Research Article

A Characterization of Groups Whose Lattices of Subgroups are \(n-M_{p+1} \) Chains for All Primes \(p \)

Chawewan Ratanaprasert

Department of Mathematics, Faculty of Science, Silpakorn University,
Nakorn Pathom, Thailand

Corresponding author. E-mail address: ratch@su.ac.th

Received December 23, 2008; Accepted October 16, 2009

Abstract

Whitman, P.M. and Birkhoff, G. answered a well-known open question that for each lattice \(L \) there exists a group \(G \) such that \(L \) can be embedded into the lattice \(\text{Sub}(G) \) of all subgroups of \(G \). Gratzer, G. has characterized that \(G \) is a finite cyclic group if and only if \(\text{Sub}(G) \) is a finite distributive lattice. Ratanaprasert, C. and Chantasartrassmee, A. extended a similar result to a subclass of modular lattices \(M_m \) by characterizing all integers \(m \geq 3 \) such that there exists a group \(G \) whose \(\text{Sub}(G) \) is isomorphic to \(M_m \) and also have characterized all groups \(G \) whose \(\text{Sub}(G) \) is isomorphic to \(M_m \) for some integers \(m \). On the other hand, a very well-known open question in Group Theory asked for the number of all subgroups of a group. In this paper, we consider the extension of the subclass \(M_m \) for all integers \(m \geq 3 \) of modular lattices, the class of \(n-M_{p+1} \) chains for all primes \(p \), and all \(n \geq 1 \) and characterized all groups \(G \) whose \(\text{Sub}(G) \) is an \(n-M_{p+1} \) chain. It happens that \(G \) is a group whose \(\text{Sub}(G) \) is an \(n-M_{p+1} \) chain if and only if \(G \) is an abelian \(p \)-group of the form \(Z_r \times Z_r \). Moreover, we can tell numbers of all subgroups of order \(p_i \) for each \(1 \leq i \leq n \) of the special class of \(p \)-groups.

Key Words: Modular lattice; Lattice of subgroups; \(p \)-group

Introduction

A lattice \(L \) is a non-empty ordered set in which each pair of elements \(a, b \) of \(L \) has the least upper bound denoted by \(a \lor b \) and the greatest lower bound denoted by \(a \land b \). Whitman, P.M. (1946) proved that for each lattice \(L \) there exists a set \(X \) such that \(L \) can be embedded into the lattice of all equivalence relations on \(X \). One can show that the set \(\text{Sub}(G) \) of all subgroups of a group \(G \) forms a lattice in which \(H \lor K = \langle H \cup K \rangle \) and \(H \land K = H \cap K \) for each pair of elements \(H, K \) of \(\text{Sub}(G) \). We call \(\text{Sub}(G) \), the lattice of subgroups. Birkhoff, G. (1967) proved that every lattice of all equivalence relations on a set \(X \) is isomorphic to the lattice \(\text{Sub}(G) \) of a group \(G \). These results answered a well-known open question that for each lattice \(L \) whether there exists a group \(G \) such that \(L \) can be embedded into \(\text{Sub}(G) \).

A lattice \(L \) is said to be distributive if it satisfies the distributive law; that is, \((a \land b) \lor (a \lor c) = a \lor (b \land c) \) for all \(a, b, c \in L \). Zembery, I. (1973) answered...
the open question in a special class of lattices by proving that every finite distributive lattice can be embedded into \(\text{Sub}(G) \) for some abelian group \(G \). Further, Gratzer, G. (1978) has characterized that \(G \) is a finite cyclic group if and only if \(\text{Sub}(G) \) is a finite distributive lattice; and he also proved that \(\text{Sub}(G) \) of a finite cyclic group \(G \) is isomorphic to a product of finite chains. We can conclude that for each finite distributive lattice \(L \) there exists a finite cyclic group \(G \) such that \(L \) can be embedded into \(\text{Sub}(G) \). A lattice \(L \) is said to be modular if it satisfies the modular law; that is, \(a \geq c \) implies that \(a \land (b \lor c) = (a \land b) \lor c \) for all \(a,b,c \in L \). It is well-known that if \(L \) is distributive then \(L \) is modular. Let \(m \geq 3 \) be a positive integer and let \(M_m \) be the set \(\{0,1,a_1,a_2,\ldots,a_m\} \) satisfying \(0 \leq x \leq 1 \) for all \(x \in M_m \) and has no other comparabilities. It is obvious that \(M_m \) is a finite modular lattice which is not distributive for each \(m \geq 3 \). It is also proved by Fraleigh, J. B. (1982) that if \(G \) is a group whose \(\text{Sub}(G) \) is isomorphic to \(M_m \) for some \(m \geq 3 \) then \(G \) is not cyclic. It is known that if \(G \) is an abelian group then \(\text{Sub}(G) \) is modular; but the converse is not always true; for instance, \(\text{Sub}(D_3) \) the set of all subgroups of the dihedral group \(D_3 \) is isomorphic to \(M_4 \). Ratanaprasert, C. and Chantasartrassmee, A. (2004) have characterized all groups \(G \) whose \(\text{Sub}(G) \) is isomorphic to \(M_m \) for some \(m \geq 3 \). We proved the following theorems.

