บทความวิจัย

ตัวแบบพยากรณ์ปริมาณการส่งออกแก๊สแอลวอเตอร์และน้ำมัน

ดร.ภัทรเดช เจริญสุทธิภัทร

บทคัดย่อ

วัตถุประสงค์ของการวิจัยครั้งนี้ คือ การสร้างตัวแบบพยากรณ์ปริมาณการส่งออกแก๊สแอลวอเตอร์และน้ำมัน ด้วยการเรียนแบบข้อมูลอดีต รวมถึงการปรับปรุงโดยสมการพหุฟั่นได้ โดยใช้ข้อมูลเหล่าข้อสมมุติของสินค้าน้ำมันและน้ำมันสำเร็จรูปที่ได้จากการประมวลผลข้อมูลและคำนวณตามความเหมาะสม ผลการศึกษาพบว่า ตัวแบบพยากรณ์ที่ได้ในครั้งนี้มีประสิทธิภาพในการทดลองจากวิธีกำลังสองน้อยที่สุด ซึ่งมีตัวแบบพยากรณ์เป็น

\[\hat{Y}_1 = 0.41996 \hat{Y}_1 + 0.58004 \hat{Y}_2 \]

เมื่อ \[\hat{Y}_1 \text{ และ } \hat{Y}_2 \] แทนค่าพยากรณ์เดิม ณ วันที่ \(t \) จากวิธีการปรับเรียนแบบตัวแบบได้ เหล่าข้อสมมุติของข้อมูล และวิธีการปรับเรียนแบบตัวแบบได้ เหล่าข้อสมมุติที่ทั้งหมดไม่ได้แบบแอนด์ตามล่าดับ

คำสำคัญ: ภาพเป็นตัวแบบ, odesk- Jensen, การปรับเรียนแบบตัวแบบได้ เหล่าข้อสมมุติ, การพยากรณ์รวม, ทักษะร่าของความคงคลื่นก้าลังสองเดิย
Forecasting Model for the Export Quantity of Roast and Ground Coffee

Warangkhana Keerativibool*

ABSTRACT

The purpose of this research was to construct an appropriate forecasting model for the export quantity of roast and ground coffee by comparing five time series methods, which are Box-Jenkins method, Holt’s exponential smoothing method, damped trend exponential smoothing method, combined forecasting method using weights derived from the inverse of root sum squares error, and combined forecasting method using weights based upon the ordinary least squares regression coefficients. Time series that used was the export quantity of roast and ground coffee which gathered from the website of Office of Agricultural Economics during January, 1998 to October, 2013 (190 values). The data were split into two sets, the first 180 values from January, 1998 to December, 2012 for the modeling and the last 10 values from January to October, 2013 for comparison the effective of forecasting models by the criterion of the lowest root mean squared error. The results showed that for all forecasting methods that have been studied, the combined forecasting method using weights based upon the ordinary least squares regression coefficients is the most efficient method and the forecasting model is:

\[
\hat{Y}_t = 0.41996 \hat{Y}_{1t} + 0.58004 \hat{Y}_{2t}
\]

where \(\hat{Y}_{1t}\) and \(\hat{Y}_{2t}\) represent the single forecasts at time \(t\) from Holt’s exponential smoothing method and damped trend exponential smoothing method, respectively.

Keywords: Roast and Ground Coffee, Box-Jenkins, Exponential Smoothing, Combined Forecasting, Root Mean Squared Error (RMSE)
บทความ

ภาษาเป็นเพียงข้อสรุปหนึ่งที่ชี้ทางวิทยาศาสตร์ว่า Coffee sp. เป็นต้นไม้ขนาดเล็กที่นักผจญภัยเป็นสัตว์ที่มีการพบความรู้จัก
ด้านการตรวจพบของภาษาที่มีความรู้จักด้านการตรวจพบของภาษาที่มีความรู้จัก
กระบวนการตรวจพบที่เกี่ยวข้องกับการสังเกตการณ์ ทางนักทฤษฎีเป็นเรื่องแต่ละที่ได้รับความนิยมในการวิจัยเป็นกิจการ
ขั้นตอนที่สำคัญและก้าวต่างๆ ซึ่งภาษาที่นั้นได้กล่าวถึงโดยความบังเอิญของข่าว
ผลลัพธ์ทางการได้ของประเทศอื่นโดยปัจจุบัน 5 หลังจากนั้นได้มีการตรวจพบว่าสุ่มปริ
ปริมาณและประเมิน จากกลายเป็นที่นิยมมากกว่า [1] ปัจจุบันประเทศไทยมีสินค้าส่งออกมากขึ้น ไม่ว่าจะเป็นสินค้าอุตสาหกรรม หัตถกรรม และเกษตรกรรม การบริหารจัดการที่นั้นในใช้เศรษฐกิจทางด้าน
เกษตรกรรมที่มีความสำคัญ และมีแนวโน้มการลดที่เพิ่มขึ้น โดยในอดีตประเทศไทยเคยเป็นผู้นำเข้าภาษมาที่สุด ต่อการบริการเชิงผลผลิต เมื่อจากเกษตรกรรมได้เพิ่มขึ้นที่การเฉพาะพลุก ทำให้มีผลลัพธ์มากเพียง
ผลต่อการบริวารในประเทศ และยังสามารถใช้เป็นสินค้าส่งออกในรูปของผลิตภัณฑ์ รวมทั้งการ
ขายเป็นวัสดุในทางการผลิตที่สำคัญและ世界的 ซึ่งสร้างรายได้ให้แก่เกษตรกร และประเทศเป็นจำนวนมาก
[3, 4] ในอดีตมูลค่าทางการค้าของภาษในประเทศไทยสามารถแบ่งออกได้เป็น ภาษะของบรรจุภัณฑ์หรือ
ของ มีสัดส่วนทางการค้าในร้อยละ 50 ภาษะและบรรจุภัณฑ์มีสัดส่วนทางการค้าในร้อยละ 20 และภาษะ
พร้อมเครื่องพิมพ์ 3 ใน 1 มีสัดส่วนทางการค้าในร้อยละ 30 [5] อย่างไรก็ตามสัดส่วนทางการค้า
ดังกล่าวอยู่ที่มีความเกี่ยวข้อง การสร้างรูปแบบและผลิตผลการส่งออกภาษัปการของไทยยังมีความ
เกี่ยวข้อง ดังเหตุผลดังกล่าว ผู้วิจัยจึงมีความสนใจที่จะนำปริมาณการส่งออกภาษัปการที่ได้มาสร้างตัว
แบบเกษตรกร โดยการศึกษาครั้งนี้จะให้ความสนใจในการเกษตรกรรมปริมาณการส่งออกภาษัป และเวลา
เนื่องจากมีความทันสมัยของข้อมูลมากที่สุด [6] ผู้วิจัยมีความคาดหวังเป็นอย่างยิ่งว่า ผลการวิจัยครั้งนี้จะ
สามารถใช้เป็นข้อมูลพื้นฐานของการวางแผนการสูง โดยจะส่งผลต่อการตัดสินใจของเกษตรกร ผู้ประกอบ
การเจาะลึกและเกษตรกร ได้ทราบแนวโน้มของปริมาณการส่งออกภาษัปและเวลา เพื่อช่วยในการ
บริหารจัดการดำเนินความสัมพันธ์ที่สำคัญในการประมวลผลการค้าระหว่างปริมาณการส่งออกภาษัปและเวลาส่งท้าย
อีกทั้งยังเป็นประโยชน์ต่อรัฐบาลในการวางแผนจัดกิจกรรมทางด้านการค้าในอนาคตต่อไป

