can be easily studied in the
plane (i.e., if n = 2). However, it has not been
studied when n¾ 3.

Example 2 There are 9 pursuers with the initial po-
sitions x1

0 = (−1, 1,1), x2
0 = (1,1, 1), x3

0 = (1,−1, 1),
x4

0 = (−1,−1,1), x5
0 = (−1,1,−1), x6

0 = (1,1,−1),
x7

0 = (1,−1,−1), x8
0 = (−1,−1,−1), and initial po-

sition of the 9th pursuer x9
0 is not specified. ρ1 =

· · · = ρ8 = 1, y0 = (0,1, 1), σ = 1, 0 < ρ9 < 1. We
can construct strategies of the pursuers x1, . . . , x8 so
that either the evader moves in the sector (Fig. 2)

C = {(ξ1,ξ2,ξ3) | ξ1 = 0, ξ2 ¾ 1, ξ3 ¾ 1}

Fig. 2 The evader is on ∂ X , X ⊂ R3.

with the control v(t), t ¾ 0, which must belong to
the sector

S= {(ξ1,ξ2,ξ3) | ξ1 = 0, ξ2 ¾ 0, ξ3 ¾ 0, ξ2
2+ξ

2
3 ¶ 1}

for almost all t ¾ 0, or the inclusion

y(t) ∈ int conv{x1(t), . . . , x8(t)} (1)

holds at some t > 0. If the inclusion (1) holds, from
Ref. 12 pursuit can be completed by the pursuers
x1, . . . , x8. Hence the evader must move in the
sector C with a control v(t) ∈ S, t ¾ 0. Assume that
x9

0 ∈ C . The problem is to find conditions on x9
0 and

ρ9 so that pursuit can be completed. It turns out
that for some position x9

0 and number ρ9, pursuit
can be completed.

To obtain a sufficient condition of completion
of pursuit, it is reasonable to consider an auxiliary
differential game of one evader y and one pursuer
x9, where the control set of the evader (the set of
control parameters of the evader) is the sector S.
In the present paper, however, we will restrict the
discussion to evasion games.

It should be noted that Petrov and
Shchelchkov23 studied Case 3 where the definition
of evasion is different from Definition 4. According
to the result of that paper, in the game given in
Example 1, evasion is possible.

Example 2 suggests that we should consider a
differential game of many pursuers in a sector, with
control set of the evader being a sector. Moreover,
in this game, it is assumed that maximum speeds of
the pursuers are less than that of the evader.

Simple motion differential game problems of
many pursuers and one evader, where the control
set of evader is a sector, can be studied indepen-
dently. Hence in the present paper, we consider a
simple motion differential game of many pursuers
and one evader whose control set is a sector. Here,
maximum speeds of the pursuers are equal to 1 and
the maximum speed of the evader is α where α> 1,
but the velocity vector of the evader belongs to the
given sector. We find a sufficient condition for the
evader to escape from all pursuers.

STATEMENT OF THE PROBLEM AND MAIN
RESULT

We study an evasion differential game of many
pursuers x i and one evader y with geometric con-
straints on the controls of players in the (ξ1,ξ2)-
plane. The game is described by

ẋ i = ui , x i(0) = x i
0, i = 1, . . . , m,

ẏ = v, y(0) = y0,
(2)
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Fig. 3 Sector S.

where x i , x i
0, ui , y, y0, v ∈ R2, x i

0 6= y0, |ui | ¶ 1, v ∈
S, ui are the control parameters of the pursuers x i ,
v is that of the evader y ,

S = {(v1, v2) | v2
1 + v2

2 ¶ α
2, |v1|¶ v2 tanϕ, v2 ¾ 0}

is the control set of the evader, α > 1 and ϕ (with
0<ϕ < 1

2π) is a given angle. Note that S is a sector
with the radius α and central angle 2ϕ (Fig. 3).

Definition 1 A Borel measurable function, ui(t) =
(ui

1(t), ui
2(t)), |u

i(t)| ¶ 1, t ¾ 0, is called an admis-
sible control of the pursuer x i .

Definition 2 A Borel measurable function, v(t) =
(v1(t), v2(t)), v(t) ∈ S, t ¾ 0, is called an admissible
control of the evader y .

Let H(0,ρ) denote the circle of radius ρ centred at
the origin.