Theorem 1.1: Let \(m \geq 3 \) be a positive integer. Then there is a group \(G \) whose \(\text{Sub}(G) \) is isomorphic to \(M_m \) if and only if \(m = p+1 \) for some prime \(p \).

Theorem 1.2: Let \(G \) be a group. Then \(\text{Sub}(G) \) is isomorphic to \(M_3 \) if and only if \(G \) is isomorphic to \(Z_2 \times Z_2 \).

Theorem 1.3: Let \(G \) be a group and \(p \) be a prime number. Then \(\text{Sub}(G) \) is isomorphic to \(M_{p+1} \) if and only if either \(G \) is isomorphic to \(Z_p \times Z_p \) or \(G \) is a non-abelian group of order \(pq \), where \(q \) is a prime number with \(q \) divides \(p-1 \), generated by elements \(c, d \) such that \(c^p = d^q = e \), where \(e \) denotes the identity of \(G \) and \(dc = c^sd \) where \(s \) is not congruence to 1 modulo \(p \) and \(s^q \equiv 1 \pmod{p} \).

Corollary 1.4: Let \(G \) be a non-abelian group whose \(\text{Sub}(G) \) is isomorphic to \(M_{p+1} \) for some prime \(p \). Then (i) \(p \) is an odd prime and (ii) \(G \) is of order \(pq \) where \(q \) is a prime number with \(q \) divides \(p-1 \) and \(G \) contains exactly one subgroup of order \(p \) and \(p \) subgroups of order \(q \).

Groups whose lattices of subgroups are \(n\text{-M}_3 \) chains

By the Structure Theorems for Finite Abelian Groups and Theorem 1.2, we look for the diagram of the lattice \(\text{Sub}(Z_2 \times Z_2) \) of all subgroups of the abelian \(p \)-group \(Z_2 \times Z_2 \) where \(Z_2 = \{0, 1, 2, 3\} \) be the (additive) group of integers modulo 4. One can see that all subgroups of the direct product \(Z_2 \times Z_2 = \{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)\} \) are \(a_{03} := \{(0,0)\} = <(0,0)> \), \(a_{11} := \{(0,0), (0,1)\} = <(0,1)> \), \(a_{12} := \{(0,0), (2,1)\} = <(2,1)> \), \(a_{13} := \{(0,0), (2,0)\} = <(2,0)> \), \(a_{21} := \{(0,0), (0,1), (2,0), (2,1)\} = <(0,1), (2,0)> \), \(a_{22} := \{(0,0), (1,1), (2,0), (3,1)\} = <(1,1)> \), \(a_{23} := \{(0,0), (1,0), (2,0), (2,1)\} = <(1,0)> \) and \(a_{31} := Z_2 \times Z_2 = <(1,0), (0,1)\> \); and the diagram of the lattice \(\text{Sub}(Z_2 \times Z_2) \) is shown in Figure 1(a). For general case, we have the following proposition.

Proposition 2.1: For each integer \(n \geq 2 \), all subgroups of \(Z_2 \times Z_2 \) are (a) \(<(1,0)\) \), (b) \(<(0,1)\) \), (c) \(<(1,1)\) \), (d) \(<(2,0)\) \), (e) a subgroup of \(<(2,0)\) \), \(<(0,1)\) \).