วิธีดำเนินการวิจัย

อุปกรณ์เวลาที่ใช้ในการสำรวจและพัฒนาตัวแบบเกษตรกรมีการวิจัยครั้งนี้ คือ บริการการ
ส่งออกภาษัปและเวลา (กิจกรรม) ตั้งแต่เดือนมกราคม 2541 ถึงเดือนพฤศจิกายน 2556 จำนวน 190 คำ
ข้อความที่รวบรวมโดยสำนักงานเศรษฐกิจการเกษตร [6] ผู้วิจัยได้แปลข้อมูลออกไปเป็น 2 ชุด ชุดที่ 1 เป็น
ข้อมูลบริการการส่งออกภาษัปและเวลาตั้งแต่เดือนมกราคม 2541 ถึงเดือนตุลาคม 2555 จำนวน
180 คำ สำหรับการดำเนินการตัวแบบเกษตรกรด้วยโปรแกรม SPSS รุ่น 17 โดยใช้เทคนิคการวิเคราะห์ข้อมูล
เวลาที่เหมาะสมกับข้อมูลขั้นพื้นฐานที่สุด จำนวน 5 วิธี ได้แก่ วิธีออร์-เกนินส์ วิธีการวิเคราะห์ตัว
d้วย ปัจจัยแบบกลั่นของข้อมูล เชิงสังเคราะห์ของโปรแกรมทีที่แปลงไว้แบบผลลัพธ์ วิธีการวิเคราะห์
รวมทั้งวิธีการที่ให้ผลผ่านการพัฒนาของภาษาที่สอนของผลรวมของการตลาดสำหรับการวิเคราะห์
รวมที่ต้องการตัวแปรสัมประสิทธิ์การถดถอยจากวิธีกำลังสองน้อยที่สุด ชุดที่ 2 เป็นข้อมูลปริมาณการถดถอยอากาศและบันทึกการเกิดลมดิ่ง 2556 จำนวน 10 ค่า สำหรับการปรับที่เป็นประสิทธิภาพของตัวแปรในย่าน ดังกล่าวที่จะต้องการความถดถอยในกำลังสองเฉลี่ย (Root Mean Squared Error: RMSE) ที่ต่ำที่สุด

1. การพยายามโดยวิธีเบนซิง-เจนกินส์ (Box-Jenkins Method)

การพยายามณยุคแรกโดยวิธีเบนซิง-เจนกินส์ เป็นวิธีการพยายามที่มีความยุ่งยากและขับขันมากที่สุดในกรุณิการพยายามตัวกัน อีกที่ยั่งยืนถึงปัจจุบันข้อมูลความผิดปกติก็อย่างไร อย่างไรก็ตามวิธีนี้เป็นวิธีการพยายามที่มีความดุลคองสูง เนื่องจากมีการพิจารณาถึงและของยุคแรกอาจว่ามีผลหรือไม่ก็อย่างไร เพื่อสร้างเป็นตัวแบบพยายามที่เหมาะสม รวมถึงมีการคำนวณความผิดปกติสูงเป็นส่วนประกอบที่มีความสำคัญ [7, 8] โดยมีดังนี้ว่าทั่วไป คือ Seasonal Autoregressive Integrated Moving Average: SARIMA(p, d, q)(P, D, Q)_s แสดงดังสมการที่ (1) [9]

\[
\phi_r(B)\phi_r'(B') (1-B)^d (1-B')^d Y_t = \delta + \theta_q(B)\Theta_Q(B') \varepsilon_t
\]

เมื่อ \(Y_t\) แทนอนุกรมเวลา ณ เวลา \(t\)
\(\varepsilon_t\) แทนอนุกรมเวลาของความเคลื่อนที่ที่มีการแจกแจงปกติและเป็นอิสระกัน ด้วยตำแหน่งเทียบกับสูญ และความแปรผันของทุกช่วงเวลา
\(\delta = \mu \phi_r(B)\phi_r'(B')\) แทนค่าคงที่ คือ \(\mu\) แทนค่าคงที่ของอนุกรมเวลาที่ไม่ลักษณะจะ (Stationary)
\(\phi_r(B) = 1 - \phi_r B - \phi_r'^2 - \cdots - \phi_r B^n\) แทนตัวดำเนินการสัมประสิทธิ์ที่ตัวแบ่งไม่มีลักษณะอนันต์ที่ \(P\) (Non-Seasonal Autoregressive Operator of Order p: AR(p))
\(\phi_r'(B') = 1 - \phi_r' B' - \phi_r'^2 - \cdots - \phi_r B'^n\) แทนตัวดำเนินการสัมประสิทธิ์ที่ตัวแบ่งไม่มีลักษณะอนันต์ที่ \(P\) (Seasonal Autoregressive Operator of Order P: SAR(P))
\(\theta_q(B) = 1 - \theta_q B - \theta_q'^2 - \cdots - \theta_q B^n\) แทนตัวดำเนินการเฉลี่ยเคลื่อนที่แบบไม่มีลักษณะอนันต์ที่ \(q\) (Non-Seasonal Moving Average Operator of Order q: MA(q))
\(\Theta_Q(B') = 1 - \Theta_Q B' - \Theta_Q'^2 - \cdots - \Theta_Q B'^n\) แทนตัวดำเนินการเฉลี่ยเคลื่อนที่แบบไม่มีลักษณะอนันต์ที่ \(Q\) (Seasonal Moving Average Operator of Order Q: SMA(Q))
\(t\) แทนช่วงเวลา ซึ่งมีตั้งแต่ 1 ถึง \(n\) โดยที่ \(n\) แทนจำนวนข้อมูลในอนุกรมเวลาชุดที่ 1
\(s\) แทนลักษณะอุตุภัณฑ์
\(d\) และ \(D\) แทนลักษณะของความผันผวนและความต่ำต่ำอุตุภัณฑ์ ตามลำดับ
\(B\) แทนตัวดำเนินการยอดหลัง (Backward Operator) โดยที่ \(B^n Y_t = Y_{t-s}\)

ขั้นตอนการสร้างตัวแบบการพยายามโดยวิธีเบนซิง-เจนกินส์ แตกต่างและมีขั้นตอนดังนี้

1) พิจารณาอนุกรมเวลาว่ามีลักษณะคงที่หรือไม่ โดยพิจารณาจากกราฟของอนุกรมเวลา เพียงกราฟ \(Y_t\) รวมถึงกราฟของฟังก์ชันสัมประสิทธิ์ในตัวเอง (Autocorrelation Function: ACF) และฟังก์ชันสัมประสิทธิ์ในตัวเองของอนุกรมเวลา (Partial Autocorrelation Function: PACF) ของอนุกรมเวลาที่มีลักษณะคงที่ หรืออนุกรมเวลาที่มีต้นท้ายและความแปรผันของที่ หากพบว่าอนุกรมเวลาที่มีลักษณะคงที่ (Non-Stationary) ต้องแปลงอนุกรมเวลาให้มีลักษณะคงที่่อนที่จะดำเนินการขั้นต่อไป เช่น การแปลง
ด้วยการหาต่างหรือต่างฤดูกาล (Difference or Seasonal Difference) การแปลงด้วยการต่ำมสมดุลหรือการต่ำมธรรมชาติ (Common Logarithm or Natural Logarithm) หรือการแปลงด้วยเลขยกกำลัง เช่น ยกกำลัง 0.5 (Square Root Transformation) หรือยกกำลัง 2 (Square Transformation) เป็นต้น [10]

2) กำหนดต้นแบบพยากรณ์ที่เป็นไปได้จากกราฟ ACF และ PACF ของอนุกรมเวลาที่มีลักษณะที่ นั่นคือ กำหนดค่า p, q, P และ Q พร้อมทั้งประเมินค่าพารามิเตอร์ของต้นแบบ

3) ตัดพารามิเตอร์ที่ไม่มีมีสำคัญออกจากต้นแบบพยากรณ์ตั้งแต่ 1 ตัว จากนั้นจึงกำหนดต้นแบบพยากรณ์และประมาณค่าพารามิเตอร์ใหม่ก่อนจะได้ต้นแบบพยากรณ์ที่ประกอบด้วยพารามิเตอร์ที่มีมีสำคัญที่สุด