Definition 3 A Borel measurable function
V (t, y, x1, . . . , xm, u1, . . . , um),

V : [0,∞)×R2× · · · ×R2

×H(0,ρ)× · · · ×H(0,ρ)→ S,

is called strategy of the evader, if for any admissible
controls u1 = u1(t), . . . , um = um(t) of pursuers the
following initial value problem

ẋ1 = u1, x1(0) = x1
0 ,

...

ẋm = um, xm(0) = xm
0 ,

ẏ = V (t, y, x1, . . . , xm, u1, . . . , um), y(0) = y0,

has a unique solution (x1(t), . . . , xm(t), y(t)),
t ¾ 0 with absolutely continuous components
x1(t), . . . , xm(t), and y(t).

Definition 4 We say that evasion is possible in the
game (2) if there exists a strategy V of the evader y
such that for any admissible controls of the pursuers
x i(t) 6= y(t) for all t ¾ 0 and i = 1, . . . , m.

We wish to find sufficient conditions of evasion
in the game (2). The condition v(t) ∈ S, t ¾ 0,
implies that the state of the evader y(t) belongs
to the sector S1 = {y0 + ta | a ∈ S, t ¾ 0}. Initial
positions of the pursuers may be in S1 as well as
outside S1. In the process of pursuit, the pursuers
can move throughout the plane. In this regard, the
pursuers have the advantage. However, the evader
has advantage of speed since α > 1.

The main result of the paper is the following
statement.

Theorem 1 If α cosϕ0 ¾ 1 and α sinϕ0 > 1 at some
0< ϕ0 ¶ ϕ, then evasion is possible in the game (2).

To prove this theorem, first we examine a game
with one pursuer. Then we show that evasion is
possible in the case of many pursuers.

THE CASE OF ONE PURSUER

In this section, we consider the game with one pur-
suer x1 and show that evasion is possible. Choosing
any number a1 (with 0 < a1 < |x1

0 − y0|), we con-
struct a strategy for the evader as follows:

v(t) =











(0,α), 0¶ t < τ1,
�

±W 1
1 (t),

q

α2− (W 1
1 (t))2

�

, τ1 ¶ t ¶ t1,

(0,α), t > t1,
(3)

where W j
i (s) ≡ c + |u j

i (s)|, τ1 is the first time
when |y(τ1)− x1(τ1)| = a1, t1 = τ1 + 2a1/A, A =
p

(α−1)2− c2, and c = α sinϕ0 − 1. Note that
such a time τ1 may not exist. If so, then we let
v(t) = (0,α) for all t ¾ 0. In (3), ± means v1(t) =
W 1

1 (t), if x1
1(τ1) ¶ y1(τ1) and v1(t) = −W 1

1 (t),
if x1

1(τ1) ¾ y1(τ1), where x1(t) = (x1
1(t), x1

2(t)),
y(t) = (y1(t), y2(t)).

We estimate |y(t)−x1(t)|, τ1 ¶ t ¶ t1. We have

|y(t)− x1(t)|=

�

�

�

�

�

y(τ1)+

∫ t

τ1

v(s)ds

−

�

x1(τ1)+

∫ t

τ1

u1(s)ds

�

�

�

�

�

�

¾ |y(τ1)− x1(τ1)|

−

�

�

�

�

�

∫ t

τ1

v(s)ds

�

�

�

�

�

−

�

�

�

�

�

∫ t

τ1

u1(s)ds

�

�

�

�

�
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¾ a1− (t −τ1)(α+1).

Without loss of generality, we assume that y1(τ1)¾
x1

1(τ1), and hence v1(t) = W 1
1 (t), τ1 ¶ t ¶ t1.

Then, on the other hand, for the points x1(t) and
y(t), we have

|y(t)− x1(t)|¾ y1(t)− x1
1(t)

= y1(τ1)+

∫ t

τ1

v1(s)ds

−

�

x1
1(τ1)+

∫ t

τ1

u1
1(s)ds

�

= y1(τ1)− x1
1(τ1)

+

∫ t

τ1

(v1(s)−u1
1(s))ds

= y1(τ1)− x1
1(τ1)

+

∫ t

τ1

(W 1
1 (s)−u1

1(s))ds

¾ c(t −τ1).

Thus |y(t)− x1(t)| ¾ f (t), where f (t) =max{a1−
(t − τ1)(α+ 1), c(t − τ1)}. Note that the function
f (t) has only one minimum on [τ1, t1] since the first
argument in the max function decreases, whereas
the second argument increases. The function f (t)
takes its minimum at

t∗ = τ1+
a1

α(1+ sinϕ0)
∈ [τ1, t1].