Proof: Let \(T \) be a subgroup of \(Z_2 \times Z_2 \) and for \(i \in \{1,2\} \) let \(p_i \) be the projection maps of \(Z_2 \times Z_2 \) on \(Z_2 \) and \(Z_2 \), respectively. Then each \(p_i \) for \(i \in \{1,2\} \) is a homomorphism; hence, \(p_1(T) \) and \(p_2(T) \) are
subgroups of Z_{2^n} and Z_2, respectively. If $|T| = 2^{n+1}$ then $T = Z_{2^n} \times Z_2 = \langle(1,0), (0,1)\rangle$. Now, we consider the case $|T| = 2^n$. If $p_2(T) = \{0\}$ then $p_1(T) = Z_{2^n}$; hence, $T = Z_{2^n} \times \{0\} = \langle(1,0)\rangle$. We assume that $p_2(T) = \{0,1\} = Z_2$. If $1 \in p_1(T)$ then $(1,1) \in T$; so, T is a cyclic subgroup of $< (2,0), (0,1)>$. We consider the case $a_{pq} \neq a_{rs} \neq a_{uv}$.

We will generalize the lattice in Figure 1(b) in the following proposition.

Proposition 2.2: Let n be a positive integer and let \leq be the usual order on the set $\mathbb{Z}^+ \cup \{0\}$ of all nonnegative integers. If $L := \{a_j \mid 1 \leq i \leq n \text{ and } 1 \leq j \leq 3 \} \cup \{a_{ij}, a_{(n+1)i}\}$ and $\leq L \times L$ is defined by $a_{ij} \leq a_{ij} \leq a_{ij}$ for all $0 \leq v < i < u \leq n+1$ and all $1 \leq j \leq 3$ and there are no other comparabilities, then $L = (L; \leq)$ is a lattice.

Proof: It is obvious from the definition of \leq that \leq is reflexive. Let $x, y \in L$ satisfy $x \leq y$ and $y \leq x$. Then there are integers $p, q, r, s \in \{0, 1, 2, ..., n+1\}$ such that $x = a_{pq}$ and $y = a_{rs}$. If $q = 3$ and since $a_{rs} = x \leq y = a_{pq}$, we have $s = 3$; but $p \neq r$ implies by the definition of \leq that $r \neq p$ and $p \neq r$ which contradicts to the trichotomy law for \leq; hence, $p = r$; and so, $x = a_{pq} = a_{rs} = y$. If $q = 2$ then $a_{pq} = x \leq y = a_{rs}$ implies that $s = 1$ or $s = 2$; but $s = 1$ implies $a_{rl} = y \leq x = a_{p2}$, which contradicts to the definition of \leq; so, $s = 2 = q$. Also, $p \neq r$ implies a similar contradiction as above; hence, $p = r$. Therefore, $x = y$. If $q = 1$, then $a_{pq} = x \leq y = a_{rs}$ which shows $s = 1$ and $p \leq r$. Now, $a_{rs} = y \leq x = a_{pq}$ implies that $r \neq s$. So, $p = r$. Hence, $x = y$. In any cases, $x = y$ which shows that \leq is anti-symmetric.

Now, let $x, y, z \in L$ satisfy $x \leq y$ and $y \leq z$. Then there are integers $p, q, r, s, u, v \in \{0, 1, ..., n+1\}$ such that $x = a_{pq}$, $y = a_{rs}$, and $z = a_{uv}$; so, $a_{pq} \leq a_{rs}$ and $a_{rs} \leq a_{uv}$. Since $a_{pq} = a_{rs}$ or $a_{rs} = a_{uv}$ implies that $x \leq z$, we consider the case $a_{pq} \neq a_{rs}$ and $a_{rs} \neq a_{uv}$ which implies by the definition of \leq that $p \neq r$ and $r \neq u$; so, $p \neq u$. If $q = 3$ then $x = a_{pq} \leq a_{uv} = z$. And if $q = 2$ then $s = 1$; and so $a_{pq} \leq a_{uv}$ since $p \neq u$ implies that $v = 1$ and...
p < *u. Finally, if q = 1 then s = v = 1; and so, a_\text{pq} \leq a_{uv} follows from p < * u. Hence, in which cases, x \leq z. Therefore, \leq is transitive.

To show that L is a lattice, let x, y \in L. If x \leq y or y \leq x then x \lor y and x \land y are in the set \{x, y\}. Let x and y be non-comparable. Then there are integers p, q, r, s \in \{0, 1, 2, \ldots, n+1\} such that x = a_{pq} and y = a_{rs}.