4) ตัดเฉลี่ยต้นแบบพยากรณ์ที่มีค่าเกณฑ์สารสนเทศเชิงคับ (Bayesian Information Criterion: BIC) ตัวที่สุด ได้คำสั่ง Ljung-Box Q ที่ไม่มีมีสำคัญ และอนุกรมเวลาของความแตกเดือนจากการพยากรณ์ มีการแจกแจงปกติ ซึ่งสามารถตรวจสอบโดยใช้การทดสอบโคโมโกรอฟ-สมิรนัฟ (Kolmogorov-Smirnov’s Test) ที่การสรุปไปยังเป็นอิสระกัน ตรวจสอบโดยพัฒนารายการพยากรณ์ ACF และ PACF ของความแตกเดือน มีค่าเท่าที่แก้มุม ตรวจสอบโดยใช้การทดสอบสถิติ (t-Test) และมีความแปรปรวนคงที่ทุกช่วงเวลา ตรวจสอบโดยใช้การทดสอบเบย์ (F-Test) ของเส้นภาษาได้สำาคขนาด (Levene’s Test Based on Median)

5) พยากรณ์อนุกรมเวลา โดยใช้ต้นแบบพยากรณ์ที่เหมาะสมที่สุดจากขั้นตอนที่ 4

2. การพยากรณ์โดยวิธีการปรับเรียบด้วยเส้นได้เลขชี้กำลังของโคซิร์ (Holt’s Exponential Smoothing Method)

การพยากรณ์โดยวิธีการปรับเรียบ (Smoothing Method) คือ การพยากรณ์โดยใช้ค่าสังเกตจากอดีตส่วนหนึ่งหรือทั้งหมดในการสร้างสมการพยากรณ์ ซึ่งนั้นทั้งที่ให้เก็บค่าสังเกตต่อเวลาจะแตกต่างกัน เทพลงลึกสูงที่มีการใช้วิธีการปรับเรียบ เนื่องจากอนุกรมเวลาอาจเกิดความผันผวนจากเหตุการณ์ที่ใช้ปกติ จึงทำให้ไม่สามารถส่วนประกอบของอนุกรมเวลาซึ่ง ซึ่งวิธีการปรับเรียบจะช่วยลดอิทธิพลของความผันผวนดังกล่าวได้ ดังนั้นส่วนประกอบของอนุกรมเวลาแต่ละสัมผัสปรากฏชัดเจนที่ทำให้สามารถพยากรณ์คำของอนุกรมเวลาในอนาคตได้ สำหรับวิธีการปรับเรียบที่มีวิธีการหลายวิธี เช่นอยู่กับลักษณะของอนุกรมเวลา [7, 11] โดยวิธีจึงซึ่งนี้ทำให้วิธีการปรับเรียบด้วยเส้นได้เลขชี้กำลังพยากรณ์ 2 วิธี คือ การปรับเรียบด้วยเส้นได้เลขชี้กำลังของโคซิร์ และการปรับเรียบด้วยเส้นได้เลขชี้กำลังที่มีแนวโน้มแบบเดียวกัน (ตรงกันแท้) เนื่องจากอนุกรมเวลาปรับสมการส่งออกตามพื้นฐานและคุณของช่วงเวลาที่สึกหรอปรากฏส่วนประกอบของแนวโน้มอย่างชัดเจนโดยแนวโน้มที่พื้นที่ลึกจะเห็นชัดเจน (แสดงรายละเอียดในข้อที่ 1)
การปรับเรียงด้วยเส้นได้เลชเช็กโครงสร้างของโอลช์ มีความเหมาะสมกับอุณหภูมิเวลาที่มีแนวโน้มเป็นเส้นตรงและไม่ที่ส่วนประกอบของความผันแปลงตามฤดูกาล มีตัวค์ที่การปรับเรียง 2 ตัว คือ ตัวค์ที่การปรับเรียงของค่าระดับ (Level: α) และตัวค์ที่การปรับเรียงของค่าความชัน (Trend: γ) สามารถเขียนด้วยแบบได้ดังสมการที่ (2) และเขียนด้วยแบบมุมที่ได้ดังสมการที่ (3) [7]

\[Y_t = \beta_0 + \beta_1 t + \epsilon_t \]
(2)

\[\hat{Y}_{t+m} = a_t + b_t (m) \]
(3)

เมื่อ \(Y_t \) แทนอุณหภูมิเวลา ณ เวลา \(t \)
\(\beta_0 \) และ \(\beta_1 \) แทนทางมุมของตัวแบบแสดงระดับต้น และความชันของแนวโน้ม ตามลำดับ
\(\epsilon_t \) แทนอุณหภูมิเวลาของความผันแปลงเส้นที่มีการแจกแจงปกติและเป็นอิสระกัน ตัวค์ต่ำเล็กท่ากับสูญ และความแปรผันคงที่ทุกช่วงเวลา

\[\hat{Y}_{t+m} \] แทนค่าที่คาด ณ เวลา \(t + m \) โดยที่ \(m \) แทนจำนวนช่วงเวลาที่ต่อการปรับเรียงในขั้นหน้า
\(a_t \) และ \(b_t \) แทนค่าประมาณ ณ เวลา \(t \) ของทางมุม \(\beta_0 \) และ \(\beta_1 \) ตามลำดับ
โดยที่ \(a_t = \alpha Y_t + (1 - \alpha)(a_{t-1} + b_{t-1}) \) และ \(b_t = \gamma (a_t - a_{t-1}) + (1 - \gamma) b_{t-1} \)

\(\alpha \) และ \(\gamma \) แทนตัวค์ที่การปรับเรียง โดยที่ \(0 < \alpha < 1 \) และ \(0 < \gamma < 1 \)

\(t \) แทนช่วงเวลา ซึ่งมีค่าตั้งแต่ 1 ถึง \(n \) โดยที่ \(n \) แทนจำนวนข้อมูลในอุณหภูมิเวลาชุดที่ 1

เมื่อได้ตัวแบบการ봅เรียงแล้วจะดำเนินการตรวจสอบดุลลักษณะของความผันแปลงจาก
การปรากฏ โดยการผันแปลงต้องมีการแจกแจงปกติ ตรวจสอบโดยใช้การทดสอบโดยวิโอไลโอต (Level: α) ตามลำดับ
โดยที่ \(0 < \alpha < 1 \) และ \(0 < \gamma < 1 \)

\(t \) แทนช่วงเวลา ซึ่งมีค่าตั้งแต่ 1 ถึง \(n \) โดยที่ \(n \) แทนจำนวนข้อมูลในอุณหภูมิเวลาชุดที่ 1

เมื่อได้ตัวแบบการตอบเรียงแล้วจะดำเนินการตรวจสอบดุลลักษณะของความแปรผันของ
จาก
การปรากฏ การตรวจสอบดุลลักษณะของความแปรผันของ
จาก
การปรากฏ มีการตอบเรียงตาม נוסณทางการทดสอบโดย ACF และ PACF ของ
ความผันแปลง มีการตอบเรียงท่ากับสูญ ตรวจสอบโดยใช้การตอบเรียงที่
มีความแปรผันคงที่ทุกช่วงเวลา ตรวจสอบโดยใช้การตอบเรียงของเวลานรกในการใช้คำนวณ

3. การตอบเรียงโดยวิธีการปรับเรียงด้วยเส้นได้เลชเช็กโครงสร้างที่มีแนวโน้มแบบจุด (Damped Trend Exponential Smoothing Method)