We have

|y(t)− x1(t)|¾ c(t∗−τ1)

=
ca1

α(1+ sinϕ0)

¾
ca1

2α
, τ1 ¶ t ¶ t1. (4)

In particular, at the time t1

|y(t1)− x1(t1)|¾
ca1

2α
. (5)

Moreover, at the time t = t1, the pursuer cannot be
above the horizontal line ξ2 = y2(t1) of the (ξ1,ξ2)-
plane. Indeed,

y2(t1)− x1
2(t1)

= y2(τ1)+

∫ t1

τ1

v2(t)dt

−

�

x1
2(τ1)+

∫ t1

τ1

u1
2(t)dt

�

= y2(τ1)− x1
2(τ1)

+

∫ t1

τ1

(v2(t)−u1
2(t))dt

¾ −a1+

∫ t1

τ1

�q

α2− (W 1
1 (t))2

−
r

1−
�

�u1
1(t)

�

�

2
�

dt. (6)

It is not difficult to show that

q

α2− (W 1
1 (t))2−

r

1−
�

�u1
1(t)

�

�

2 ¾ A.

Then the right-hand side of (6) can be estimated
from below by

−a1+

∫ t1

τ1

Adt = −a1+A(t1−τ1) = a1 > 0.

Thus y2(t1)− x1
2(t1) ¾ a1. Next, according to (3),

v(t) = (0,α), t > t1. Then, for t > t1,

y2(t)− x1
2(t)

= y2(t1)− x1
2(t1)+

∫ t

t1

(α−u1
2(s))ds

¾ a1+(α−1)(t − t1)> 0.

In summary, for 0¶ t < τ1, by definition of τ1,

|y(t)− x1(t)|> a1,

for τ1 ¶ t ¶ t1, and by (4),

|y(t)− x1(t)|¾
ca1

2α
,

and, for t ¾ t1,

y2(t)− x1
2(t)¾ a1+(α−1)(t − t1),

from which we conclude that y(t) 6= x1(t) for all
t ¾ 0.

EVASION FROM m PURSUERS

In this section, we study the main problem, the
evasion differential game of one evader from many
pursuers and prove Theorem 1.

Choose a positive number a1, 0 < a1 <
mini=1,...,m|x i

0 − y0|. Let ai = a1qi−1, later. We
assume that τi is the first time when a pursuer x j

comes to within a distance ai of the evader y , i.e.,
|x j(t)− y(t)|> ai for t < τi , and |x j(τi)− y(τi)|=
ai .
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If there are more than one such pursuer, we take
any one of them as x j . For convenience, we denote
the pursuer, whose distance from y(τi) is ai , by x i .

We will establish that if the ai-approach occurs
with a pursuer at some time τi , then this pursuer
will not participate in future a j-approaches with j >
i on [t i ,∞) and we consider this pursuer inactive
starting from t i . Thus there are given numbers
a1, a2, . . . , am with ai = a1qi−1, i = 1, . . . , m. If an ai-
approach occurs at some time with a pursuer, then
this time is denoted by τi , and the pursuer is x i

(with i ∈ {1, 2, . . . , m}).

The construction of strategies for the evader
and fictitious evaders

Let t i = τi + 2ai/A and V i(t) = (V i
1 (t), V i

2 (t)), i =
1, . . . , m, where

V i
1 (t) =

¨

W i
1(t), y1(τi)¾ x i

1(τi),
−W i

1(t), y1(τi)< x i
1(τi),

V i
2 (t) =

q

α2− (W i
1(t))2.

We call V i(t) a manoeuvre against the pursuer x i .
Note that (V i

1 (t))
2 + (V i

2 (t))
2 = α2, and |V i

1 (t)| ¶
V i

2 (t) tanϕ0, that is, V i(t) ∈ S.
We now construct a strategy for the evader. Set

v(t) = (0,α), 0¶ t ¶ τ1,

where τ1 is the time of the a1-approach with the
pursuer x1. On the time interval [τ1, t1), the evader
uses a manoeuvre against the pursuer x1, provided
an a2-approach does not occur on this interval.
Should an a2-approach occur at some τ2 ∈ [τ1, t1),
the evader uses a manoeuvre against the pursuer
x2 on [τ2, t2) provided an a3-approach does not
occur on this interval and so on. We construct the
evader’s strategy precisely. The numbers τ1, . . . ,τm,
t1, . . . , tm divide the interval [τ1,∞) into disjunct
intervals of the form

[τi ,τi+1), [τi , t j), [t i ,τ j), [t i , t j), [t
∗
m,∞), (7)

where t∗m = max{t1, . . . , tm}. Also, τ1 < . . . < τm,
τi < t i , i = 1, . . . , m. Note that intervals in (7) do
not contain any of the points τ1, . . . ,τm, t1, . . . , tm,
as an interior point.