We may assume that p \leq r. Then, since a_{pq} and a_{rs} are non-comparable, 1 \leq *p \leq *n and 1 \leq *r \leq *n.

If q = 1 then s \in \{2, 3\}. Since there are no integers c and d with p - 1 < c < *p and r < *d < r + 1, we have a_{(p-1)3} \land a_{p3} = x \leq a_{(r+1)3} and a_{(p-1)3} \land a_{r3} = y \leq a_{(r+1)3} which shows x \land y = a_{(p-1)3} and x \lor y = a_{(r+1)3}.

If q = 2 and r = p then a_{pq} \land a_{pq} = a_{(p-1)3} and a_{pq} \lor a_{pq} = a_{(p+1)3}; but if q = 2 and p < *r then s \in \{2, 3\}; so, x \land y and x \lor y will be as in the case q = 1. And if q = 3 then p = r; so, a_{pq} \leq a_{pq} for all i with p < *i and for all 1 \leq *i \leq 3; so x \land y and x \lor y are as in the case q = 2 and r = p.

Definition: The lattice defined as in Proposition 2.2 is called n-M\textsubscript{3} chain.

Figure 1(b) shows the diagram of n-M\textsubscript{3} chain for n \geq 1. For a special case, we note that M\textsubscript{1} is 1-M\textsubscript{3} chain and Theorem 1.2 showed that Sub(Z\textsubscript{2} \times Z\textsubscript{2}) is isomorphic to 1-M\textsubscript{3} chain (which is M\textsubscript{3}). We now prove in general case that Sub(Z\textsubscript{2} \times Z\textsubscript{2}) is isomorphic to n-M\textsubscript{3} chain for each positive integer n.

Proposition 2.3: Sub(Z\textsubscript{2} \times Z\textsubscript{2}) is isomorphic to n-M\textsubscript{3} chain for each positive integer n.

Proof: We will prove the proposition by mathematical induction. By Theorem 1.2, Sub(Z\textsubscript{2} \times Z\textsubscript{2}) is isomorphic to 1-M\textsubscript{3} chain. We may assume that k is a positive integer such that Sub(Z\textsubscript{2} \times Z\textsubscript{2}) is isomorphic to k-M\textsubscript{3} chain and we will prove the proposition for k + 1.

By Proposition 2.1, all the subgroups of Z\textsubscript{2} \times Z\textsubscript{2} are \bar{Z} := \langle(1,0),(0,1)\rangle, a := \langle(2,0),(0,1)\rangle, b := \langle(1,1)\rangle, c := \langle(0,1)\rangle or a subgroup of \langle(2,0),(0,1)\rangle. Since \langle(2,0),(0,1)\rangle is isomorphic to Sub(Z\textsubscript{2} \times Z\textsubscript{2}), the induction hypothesis implies that Sub(\langle(2,0),(0,1)\rangle) is isomorphic to k-M\textsubscript{3} chain. It is clear that \{1, a, b, c, d\}, where d = \langle(2,0)\rangle, is isomorphic to M\textsubscript{1}. Hence, Sub(Z\textsubscript{2} \times Z\textsubscript{2}) is isomorphic to (k + 1) - M\textsubscript{3} chain which completes the proof.

Theorem 1.2 and Corollary 1.4(i) also showed that there are no non-abelian groups G such that Sub(G) is isomorphic to n-M\textsubscript{3} chain for all n. We are going to prove in the following theorem that it is also true in the class of n-M\textsubscript{3} chains for all positive integers n.

Theorem 2.4: Let G be a group and n \geq 3 be an integer. Then Sub(G) is an n-M\textsubscript{3} chain if and only if G is isomorphic to Z\textsubscript{2} \times Z\textsubscript{2}.