การปรับเรียงด้วยเส้นได้เลชเช็กโครงสร้างที่มีแนวโน้มแบบจุด มีความเหมาะสมกับอุณหภูมิเวลาที่ไม่มีส่วนประกอบของความผันแปลงตามฤดูกาล และมีอัตราการเปลี่ยนแปลงไม่กว่าเส้นขั้นหรือลดลงข้า
กว่าการเปลี่ยนแปลงของแนวโน้มที่เป็นเส้นตรง โดยที่ยอมรับความชันนี้มีค่าต่ำลงตามเวลา มีตัวค์ที่การ
ปรับเรียง 3 ตัว คือ ตัวค์ที่การปรับเรียงของค่าระดับ ตัวค์ที่การปรับเรียงของค่าความชัน และตัวค์ที่การ
ปรับเรียงของค่าความชันแบบจุด (Damped Trend) [12] จากการคำนวณค่าความชัน (\(\beta_t \)) ของแนวโน้ม
ปริมาณการตอบของอัตราการเปลี่ยนแปลงของข้อมูลชุดที่ 1 โดยจำนวนอุณหภูมิเวลาต่อออกเป็น 3 ช่วง ช่วงละ
60 ต่อ ตั้งช่วงที่ 1 ที่ ตั้งเตรียมที่ 2541 ถึงเตรียมที่ 2545 ช่วงที่ 2 ตั้งเตรียมที่ 2546 ถึงเตรียมที่ 2550 และช่วงที่ 3 ตั้งเตรียมที่ 2551 ถึงเตรียมที่ 2555 พบว่า
ความชันมีค่าที่มาก 69.451, 169.741 และ 59.4828 ตามลำดับ จะเห็นว่าความชันของช่วงเวลาที่ 3
มีสัดส่วนมีเวลาเพิ่มขึ้น ตั้งเตรียมการปรับเรียงด้วยเส้นได้เลชเช็กโครงสร้างที่มีแนวโน้มแบบจุดเป็นวิธีการ
พวกเขาที่นี้ที่มีความเหมาะสม สามารถเขียนด้วยแบบมุมที่ได้ดังสมการที่ (4) [13]
\[\hat{Y}_{t+m} = a_t + b_t \sum_{i=1}^{m} \phi^i \] (4)

เมื่อ \(\hat{Y}_{t+m} \) แทนค่าการประมาณ ณ เวลา \(t + m \) โดยที่ \(m \) แทนจำนวนช่วงเวลาที่ต้องการการประมาณไปข้างหน้า \(a_t \) และ \(b_t \) แทนค่าประมาณ ณ เวลา \(t \) ของการมิติค์ \(\beta_0 \) และ \(\beta_1 \) ตามลักษณะ

โดยที่ \(a_t = \alpha Y_t + (1 - \alpha)(a_{t-1} + \phi b_{t-1}) \) และ \(b_t = \gamma(a_t - a_{t-1}) + (1 - \gamma)\phi b_{t-1} \)

\(\alpha, \gamma \) และ \(\phi \) แทนค่าคงที่การปรับเรียบ โดยที่ \(0 < \alpha < 1, 0 < \gamma < 1 \) และ \(0 < \phi < 1 \)

\(t \) แทนช่วงเวลา ซึ่งค่าตั้งแต่ \(1 \) ถึง \(n \) โดยที่ \(n \) แทนจำนวนข้อมูลในอนุกรมเวลาชุดที่ 1

เมื่อถึงวิธีการประมาณแล้วต้องดำเนินการตรวจสอบคุณลักษณะของความคาดเคลื่อนจาก

การประมาณ คือ ตรวจสอบค่าของเบทำผ่านอิสระกัน ตรวจสอบโดยพิจารณาจากกราฟ ACF และ PACF ของ

ความคาดเคลื่อน ซึ่งแม่จะเชื่อมคับกับคิดตรวจสอบโดยใช้กราฟของเวลาที่มีความแปรผันของทุกช่วงเวลา

ตรวจสอบโดยใช้กราฟของเวลาที่มีความแปรผันของเวลา

4. การประมาณโดยวิธีการประมาณรวม (Combined Forecasting Method)

วิธีการประมาณรวมเป็นวิธีการประยุกต์ที่ทั้งการประมาณจากวิธีการประมาณเดี่ยวนั้นต่อ

กับวิธีการประมาณเดี่ยวนี้อย่างเหมาะสม จะทำให้

ได้ค่าทางประมาณที่มีความคาดเคลื่อนน้อย [12] ณ ที่นั้นได้ทั้งจำนวนวิธีการประมาณเดี่ยวนี้ ได้แก่

- วิธีการประมาณณ์โดยพลืองของโครง

ซึ่งมีค่ากักล่างของโคลค์และวิธีการปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างของโคลคให้ใช้

(ACF) ที่จะแสดงรายละเอียดในผลการวิจัย คือ วิธีการปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างของโคลค

และวิธีการปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างที่มีแนวโน้มแบบแผน สำหรับการกำหนดค่าต่างๆ

(1) จะกระทบกับได้โดยใช้วิธีที่ว่า ผลรวมของค่าต่างกันที่ถูกบวก \(w_1 + w_2 = 1 \) ดังนั้นตัวแปรของวิธีการ

ประมาณรวมที่ใช้ในการวิจัยครั้งนี้ คือ

\[\hat{Y}_t = w_1 \hat{Y}_{1t} + w_2 \hat{Y}_{2t} \] (5)

เมื่อ \(\hat{Y}_t \) แทนอนุกรมเวลา ณ เวลา \(t \)

\(\hat{Y}_{1t} \) และ \(\hat{Y}_{2t} \) แทนค่าประมาณเดี่ยวนี้ ณ เวลา \(t \) จากวิธีการปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างของโคลค

และวิธีการปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างที่มีแนวโน้มแบบแผน ตามลักษณะ

\(t \) แทนช่วงเวลา ซึ่งมีค่าตั้งแต่ \(1 \) ถึง \(n \) โดยที่ \(n \) แทนจำนวนข้อมูลในอนุกรมเวลาชุดที่ 1

\(w_1 \) และ \(w_2 \) แทนค่าต่างกันของวิธีการปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างของโคลค

และวิธีการ

ปรับเรียบด้วยเลื่อนได้แก่ค่ากักล่างที่มีแนวโน้มแบบแผน ตามลักษณะ สำหรับการวิจัยครั้งนี้ได้พิจารณาวิธีการ

อนุกรมเวลาที่เหมาะสมกับข้อมูลชุดนี้มากที่สุด 2 วิธี ได้แก่

1) การส่วนนักกับการนักกับของรายที่สองของความคาดเคลื่อนกักล่างของ

\[w_i = \frac{1/\sqrt{SSE_i}}{1/\sqrt{SSE_i} + 1/\sqrt{SSE_2}} \quad ; \quad i = 1, 2 \] (6)
เนื่อ SSE₁ และ SSE₂ แทนค่ารวมของความคลาดเคลื่อนกำลังสอง (Sum Squares Error: SSEᵢ = ∑ᵢ₌₁ⁿᵢ⁻¹ eᵢ²)
ของวิธีการปรับเรียบด้วยเส้นได้เลขค่าถี่ของผลิต และวิธีการปรับเรียบด้วยเส้นได้เลขค่าถี่ที่มี
แนวโน้มแบบแยกล ตามล่างนี้

\[eᵢ = Yᵢ - \hat{Y}_ᵢ \] แทนความคลาดเคลื่อนจากการ预言กรณ์ ณ เวลา t
\[Yᵢ \] แทนอนุกรมเวลา ณ เวลา t
\[\hat{Y}_ᵢ \] แทนคำยายกรณ์ ณ เวลา t

1) แทนข่าวเวลา ซึ่งมีค่าตั้งแต่ 1 ถึง n โดยที่ n แทนจำนวนข้อมูลในอนุกรมเวลาชุดที่ 1

2) การด้วยหนักด้วยผลประโยชน์การคงค่าส่งออกข้อที่สุด ดังนี้ [15]

\[wᵢ = \frac{b₁}{b₁ + b₂}; \quad i = 1, 2 \] (7)