We say that the evader undergoes a continuous
attack of the pursuers x1, . . . , x k (with 1 ¶ k ¶ m)
on the interval [τ1, t∗k], t∗k =max{t1, . . . , tk}, if
(i) any t ∈ [τ1, t∗k) belongs to an interval [τi , t i),

i ∈ {1, . . . , k};
(ii) t∗k < τk+1, of course, if k+1¶ m.

Condition (i) means that the interval [τ1, t∗k) is
covered by intervals [τi , t i), i ∈ {1, . . . , k}. Condi-
tion (ii) means that the interval [τ1,τk+1) is not
covered by intervals [τi , t i) (with i ∈ {1, . . . , k}) and
all the intervals [τi , t i) (with, i ∈ {1, . . . , m}). In
other words, the interval [t∗k,τk+1) is not covered.
The inequality t∗k < τk+1 in Condition (ii) means
that a continuous attack of the pursuers x1, . . . , x k

has been stopped at the time t∗k.
We construct a strategy for the evader during

the time interval [τ1, t∗k) as follows:

v(t) = V i(t), if t ∈ [τi ,τi+1) or t ∈ [τi , t j). (8)

That is, on the intervals of the form [τi ,τi+1),
[τi , t j) the evader manoeuvres against the pursuer
x i ,

v(t) = V s(t), if t ∈ [t i ,τ j) or t ∈ [t i , t j), (9)

where s ∈ {1, . . . , k} is the greatest number for which
[t i ,τ j) ⊂ [τs, ts) or [t i , t j) ⊂ [τs, ts).

We will show that, for any k, 1 ¶ k ¶ m, the
evader can ‘break out’ of the continuous attack of a
group of k pursuers on the interval [τ1, t∗k). Starting
from the time t∗k we apply the same reasoning taking
t∗k as the initial time, i.e.,

v(t) = (0,α), if t ∈ [t∗k,τk+1).

Note that after the time t∗k, an ak+1-approach may
not occur. If so,

v(t) = (0,α), t ¾ t∗k.

If an ak+1-approach occurs with the pursuer x k+1 at
some time τk+1 > t∗k, then the evader has to avoid
the continuous attack of another group of pursuers
x k+1, x k+2, . . ., and so on.

To estimate the distances between pursuers
and evader, we introduce fictitious evaders (FEs)
z1, . . . , zk described by

ż i = V i , z i(τi) = y(τi), i = 1, . . . , k. (10)

Note that the initial position of FE z i coincides with
the position of the evader at the time τi . FE z i moves
only on the time interval [τi , t i) (Fig. 4).

Proof that evasion is possible

We estimate the distance between the evader y(t)
and any pursuer x p(t), p ∈ {1, . . . , k}, from below,
assuming that the evader undergoes a ‘continuous
attack’ of the pursuers x1, . . . , x k. If t ¶ τp, then by
the definition of the time τp we have

|x p(t)− y(t)|¾ ap.

Now let τp ¶ t < tp.
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Fig. 4 Evader and FEs.

Remark 1 The interval [τp, tp) (i) does not contain
numbers τ1, . . . ,τp−1 since τ1 < . . . < τp−1 < τp;
(ii) may contain some of the numbers t1, . . . , tp−1;
(iii) does not contain numbers τi , t i , i ¾ k+1, since
the evader is under continuous attack of pursuers
x1, . . . , xk, and so tp ¶ t∗k < τi < t i , i = k+1, . . ..

Remark 2 If tp ¶ τp+1, then

v(t) = V p(t), τp ¶ t < tp.

Indeed, let

[τp, t i1), [t i1 , t i2), . . . , [t iq , tp)

be the disjunct subintervals of [τp, tp) of the form
(7) where i1, . . . , iq ∈ {1, 2, . . . , p−1}. Then by (8)

v(t) = V p(t), τp ¶ t < t i1 ,

and by (9), where s = p,

v(t) = V p(t), t ir
¶ t < t ir+1

,

for all r = 1, . . . , q, where t iq+1
= tp.