Proof: The converse of the theorem follows by Proposition 2.3. Let G be a group whose Sub(G) is an n-M\textsubscript{3} chain. Then G is finite and Theorem 1.2 implies that G cannot be non-abelian; and also, the Structure Theorem of Finite Abelian Group implies that G is of the form Z\textsubscript{p1} \times Z\textsubscript{p2} \times \ldots \times Z\textsubscript{pt}, where p\textsubscript{i} are primes for 1 \leq i \leq t. Since an n-M\textsubscript{3} chain is not distributive, G is not a cyclic group; so, there exists a prime factor p of |G| such that Z\textsubscript{p} \times Z\textsubscript{p} is a subgroup of G. So, Theorem 1.1 told us that Sub(Z\textsubscript{p} \times Z\textsubscript{p}) has at least p + 1 atoms. Hence, Cauchy's Theorem implies that all atoms of Sub(Z\textsubscript{p} \times Z\textsubscript{p}) are atoms of G and there are no other prime q differ from p which is a divisor of |G|. So, p + 1 = 3; that is, p = 2 is the only prime factor of |G|.

If Z\textsubscript{2} \times Z\textsubscript{2} \times Z\textsubscript{2} is a subgroup of G, then one of M\textsubscript{3} in the n-M\textsubscript{3} chain has at least 7 atoms since Z\textsubscript{2} \times Z\textsubscript{2} \times Z\textsubscript{2} contains 7 distinct elements of order 2 which contradicts to the form of an n-M\textsubscript{3} chain that each M\textsubscript{3} in the chain has exactly 3 non-comparable elements. So, G is of the form Z\textsubscript{2} \times Z\textsubscript{2} \times Z\textsubscript{2} for some positive integers n and m. Suppose that n > 1 and m > 1. Then a
subgroup \(Z_{2^n} \times Z_2 \) of \(G \) contains 4 subgroups \(\langle (1,0) \rangle, \langle (0,1) \rangle, \langle (1,1) \rangle \) and \(\langle (2,0),(0,2) \rangle \) of order 4 which are non-comparable in \(\text{Sub}(Z_{2^n} \times Z_2) \) and also are in \(\text{Sub}(G) \). Since \(G \) contains only 3 subgroups of the same order which are non-comparable, we get a contradiction. Hence, \(n = 1 \) or \(m = 1 \). Therefore, \(G \) is \(Z_{2^n} \times Z_2 \) for some positive integers \(n \) which completes the proof.

Corollary: A lattice \(L \) is isomorphic to \(Z_{2^n} \times Z_2 \) for some positive integer \(n \) if and only if it is an \(n-M_3 \) chain.

Groups whose lattices of subgroups are \(n-M_{p+1} \) chains for some odd primes \(p \)

Let \(p \) be an odd prime number and \(n \) be a positive integer. We will now give the definition of \(n-M_{p+1} \) chains by extending the definition of \(n-M_3 \) chains as follows.

Let \(L := \{ a_i \mid 1 \leq i \leq n \text{ and } 1 \leq j \leq p+1 \} \cup \{ a_{(p+1)i} \mid 1 \leq i \leq n+1 \} \) and \(\leq L \times L \) be defined by \(a_{(p+1)i} \leq a_j \) for all \(0 \leq i \leq n \text{ and } 1 \leq j \leq p+1 \) and there are no other comparabilities. Then one can repeat the proof in Proposition 2.2 with \(p+1 \) in place of 3 to conclude that \(L = (L; \leq) \) is a lattice which will be called an \(n-M_{p+1} \) chain.

We begin to prove that there is no non-abelian group \(G \) whose \(\text{Sub}(G) \) is isomorphic to an \(n-M_{p+1} \) chain if \(n > 1 \) and \(p > 2 \).

Proposition 3.1: If \(G \) is a group whose \(\text{Sub}(G) \) is isomorphic to an \(n-M_{p+1} \) chain for some odd prime \(p \) and some integer \(n > 1 \), then \(G \) is an abelian group of the form \(Z_p \times Z_p \).