เนื่อ b₁ และ b₂ แทนคำสำคัญการคงค่าส่งออกข้อที่สุดของวิธีการปรับเรียบด้วยเส้นได้เลขค่าถี่ของผลิต และวิธีการปรับเรียบด้วยเส้นได้เลขค่าถี่ที่มีแนวโน้มแบบแยกล ตามล่างนี้
เมื่อกำหนดให้คำยายกรณ์ด้วยจากทั้ง 2 วิธีเป็นตัวประโยศ บรรยากาศการคงค่าส่งออกค่าและค่าเป็น
ตัวแปรตาม

เมื่อได้ด้วยแบบพยายามด้วยก็จะดำเนินการตรวจสอบบุคคลกรณะของความคลาดเคลื่อนจาก
การ预言กรณ์ คือ ความคลาดเคลื่อนที่เกิดจากการแปรปรวน ตรวจสอบโดยใช้การทดสอบในโดยใช้สถิติ
สมัยร้อย ที่มีการเคลื่อนไหวขึ้นอันตรายกัน ตรวจสอบโดยพิจารณาจากการของความคลาดเคลื่อนที่มี
กับเวลา มีค่าเล็กที่สุดถึงสูง ตรวจสอบโดยใช้การทดสอบที่ และมีความแปรปรวนต่างที่ทุกช่วงเวลา
ตรวจสอบโดยใช้การทดสอบของสมการให้การใช้คำนำชั่งฐาน

5. การปรับเรียบประสิทธิภาพของค่าแบบพยายาม

การวิจัยครั้งนี้ได้คัดเลือกจำแบบพยายามที่มีประสิทธิภาพที่สุด สำหรับการ预言กรณ์
ปริมาณการส่งออกค่าตัวแปรตา จากวิธีการ预言กรณ์พัฒนาตัว 5 วิธี ได้แก่ วิธีหลาย-จนเกินสิ้น วิธีการปรับ
เรียบด้วยเส้นได้เลขค่าถี่ของผลิต วิธีการปรับเรียบด้วยเส้นได้เลขค่าถี่ที่มีแนวโน้มแบบแยกล วิธีการ
预言กรณ์รวมที่มีวิธีกระดาษการแผนกของКАที่ส่งออกของสมองของความคลาดเคลื่อนกำลังสอง และวิธี
การ预言กรณ์รวมที่ด้วยน้ำหนักด้วยผลประโยชน์การคงค่าส่งออกของวิธีการการส่งออกน้อยที่สุด ด้วยแบบจากวิธีการ
预言กรณ์ที่มีค่าต่างที่ส่งออกของความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) ที่สุด จัดเป็นตัวแบบที่มี
ความเหมาะสมกับข้อมูลที่มีที่สุด เนื่องจากให้คำยายกรณ์ที่มีความแตกต่างกับข้อมูลจริงน้อยที่สุด
ซึ่งเกิดจากที่ส่งออกของความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) แสดงดังนี้ [16]

\[\text{RMSE} = \sqrt{\frac{1}{n₂ \sum e_i^2}} \] (8)

เนื่อ eᵢ = Yᵢ - \hat{Y}_ᵢ แทนความคลาดเคลื่อนจากการ预言กรณ์ ณ เวลา t
\[Yᵢ \] แทนอนุกรมเวลา ณ เวลา t
\[\hat{Y}_ᵢ \] แทนคำยายกรณ์ ณ เวลา t

t แทนช่วงเวลา ซึ่งมีค่าตั้งแต่ 1 ถึง n₂ โดยที่ n₂ แทนจำนวนข้อมูลในอนุกรมเวลาชุดที่ 2
ผลการวิจัย

1. ผลการพยายามโดยวิธีอินโค-เจนเนียส

จากการพิจารณาลักษณะการเคลื่อนไหวของอนุกรมเวลาที่ 1 คือ บริเวณการส่งออก ภาพคืบว่า และวัด ดั่งเดิมประมาณการ 2541 ถึงเดือนธันวาคม 2555 จำนวน 180 ค่า ดังรูปที่ 1 พบว่า อุลตร้าสูงมีประกอบด้วยส่วนประกอบของแนวโน้ม โดยที่แนวโน้มมีลักษณะเพิ่มขึ้น

![Chart](chart.png)

รูปที่ 1 ลักษณะการเคลื่อนไหวของอนุกรมเวลาประมาณการส่งออกภาพคืบว่า และวัด ดั่งเดิมประมาณการ 2541 ถึงเดือนธันวาคม 2555

จากตาราง ACF และ PACF ดังรูปที่ 2 พบว่า กราฟ ACF ในภาพชั้นนี้มีลักษณะการเคลื่อนไหวแบบคล่องอย่างเช่น เทียบกับอนุกรมมีส่วนประกอบของแนวโน้ม ลักษณะผู้วิจัยยังเป็นข้อมูลแปลงด้วยการทดลองต่างๆ ที่ 1 (d = 1) ได้พบว่า ACF และ PACF ของอนุกรมเวลาที่แปลงข้อมูลแล้ว แสดงมีรูปที่ 3 ซึ่งพบว่า อนุกรมเวลามีลักษณะที่ จึงกำหนดเป็นแบบ ARIMA(0, 1, 1) ที่มีปริมาณที่ที่ระดับ 0.05 คือ ตัวแบบ ARIMA(0, 1, 1) ไม่มีพื้นที่ของตัวแปรที่มีถึงการทดสอบความถูกต้องของความคลาดเคลื่อนจากการพยายามพบว่า ความคลาดเคลื่อนมีการทดสอบทางสถิติ (Kolmogorov-Smirnov Statistic = 0.143, p-value = 0.2) ที่มีการเคลื่อนไหวเป็นอิสระที่ (แสดงรายละเอียดในรูปที่ 4) ซึ่งพบว่า ค่า Pazที่สูงสุดเพิ่มขึ้นในตัวแปร และมีประสิทธิ์สัมพันธ์ที่สูงในตัวแปรอื่นของความคลาดเคลื่อนน้อยกว่าข้อความข้อมูลน้อยกึ่ง 95 ที่มีคำศัพท์ที่ที่กับสถิติ (t = 1.306, p-value = 0.193) และมีความแปรปรวนที่ที่รุ่นวางเวลา (Levene Statistic = 1.216, p-value = 0.28) ดังนั้นตัวแบบ ARIMA(0, 1, 1) ไม่มีพื้นที่ของตัวแปรที่ความเหมาะสมซึ่งจากการที่ (1) สามารถเชื่อมเป็นตัวแบบได้ดังนี้
รูปที่ 2 กราฟ ACF และ PACF ของอนุกรมเวลาปริมาณการส่งออกกาแฟดั้วและ retrofit

รูปที่ 3 กราฟ ACF และ PACF ของอนุกรมเวลาปริมาณการส่งออกกาแฟดั้วและ retrofit เมื่อแปลงข้อมูล
ด้วยการทดเทจกับมนุษย์ที่รูปที่ 1

รูปที่ 4 กราฟ ACF และ PACF ของความคลาดเคลื่อนจากการพยากรณ์ไวย์บอคม์-เจอเนันล์ ที่มีตัวแบบ ARIMA(0, 1, 1) ไม่มีพจน์ของค่าคงที่
\[(1 - B) Y_t = (1 - \theta_1 B) \varepsilon_t \]

\[Y_t = Y_{t-1} + \varepsilon_t - \theta_1 \varepsilon_{t-1}\]

เมื่อแทนค่าประมาณพารามีเตอร์จากตารางที่ 1 จะได้ตัวแบบพารามิเตอร์แสดงดังนี้

\[\hat{Y}_t = Y_{t-1} - 0.83342 \varepsilon_{t-1}\]

เมื่อ \(\hat{Y}_t\) แทนค่าประมาณ ณ เวลา \(t\)

\(Y_{t-1}\) แทนอนุกรมเวลา ณ เวลา \(t - 1\)