Consider two cases: (i) an ap+1-approach does
not occur in [τp, tp); (ii) an ap+1-approach occurs in
[τp, tp).

Case (i). In this case tp ¶ τp+1 and therefore
(from Remark 2)

v(t) = V p(t), τp ¶ t < tp.

Then by (4) we obtain

|x p(t)− y(t)|¾
c

2α
ap, t ∈ [τp, tp). (11)

Case (ii). Clearly,

|x p(t)− y(t)|¾ |x p(t)−zp(t)|−|zp(t)− y(t)|. (12)

In view of (4),

|x p(t)− zp(t)|¾
c

2α
ap, t ∈ [τp, tp). (13)

Next, we estimate |zp(t)− y(t)|. Let

I =
k
⋃

i=p+1

[τi , t i),

and let {θ1,θ2, . . . ,θr}, θ1 < θ2 < . . . < θr , be the
set of all elements of the set {τp, . . . ,τk, tp, . . . , tk}
that belong to the interval [τp, tp]. Clearly, θ1 = τp,
θ2 = τp+1, θr = tp.

Let

L = {i | [θi ,θi+1) ⊂ I , 1¶ i ¶ r −1},
M = {i | [θi ,θi+1) ⊂ [τp, tp)\I , 1¶ i ¶ r −1}.

Note that L ∩M = ∅ and L ∪M = {1,2, . . . , r − 1}.
For example, i = 1 ∈ M since [θ1,θ2) = [τp,τp+1)⊂
[τp, tp)\I . We show that if i ∈ M , then

v(t) = V p(t), θi ¶ t < θi+1. (14)

Indeed, take any interval [θ j ,θ j+1), j ∈ M . By
Remark 1(ii), it can be divided into subintervals
J j1, . . . , J ja of the form (7) by some of the points
t1, . . . , tp−1 which are different from τp. If [θ j ,θ j+1)
does not contain any of the points t1, . . . , tp−1, then
put J j1 = [θ j ,θ j+1).

As mentioned above that [θ1,θ2) = [τp,τp+1)
and by (8),

v(t) = V p(t), t ∈ Jp1.

Next, the relation [θ j ,θ j+1)∩ I =∅ implies that J ji∩
I = ∅, i = 1, . . . , a. Consequently, each set J ji , i =
1, . . . , a, is not covered by intervals [τi , t i), i = p+
1, . . . , k. However, J ji ⊂ [θ j ,θ j+1) ⊂ [τp, tp) for all
i = 1, . . . , a, and therefore for each J ji 6= Jp1, by (9)
we have s = p. Hence v(t) = V p(t), t ∈ J ji and so
v(t) = V p(t), t ∈ [θ j ,θ j+1), which establishes (14).

To estimate |zp(t)− y(t)|, we let θl ¶ t < θl+1
for some l, 1¶ l ¶ r −1. Since zp(τp) = y(τp),

|zp(t)− y(t)|

=

�

�

�

�

zp(τp)+

∫ t

τp

V p(s)ds

− y(τp)−
∫ t

τp

v(s)ds

�

�

�

�

¶
∫ t

τp

|V p(s)− v(s)|ds. (15)
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The integral on the right-hand side of (15) can be
represented as

∑

i∈L, i¶l−1

∫ θi+1

θi

|V p(s)− v(s)|ds

+
∑

i∈M , i¶l−1

∫ θi+1

θi

|V p(s)− v(s)|ds

+

∫ t

θl

|V p(s)− v(s)|ds. (16)

By (14), the second sum in (16) equals 0. If
l ∈ M , then the last integral equals 0 as well. Then
using the inequality |V p(s)− v(s)| ¶ 2α, we obtain
from (15) and (16) that

|zp(t)− y(t)|¶
∑

i∈L, i¶l−1

∫ θi+1

θi

2αds

¶ 2αmes(I)¶ 2α
k
∑

i=p+1

(t i −τi)

¶ 2α
∞
∑

i=p+1

2ap+1

A
=

4αapq

A(1− q)
. (17)

Let

0< q <min
§

1
3

,
c

4α
,

Ac
Ac+16α2

ª

. (18)

Substituting (13) and (17) into (12) and using (18)
and ap+1 = apq gives

|x p(t)− y(t)|¾
c

2α
ap −

4αq
A(1− q)

ap

¾
c

4α
ap > ap+1, τp ¶ t ¶ tp. (19)

This inequality shows that an ap+1-approach does
not occur with the same pursuer x p on [τp, tp].
Inequalities (13) and (19) allow us to conclude that
x p(t) 6= y(t), τp ¶ t ¶ tp.