Proof: Suppose that there is a non-abelian group \(G \) whose \(\text{Sub}(G) \) is isomorphic to an \(n-M_{p+1} \) chain for some integers \(n > 1 \) and primes \(p > 2 \). Then Theorem 1.3 and Corollary 1.4(i) imply that the subgroup \(H := a_{z_1} \) of \(G \) which is the top of the first \(M_{p+1} \) of the \(n-M_{p+1} \) chain must be either \(Z_p \times Z_p \) or a non-abelian group of order \(pq \) where \(q \) is a prime factor of \(p–1 \); hence, the prime \(q \) must be a factor of \(|G| \). If \(H = Z_p \times Z_p \), Cauchy’s Theorem implies that \(|G| \) cannot have other prime factors (except \(p \)); that is, \(G \) is of order \(p^t \) for some positive integer \(t \). Since \(G \) is non-abelian, \(G \) is not \(H = Z_p \times Z_p \); so the subgroup \(a_{z_1} \) of \(G \) is of order \(p^t \). If \(a_{z_1} \) is abelian then \(a_{z_1} \times Z_p \times Z_p \) (as \(a_{z_1} \) cannot be \(Z_p \) since the cyclic group cannot have \(Z_p \times Z_p \) as its subgroup) and \(\text{Sub}(Z_p \times Z_p \times Z_p) \) is not a \(2-M_p \) chain since it contains \(p^t–1 \) distinct elements of order \(p \) and each generates a subgroup which is an atom of \(\text{Sub}(G) \). So, \(a_{z_1} \) is a non-abelian group of order \(p \) which has elements of order \(p^2 \) and has no elements of order \(p^3 \) (i.e., if all elements of \(a_{z_1} \) are of order \(p \) or there is an element of \(a_{z_1} \) of order \(p^3 \) then either \(\text{Sub}(a_{z_1}) \) contains \(p^3–1 \) atoms which implies that \(\text{Sub}(a_{z_1}) \) is not a \(2-M_p \) chain or \(a_{z_1} \) is cyclic; in which cases imply a contradiction). Since \(\text{Sub}(a_{z_1}) \) contain \(p+1 \) co-atoms which are subgroups of order \(p^2 \), \(a_{z_1} \) must contain exactly \((p+1)(p^2–1)+1 = p^3–p \) elements; so, \(p^3–p = p^3 \) which implies that \(p = 0 \) or \(p = 1 \) which contradicts that \(p \) is prime. Therefore, \(G \) is a non-abelian group of order \(pq \) where \(q \) is a prime factor of \(p–1 \); and also, \(p \) and \(q \) are the only prime factors of \(|G| \). If \(n > 1 \), \(\text{Sub}(a_{z_1}) \) contains \(p \) cyclic subgroups of order \(q \) and only one cyclic subgroup of order \(p \) which is \(Z_p \). Since \(\text{Sub}(Z_p \times Z_p) \) is \(M_{p+1} \), the \(a_{z_1} \) in \(\text{Sub}(G) \) must be \(Z_p \) and \(a_{2z_1} \cdots a_{(p+1)z_1} \) are cyclic subgroups of \(Z_p^2 \). So, \(a_{z_1} \) must contain exactly \(p(q(p^2–1)+1) \) elements. By the First Sylow Theorem and \(p, q \) are the only prime factors of \(|G| \), we have \(p+q(p^2–1)+1 \) which implies that \(p = q(p^2–1)+1 \); hence, \(p = q \) or \(p = q(p^2–1)+1 \) which are impossible in both cases. Therefore, \(G \) is an abelian group.

The above argument also shows that there is only
one prime number \(p \) which is a factor of \(|G| \) and \(G \) cannot have \(\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p \) as its subgroup; so, \(G \) is of the form \(\mathbb{Z}_{p^n} \times \mathbb{Z}_p \times \mathbb{Z}_p \) for some positive integers \(n \) and \(m \). Hence, a similar proof in Theorem 2.4 implies that \(G \) is of the form \(\mathbb{Z}_{p^n} \times \mathbb{Z}_p \) which completes the proof.

We can state a similar theorem as Theorem 2.4 as follows.

Theorem 3.2 : Let \(n > 1 \) be an integer and \(p \) be a prime number. Then a group \(G \) is \(\mathbb{Z}_{p^n} \times \mathbb{Z}_p \) if and only if Sub\((G) \) is an \(n-M_{p+1} \) chain.

One can note that both of the class of all \(n-M_3 \) chains for all integers \(n \) and the class of all \(n-M_{p+1} \) chains for all integers \(n > 1 \) and all odd primes \(p \) are subclasses of the class of all modular lattices which are examples answering to the following open problem.

Open Problem : Find a (maximum) subclass \(M \) of modular lattices satisfying these 2 conditions :
(i) \(G \) is a finite abelian group if and only if Sub\((G) \) is in \(M \), and
(ii) \(L \) is a lattice in \(M \) if and only if \(L \) is isomorphic to Sub\((G) \) for some finite abelian group \(G \).

Acknowledgement

The author would like to thank the faculty of science for the financial support.

References