\(\varepsilon_{t-1}\) แทนความคลาดเคลื่อนจากการประมาณ ณ เวลา \(t - 1\)

ตารางที่ 1 ค่าประมาณพารามีเตอร์ ค่า BIC และค่าสถิติ Ljung-Box Q ของตัวแบบ ARIMA(p, d, q)

<table>
<thead>
<tr>
<th>ค่าประมาณพารามีเตอร์</th>
<th>ARIMA(p, d, q)</th>
<th>ARIMA(2, 1, 1)</th>
<th>ARIMA(1, 1, 1)</th>
<th>ARIMA(0, 1, 1)</th>
<th>ARIMA(0, 1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ค่าคงที่</td>
<td>ค่าประมาณ</td>
<td>73.20691</td>
<td>73.94829</td>
<td>73.93222</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.157</td>
<td>0.129</td>
<td>0.128</td>
<td>–</td>
</tr>
<tr>
<td>AR(1): (\phi_1)</td>
<td>ค่าประมาณ</td>
<td>-0.01748</td>
<td>0.00015</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.852</td>
<td>0.999</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AR(2): (\phi_2)</td>
<td>ค่าประมาณ</td>
<td>-0.03914</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.660</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MA(1): (\theta_1)</td>
<td>ค่าประมาณ</td>
<td>0.83973</td>
<td>0.85754</td>
<td>0.85727</td>
<td>0.83342</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ljung–Box Q (ณ lag 18)</td>
<td>ค่าประมาณ</td>
<td>7.888</td>
<td>8.291</td>
<td>8.293</td>
<td>8.892</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.928</td>
<td>0.940</td>
<td>0.960</td>
<td>0.944</td>
</tr>
</tbody>
</table>
2. ผลการพยากรณ์โดยวิธีการปรับเรียบด้วยเส้นโค้งเชิงกล่าวของโยละ

จากการสร้างตัวแบบพยากรณ์โดยวิธีการปรับเรียบด้วยเส้นโค้งเชิงกล่าวของโยละ พบว่า BIC มีค่าเท่ากับ 16.824 และมีค่าสถิติ Ljung-Box Q ไม่มีนัยสำคัญที่ระดับ 0.05 (Ljung-Box Q ณ lag 18 = 8.88, p-value = 0.918) เนื่องจากผลอุปคลุมลักษณะของความคาดเคลื่อนจากการพยากรณ์ พบว่า ความคาดเคลื่อนมีการแจกแจงปกติ (Kolmogorov-Smirnov Statistic = 0.121, p-value = 0.2) ที่มีการเคลื่อนไหวเป็นอิสระ (แสดงรายละเอียดในรูปที่ 5 ซึ่งพบว่า ค่าลัทธิพีทีสมมุติที่อันดับที่ 1 แสดงผลที่น้อยที่สุด) และมีประสิทธิสัมพันธ์ในตัวอย่างบางส่วนของความคาดเคลื่อนตกอยู่ในขอบเขตความเชื่อมั่นร้อยละ 95) ที่คำนวณที่ผ่านมา (t = -0.45, p-value = 0.654) และมีความแปรปรวนที่ทุกช่วงเวลา (Levene Statistic = 1.496, p-value = 0.137) ดังนั้นตัวแบบพยากรณ์ที่ได้มีความเหมาะสม ตัวแบบพยากรณ์แสดงดังนี้

\[\hat{Y}_{t+m} = 15.06366 + 94.00636(m) \] (10)

เมื่อ \(\hat{Y}_{t+m} \) แทนค่าพยากรณ์ ณ เวลา \(t + m \) โดยที่ \(m = 1 \) ถึง 10 (เดือนมากมายถึงเดือนสุดท้าย 2556 จำนวน 10 ตัว)

α และ γ มีค่าเท่ากับ 0.10761 และ 0.0000003 ตามลำดับ

รูปที่ 5 กราฟ ACF และ PACF ของความคาดเคลื่อนจากการพยากรณ์โดยวิธีการปรับเรียบด้วยเส้นโค้งเชิงกล่าวของโยละ

3. ผลการพยากรณ์โดยวิธีการปรับเรียบด้วยเส้นโค้งเชิงกล่าวที่มีแนวโน้มแบบแหน่ง

จากการสร้างตัวแบบพยากรณ์โดยวิธีการปรับเรียบด้วยเส้นโค้งเชิงกล่าวที่มีแนวโน้มแบบแหน่ง พบว่า BIC มีค่าเท่ากับ 16.854 และมีค่าสถิติ Ljung-Box Q ไม่มีนัยสำคัญที่ระดับ 0.05 (Ljung-Box Q ณ lag 18 = 8.297, p-value = 0.911) เนื่องจากผลอุปคลุมลักษณะของความคาดเคลื่อนจากการพยากรณ์ พบว่า ความคาดเคลื่อนมีการแจกแจงปกติ (Kolmogorov-Smirnov Statistic = 0.126, p-value = 0.2)
มีการเคลื่อนไหวเป็นอิสระกัน (แสดงรายละเอียดในรูปที่ 6 ซึ่งพบว่า ค่าสัมประสิทธิ์สหสัมพันธ์ในตัวเองและอัตราสัมประสิทธิ์สหสัมพันธ์ในตัวเองบางส่วนของความคลาดเคลื่อนลดอยู่ในขอบเขตความเชื่อมั่นร้อยละ 95) มีคำเสียที่เท่ากับศูนย์ (t = 0.051, p-value = 0.959) และมีความแปรปรวนคงที่ทุกช่วงเวลา (Levene Statistic = 1.37, p-value = 0.191) ดังนั้นตัวแบบพยากรณ์ที่ได้มีความเหมาะสม ตัวแบบพยากรณ์แสดงดังนี้

\[\hat{Y}_{t+m} = 14,559.73919 + 66.50134 \sum_{i=1}^{m}(0.99905^i) \] (11)

เมื่อ \(\hat{Y}_{t+m} \) แทนค่าพยากรณ์ ณ เวลา \(t + m \) โดยที่ \(m = 1 \) ถึง 10 (เดือนกรกฎาคมถึงเดือนตุลาคม 2556 จำนวน 10 ค่า)

\(\alpha, \gamma \) และ \(\phi \) นี้คำเท่ากับ 0.12932, 0.00005 และ 0.99905 ตามลำดับ

รูปที่ 6 ภาพ ACF และ PACF ของความคลาดเคลื่อนจากการพยากรณ์โดยวิธีการปรับเรียบด้วย

4. ผลการพยากรณ์โดยวิธีการพยากรณ์รวม

จากการคำนวณค่าต่างๆจากตัวแบบพยากรณ์รวมในสมการที่ (5) โดยใช้ข้อมูลชุดที่ 1 นั้นคือปริมาณการส่งออกเกล้ารังวัดและพัดฟันที่ต่อเดือนกรกฎาคม 2541 ถึงเดือนธันวาคม 2555 จำนวน 180 ค่า ได้ค่าความถ่วงของความคลาดเคลื่อนกำลังสอง และค่าสัมประสิทธิ์การถดถอยจากวิธีกำลังสองที่สุดของวิธีการปรับเรียบด้วยเส้นได้เส้นกำลังสองของโคลัม และวิธีการปรับเรียบด้วยเส้นได้เส้นกำลังสองที่มีแนวโน้มแบบเดิม แสดงต่อตารางที่ 2
ตารางที่ 2 ผลรวมของความคาดเคลื่อนกำลังสอง (SSE) และสัมประสิทธิ์การถัดออกจากวิธีกำลังสอง
น้อยที่สุด (bᵢ) ของวิธีการปรับเรียบด้วยเส้นโค้งเชิงเส้นของโอล์ค และวิธีการปรับเรียบด้วย
เส้นโค้งเชิงเส้นที่มีแนวนั่นแบบแผลม