Now let t ¾ tp. We first show that y2(tp) >
x p

2 (tp). Indeed,

y2(tp)− x p
2 (tp)

= y2(τp)+

∫ tp

τp

v2(t)dt − x p
2 (τp)−

∫ tp

τp

up
2(t)dt

¾ −ap +

∫ tp

τp

(v2(t)−up
2(t))dt

= −ap +

�

∫

[τp ,tp]\I
+

∫

[τp ,tp]∩I

�

(v2(t)−up
2(t))dt.

(20)

Since v2(t)¾ α cosϕ0 ¾ 1¾ up
2(t), t ∈ I , the second

integral in (20) is not negative. Then, in view of
(20), we have

y2(tp)− x p
2 (tp)

¾ −ap +

∫

[τp ,tp]\I
(v2(t)−up

2(t))dt

¾ −ap +

∫

[τp ,tp]\I

�q

α2− (W p
1 (t))2

−
q

1− |up
1(t)|2

�

dt

¾ −ap +

∫

[τp ,tp]\I
Adt

= −ap +Ames([τp, tp]\I). (21)

We now estimate the measure of the set
[τp, tp]\I . By (18), q < 1

3 , and therefore

mes([τp, tp]\I)¾mes[τp, tp]−mes(I)

¾ τp − tp −
k
∑

i=p+1

(t i −τi)

=
2ap

A
−

k
∑

i=p+1

2ai

A

>
1
A

�

2ap −
2apq

1− q

�

= 2ap
1
A

1−2q
1− q

>
ap

A
.

Then from (21) we obtain

y2(tp)− x p
2 (tp)> −ap +

Aap

A
= 0.

Hence at time tp the evader will be above the
horizontal line where the pursuer x p is. Thus at time
tp the pursuer x p becomes ‘behind’ the evader. Since

v2(t)¾ α cosϕ0 ¾ 1¾ up
2(t),

then y2(t)> x p
2 (t) for all t ¾ tp.

In conclusion, each pursuer can approach
within a distance ap of the evader not more than
once. If an ap-approach occurs with the pursuer
x p at a time τp, then the evader uses a manoeuvre
on [τp, tp] which ensures the inequality y2(tp) >
x p

2 (tp). Furthermore, the strategy of the evader
guarantees him the inequality y2(t) > x p

2 (t) for all
t ¾ tp. Hence the evader, starting from time tp, will
ignore the pursuer x p, and this pursuer is no longer
active. That is, we can exclude the pursuer x p from
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the group of pursuers at the time tp. Thus at the
time t∗k =max{t1, . . . , tk} all the pursuers x1, . . . , x k

will become inactive, and we have

y2(t)> x i
2(t), t ¾ t∗k, i = 1, . . . , k,

meaning that the evader has ‘broken off’ the attack
of the group of pursuers x1, . . . , x k at t∗k.

DISCUSSION AND CONCLUSIONS

A simple motion evasion differential game of many
pursuers and one evader whose control set is a sec-
tor has been considered in the plane. If α cosϕ0 ¾ 1
and α sinϕ0 > 1, at some ϕ0, 0 < ϕ0 ¶ ϕ, then
evasion from all pursuers has been presented. A
strategy for the evader was constructed as well.
Moreover, the distances between the pursuers and
evader have been estimated.

The inequality α sinϕ0 > 1 at some 0<ϕ0 ¶ϕ,
in Theorem 1 is sharp. If α sinϕ ¶ 1, for example,
α = 5, sinϕ = 1

6 , then it can be shown that the
pursuer with the initial position at (0, 1) and speed
equal to 1 can capture the evader whose initial
position is (0, 0).

It should be noted that if the evader uses the
strategy constructed in Ref. 13, of course, for a
vertical line, then for some positions the condition
v(t) ∈ S fails to hold. In the present paper, we
constructed a strategy for the evader, for which
v(t) ∈ S for all t ¾ 0 and it guarantees the evasion.
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