<table>
<thead>
<tr>
<th>i</th>
<th>วิธีการขยายตวงสกัดดิ</th>
<th>SSEᵢ</th>
<th>bᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>วิธีการปรับเรียบด้วยเส้นโค้งเชิงเส้นของโอล์ค</td>
<td>3,402,571,723.17</td>
<td>0.41146</td>
</tr>
<tr>
<td>2</td>
<td>วิธีการปรับเรียบด้วยเส้นโค้งเชิงเส้นที่มีแนวนั่นแบบแผลม</td>
<td>3,389,383,212.93</td>
<td>0.56829</td>
</tr>
</tbody>
</table>

จากตารางที่ 2 เมื่อค่าความต่วนั้นทั้งหมดของวิธีการพยายามรวมทั้ง 2 วิธี ตามสมการที่ (6)
และ (7) ได้ตัวแบบพยากรณ์รวมทั้งนั้นทั้งค่าการผลิตของรากที่สองของผลรวมของความคาดเคลื่อน
กำลังสอง และตัวแบบพยากรณ์รวมทั้งนั้นทั้งค่าการผลิตของรากที่สองของผลรวมของความคาดเคลื่อน
กำลังสอง พบว่า ความคาดเคลื่อนมีการกระจายอย่างที่ Kolmogorov-Smirnov Statistic = 0.121, p-value = 0.2
มีการเคลื่อนไหวเป็นอิสระที่นั้น (แสดงรายละเอียดในรูปที่ 7) มีค่าการเชื่อมต่อบุคคล (t = -0.196, p-value = 0.845) และมี
ความแปรปรวนทรงที่คุ้มครองเวลา (Levene Statistic = 1.43, p-value = 0.163)

รูปที่ 7 ลักษณะการเคลื่อนไหวของความคลาเคลื่อนจากการพยายามโดยวิธีการพยายามรวมที่ต่าง
จากนั้นด้วยการผลิตของรากที่สองของผลรวมของความคลาเคลื่อนกำลังสอง
เมื่อตรวจสอบคุณลักษณะของความคลาดเคลื่อนจากการพยากรณ์โดยวิธีพยากรณ์รวมที่ว่าแนวโน้มคุณลักษณะหลักของการคลาดเคลื่อนจากวิธีกําลังสองที่สุด มีค่าเฉลี่ยผลในช่วงแรก 0.122, p-value = 0.2 ซึ่งมีการเคลื่อนไหวเป็นอิสระัน (แสดงรายละเอียดในรูปที่ 8) มีค่าเฉลี่ยเท่ากันสูงสุด (t = -0.156, p-value = 0.876) และมีความแปรปรวนที่สุทธิ ช่วงเวลา (Levene Statistic = 1.42, p-value = 0.168)

รูปที่ 8 ลักษณะการเคลื่อนไหวของความคลาดเคลื่อนจากการพยากรณ์โดยวิธีพยากรณ์รวมที่ว่าแนว น้ำหนักด้วยสิทธิการผลดังจากวิธีกําลังสองที่สุด

5. ผลการปริมาณปัจจัยประสิทธิภาพของตัวแบบพยากรณ์

จากการใช้ตัวแบบพยากรณ์ในสมการที่ (9) ถึง (13) โดยวิธีบัคซ์-เจนกิ้นซ์ วิธีการปรับ ปรีบดัวเย็นได้ผลลัพธ์ของสอง วิธีการปรีบปรีบดัวเย็นได้ผลลัพธ์ที่มีแนวโน้มแย้ง วิธีการพยากรณ์รวมที่ว่าแนวโน้มคุณลักษณะหลักของการคลาดเคลื่อนจากวิธีกําลังสองที่สุด ตามลำดับ สำหรับการพยากรณ์ข้อมูลสุทธิที่ 2 นั้นคือ ปริมาณการสอบออกพนั้นๆและผลดังแล้วค่ามัดมาตรฐานในตัวเลขคือ 2556 ได้ค่าพยากรณ์ และค่าการที่สองของความคลาดเคลื่อนกําลังสองเฉลี่ย (RMSE) แสดงในตารางที่ 3 ซึ่งพบว่าการพยากรณ์รวมที่ว่าแนวโน้มคุณลักษณะหลักของการคลาดเคลื่อนจากวิธีกําลังสองที่สุดเป็นวิธีที่มีประสิทธิภาพสูงที่สุด เนื่องจากให้ค่าพยากรณ์ที่มีความแตกต่างกับข้อมูลจริงน้อยที่สุด หรือค่าการที่สอง ของความคลาดเคลื่อนกําลังสองเฉลี่ย (RMSE) ต่ําที่สุด

จากตารางที่ 3 พบว่า วิธีบัคซ์-เจนกิ้นซ์ให้ค่าพยากรณ์ตัวเลือกเดือนมาตรฐานในตัวเลขคือ 2556 นี้มีค่าเท่ากันหมด เนื่องจากตัวแบบพยากรณ์ในสมการที่ (9) ซึ่งอยู่ใต้ค่าของมัธยฐานปริมาณการสอบออก ภาคตัวและผล และความคลาดเคลื่อนจากการพยากรณ์ในอดีต 1 ช่วงเวลา (Y_{t-1} และ e_{t-1} ตามลำดับ) เมื่อพยากรณ์ค่าในอนาคต 1 ช่วงเวลา หรือเดือนมาตรฐาน 2556 นั้นคือ \(Y_{181} \) โปรแกรม SPSS จะใช้ข้อมูลของเดือนก่อนหน้า 2555 โดยค่า Y_{180} และ e_{180} เพื่อทับ 12,151 และ -2,084.03 ตามลำดับ ได้ ค่าพยากรณ์ของเดือนมาตรฐาน 2556 เป็น 13,887.88 ถือว่า ก่อนเดือนพยากรณ์เดือนที่ 2 ช่วงเวลา หรือเดือนกุมภาพันธ์ 2556 นั้นคือ \(Y_{182} \) โปรแกรมจะใช้ค่าพยากรณ์ของเดือนมาตรฐาน 2556 หรือ \(Y_{181} \)
ตารางที่ 3 ค่าจริงและค่าประมาณของปริมาณการส่งออกพืชและผลิต (กิโลกรัม) ทั้งหมดเดือนกรกฎาคม 2556 และค่าทางที่สองของความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE)

<table>
<thead>
<tr>
<th>ช่วงเวลา</th>
<th>ปริมาณการส่งออกพืชและผลิต</th>
<th>ปริมาณการส่งออกพืชและผลิตจากประมาณการโดยวิธี</th>
<th>รายการรวม 1</th>
<th>รายการรวม 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>บอก-เจนิเนส์</td>
<td>โลกต์</td>
<td>แมต</td>
<td>รายการรวม 1</td>
</tr>
<tr>
<td>ม.ค. 56</td>
<td>15,579</td>
<td>13,887.88</td>
<td>15,157.68</td>
<td>14,626.18</td>
</tr>
<tr>
<td>ก.พ. 56</td>
<td>11,284</td>
<td>13,887.88</td>
<td>15,251.68</td>
<td>14,692.55</td>
</tr>
<tr>
<td>มิ.ย. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
<tr>
<td>ก.ย. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
<tr>
<td>พ.ย. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
<tr>
<td>ธ.ค. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
<tr>
<td>ส.ค. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
<tr>
<td>ก.ย. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
<tr>
<td>ธ.ค. 56</td>
<td>14,047</td>
<td>13,887.88</td>
<td>15,533.70</td>
<td>14,891.30</td>
</tr>
</tbody>
</table>

หมายเหตุ: การประมาณรวมที่สองค่าดัชนีการคัดเลือกของรายการที่สองของความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE)

ค่า RMSE: 1,937.41, 1,473.52, 1,439.97, 1,418.79, 1,417.03

สรุปและวิเคราะห์ผลการวิจัย

การวิจัยครั้งนี้ได้นำเสนอวิธีการสร้างและคัดเลือด้วยแบบพยานย์ที่เหมาะสมกับปริมาณการส่งออกพืชและผลิต (กิโลกรัม) โดยใช้ข้อมูลตั้งแต่เดือนกรกฎาคม 2541 ถึงเดือนตุลาคม 2556 จำนวน 190 ค่า จับเวจิทของค่ากับเกณฑ์การทดสอบ ผู้วิจัยได้แบ่งข้อมูลออกเป็น 2 ชุด ชุดที่ 1 เป็นข้อมูลปริมาณการส่งออกพืชและผลิตตั้งแต่เดือนกรกฎาคม 2541 ถึงเดือนธันวาคม 2555 จำนวน 180 ค่า สำหรับการสร้างต้นแบบพยานย์ด้วยเทคนิคการวิเคราะห์ข้อมูลทางสถิติของข้อมูลที่สูงสุดจานวน 5 วิธี ได้แก่ วิธีอัลกอริทึม-เจนิเนส์ วิธีการปรับปรุงด้วยกล่องขั้นตอนที่สูงขึ้นขึ้นของผลิต วิธีการปรับปรุงด้วยกล่องขั้นตอนที่สูงขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นของผลิต วิธีการปรับปรุงด้วยกล่องขั้นตอนที่สูงขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นของผลิต วิธีการปรับปรุงด้วยกล่องขั้นตอนที่สูงขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นของผลิต และวิธีการปรับปรุงด้วยกล่องขั้นตอนที่สูงขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นขึ้นของผลิต ผลของการวิเคราะห์ต้นแบบพยานย์ที่สูงสุด ชุดที่ 2 เป็นข้อมูลปริมาณการส่งออกพืชและผลิตตั้งแต่เดือนกรกฎาคมถึงเดือนตุลาคม 2556 จำนวน 10 ค่า สำหรับการปรับปรุงที่ประสิทธิภาพของต้นแบบพยานย์
ถ้าคุณพบว่าผลของความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) ที่ดีที่สุด ผลการศึกษาพบว่า จากรัฐ
การพยากรณ์ทั้งหมดที่ได้ศึกษา รัฐการพยากรณ์รวมที่นั้นหนักด้วยผลลัพธ์การลดออกจากวิถีกลุ่ม
สองน้อยที่สุดเป็นวิธีที่มีประสิทธิภาพสูงที่สุด ซึ่งมีตัวแบบพยากรณ์เป็น

\[\hat{Y}_t = 0.41996 \hat{Y}_{1t} + 0.58004 \hat{Y}_{2t} \]

เมื่อ \(\hat{Y}_t \) แทนค่าพยากรณ์รวม ณ เวลา \(t \)
\(\hat{Y}_{1t} \) และ \(\hat{Y}_{2t} \) แทนค่าพยากรณ์เดียว ณ เวลา \(t \) จากวิธีการปรับเรียบด้วยเลื่อนได้ผลดีที่สุดของโดย
และวิธีการปรับเรียบด้วยเลื่อนได้ผลดีที่สุดตามลำดับ

จากการใช้ตัวแบบพยากรณ์รวมที่อยู่ในหักด้วยผลลัพธ์การลดออกจากวิถีกลุ่มสองน้อยที่สุด
ได้ค่าพยากรณ์ปริมาณการส่งออกผลิตภัณฑ์แต่ละเดือนคร่าวๆ 2556 ถึงเดือนชั้นพาน 2557
แสดงตัวราคานะที่ 4 และรูปที่ 9 ซึ่งพบว่า ปริมาณการส่งออกผลิตภัณฑ์และยอดคงมีแนวโน้มเพิ่มขึ้น แต่
เป็นการปรับตัวเพิ่มขึ้นเพียงเล็กน้อย อย่างไรก็ตามปริมาณการส่งออกผลิตภัณฑ์และยอดคงไม่ได้ขึ้นอยู่กับ
ปัจจัยเวลาเพียงปัจจัยเดียว ดังนั้นการศึกษาควรจะต้องไป ผู้วิจัยควรพิจารณาปัจจัยอื่นๆ ในการสร้างตัวแบบ
พยากรณ์ด้วย เช่น ปริมาณผลิตผลต่างๆ ได้ และปริมาณความต้องการใช้ เป็นต้น

ตารางที่ 4 ค่าพยากรณ์ของปริมาณการส่งออกผลิตภัณฑ์และยอด (กิโลกรัม) ตั้งแต่เดือนพฤศจิกายน 2556
ถึงเดือนธันวาคม 2557

<table>
<thead>
<tr>
<th>ช่วงเวลา</th>
<th>ค่าพยากรณ์</th>
<th>ช่วงเวลา</th>
<th>ค่าพยากรณ์</th>
</tr>
</thead>
<tbody>
<tr>
<td>พ.ย. 56</td>
<td>15,627.53</td>
<td>มิ.ย. 57</td>
<td>16,170.07</td>
</tr>
<tr>
<td>ธ.ค. 56</td>
<td>15,705.15</td>
<td>ก.ค. 57</td>
<td>16,247.43</td>
</tr>
<tr>
<td>ม.ค. 57</td>
<td>15,782.72</td>
<td>ส.ค. 57</td>
<td>16,324.76</td>
</tr>
<tr>
<td>ก.พ. 57</td>
<td>15,860.26</td>
<td>ก.ย. 57</td>
<td>16,402.04</td>
</tr>
<tr>
<td>มี.ค. 57</td>
<td>15,937.77</td>
<td>ต.ค. 57</td>
<td>16,479.29</td>
</tr>
<tr>
<td>เม.ย. 57</td>
<td>16,015.24</td>
<td>พ.ย. 57</td>
<td>16,556.51</td>
</tr>
<tr>
<td>พ.ด. 57</td>
<td>16,092.67</td>
<td>ต.ค. 57</td>
<td>16,633.69</td>
</tr>
</tbody>
</table>
รูปที่ 9 การเปรียบเทียบอุปกรณ์เวลาปริมาณการส่งออกแก่น้ำมันและรัง ศำพยากรณ์พิจัย 5 วีดี

เอกสารอ้างอิง

1. เพชรรัตน์ จิตต์พิพัฒน์. 2548. ดุลยพิริ์ของเนื้อกาแพงในประเทศไทย. สารนิพนธ์. เศรษฐศาสตรามหาบัณฑิต.มหาวิทยาลัยรามคำแหง. กรุงเทพฯ.มหาวิทยาลัยรามคำแหง.

3. ปิ่นมา บุญแสง. 2550. การพยากรณ์นิยมค่าการส่งออกแก่น้ำมันโดยวิธีอัลกอริธิม. การค้นคว้าแบบอิสระ.เศรษฐศาสตรมหาบัณฑิต.มหาวิทยาลัยเชียงใหม่. เชียงใหม่.มหาวิทยาลัยเชียงใหม่.

5. อาทิติ ยิ่งเจริญ. 2555. การพยากรณ์นิยมค่าการส่งออกแก่น้ำมันโดยวิธีอัลกอริธิม. ได้จาก http://library.cmu.ac.th/faculty/econ/Exer751409/2554/Exer2554_no286. 28 ธันวาคม 2556.

7. สมเกียรติ เกตุอิ่ม. 2548. เทคนิคการพยากรณ์.พิมพ์ครั้งที่ 2. สงขลา.มหาวิทยาลัยสงขลานครินทร์.

8. ทรงศิลป์ เต็มสมบัติ. 2549. การพยากรณ์ชิงบริษัท. กรุงเทพฯ.มหาวิทยาลัยเกษตรศาสตร์.

12. มุกดา แม่สมิตร. 2549. อนุกรมเวลาและการพยากรณ์. กรุงเทพฯ. โรงพิมพ์ทิพย์.

ได้รับบทความวันที่ 3 มกราคม 2557
ยอมรับพิมพ์วันที่ 3 เมษายน 2557