
442

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

Byte Code Interpreter for 8051 Microcontroller

Suchart Khuntaweethep1 and Narakorn Jeenjun 2*

1. Introduction

To use microcontroller, user has to understand

its architecture and language. Microcontroller of

each family has its own architecture and instruction

sets. For example PIC family is RISC and 8051

family is CISC. When user wants to change

microcontroller to the other, user has to develop the

new program to support new microcontroller. It is

waste of time because user has to study architecture

and instruction sets of new microcontroller as well.

Interpreter for microcontroller may be the

alternative way to solve the problem. When user

wants to change the new microcontroller, user only

installs interpreter to new microcontroller but do not

write the new program.

Example for byte code is Java language. The

Java as introduced by Sun Microsystems [1] in 1994

has spread throughout the computer industry and

has reached all domains. As good as Java is for

providing “write once, run everywhere” software.

In figure 1, programmer writes Java program. Java

compiler will compile Java program to Java byte

code. To use Java program, user has to install Java

virtual Machine [2] to operating system target. In

case user wants to change to new operating system,

users just installs Java virtual Machine and Java

program can be ran as normal. For this case Java

virtual Machine is interpreter of Java system.

The favorite toy in the world, Lego mind storm

[3]. It has H8 microcontroller with Lego interpreter

inside. User interface is based on graphic block. It is

easy for beginner even children can develop their

own applications.

For the other examples of interpreter are

MetaCricket [4] developed by MIT, GOGO

BOARD [5], BasicStamp by Parallax Inc. [6],

picoJava-I [7] picoJava-II [8] by Sun Microsystems,

An Embedded Java Virtual Machine [9], [10], The

Byte code Firmware Design for Microcontroller

Device [11].

1 Associate Professr, Department of Electronics, Faculty of Engineering King Mongkut’s Institute of

Technology Ladkrabang.
2 Student, Department of Electronics, Faculty of Engineering King Mongkut’s Institute of Technology

Ladkrabang.

* Corresponding Author, Tel.08-7700-7502, E-mail: narakorn.jeenjun@spansion.com

Received July 9, 2008; Accepted April 8, 2009

Figure 1 Java operation.

443

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

2. Comparison

Standard Microcontroller (MCU) language

design is depicted in figure 2, user writes assembly

program to target MCU and compiles to machine

code of each system. In this case, user has to

develop 2 programs for both 8051 and PIC.

In figure 3, user installs byte code interpreter

into both 8051 and PIC microcontroller then writes

the program with byte code instruction sets. In this

case user writes the program only 1 time.

3. Interpreter Diagram

The interpreter for MCU has 3 parts, they are

depicted in figure 4.

 VM Controller is the core of interpreter, it

controls fetch/execute and condition commands, IF,

ELSE, REPEAT and GOTO.

 VM EXECUTE is byte code decoder.

 Peripheral is hardware modules. It consists

of, Parallel Port, Serial Port, I2C Port, Timer, LCD

Port and Arithmetic functions.

The system flow chart is depicted in figure 5.

After MCU is reset, interpreter fetches byte code

from built in Flash memory. Condition1 will be

checked, whatever it is normal task or condition

task. If it is normal task, next byte code will be

decoded as normal. If not, interpreter will check

condition before go to next command. After the

operation is done, program counter (PC) will be

increased to next line address.

3.1 Data Stack

Interpreter is designed to have 16 levels of data

stack. The advantage of data stack is, store the result

of condition command IF/ELSE and WAITUNITL

and the result from arithmetic commands.

Figure 3 MCU with byte code interpreter.

Figure 2 Standard MCU.

Figure 5 Interpreter flow chart.

Figure 4 Interpreter diagram.

444

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

Figure 7 Byte code format.

Figure 8 No condition command format.

Figure 9 Condition command format.Data stack example is depicted in figure 6

00,02,09,01,00,06,00,01,40,01,35,1C,0A

 00,02 : Line address of program

 09 : SUM

 01 : Condition1 (IF statement)

 00 : No Condition2

 06 : Number slave of IF statement

 00 : This is master line

 01,40 : Push data 40H to current stack

 01,35 : Push data 35 to next stack

 1C : Equal comparison byte code

 0A : Comparison data in stack and stack+1,

the result will be in stack

3.2 The Byte Code Format

The byte code format consists of 7 parts, it is

depicted in figure 7

 AddrH and AddrL are 16 bits line address.

(Maximum is 65,535 lines)

 SUM is used byte in each line (AddrL,

AddrH and SUM are not included)

 Condition1 is the primary condition.

 Condition2 is the secondary condition.

 CondListH, in case if Condition1 is not 00H

 - Equal 00H : It is slave line address.

 - Not equal 00H : It is master line address.

 CondListL, in case if Condition1 is not 00H

 - Equal 00H : It is master line address.

 - Not equal 00H : It is slave line address.

 Byte code is 8 bits command.

3.3 Byte Code Instruction Sets

The instruction sets are categorized to 2

sections.

3.3.1 No Condition Commands

For no condition commands, Condition1 will

be 00H, Condition2 CondListH and CondListL will

not be appeared in the line. Format is depicted in

figure 8. Example for this commands are TX232,

RX232, I2CSTART, I2CWRITE, LCD, WAITTIME,

OUTPORT and INPORT.

3.3.2 Condition Commands

For condition commands consist of, IF, ELSE,

REPEAT and GOTO. The format is depicted in

figure 9. Condition1 will not be 00H and Condition2

is 00H reserved for further use.

Interpreter is designed to have 8 levels of IF

and ELSE commands. In figure 10 shows 3 levels of

IF command and 2 levels of ELSE command.

For IF command, byte code 01H-08H are

reserved and 81H-88H are reserved for end of IF line.

ELSE command, byte code 09H-0FH are reserved

and 89H-8FH are reserved for end of ELSE line.

For REPEAT command, interpreter is designed to

have 8 levels. Number of repeating can be 0-255. Byte

code 21H-28H is reserved for REPEAT command.

Figure 6 Data stack.

445

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

GOTO command, it must have label to go to

Label or address can be 0000H-FFFFH. Byte code

80H is reserved for GOTO command.

All of commands will be explained in testing

result section.

3.4 Memory Allocation

Memory allocation is depicted in figure 11, the

first 16KB is reserved for interpreter installation and

the second is user code area is 16KB Flash or 32KB

EEPROM as configuration setting. In this paper,

user code area is in 16KB Flash memory.

3.5 Hardware

Hardware for testing the system is ETT-

JR51USB [12] below is specification of hardware.

 AT89C5131 MCU with 6 clocks running

 32KByte Flash and 1Kbyte Sram

 USB cable for downloading program

 1xUART with maximum 11520 bps

 1x I2C port

 5VDC power supply on board

4. Implementation Results

We chose some of byte code examples for

testing the interpreter. It consists of I2C, RS232,

LCD and Parallel Port with delay time.

The first example code is depicted in figure 12,

the program will produce I2C start signal, write data

to I2C with 5AH then produce I2C stop signal. The

testing result is depicted in figure 13.

The first line 00, 00, 02, 00, 4E

 00, 00 : Line address

 02 : SUM

 00 : Condition1 (No condition command)

 4E : Write start I2C signal

The second line 00, 01, 04, 00, 01, 5A, 4A

Figure 10 Example IF/ELSE commands.

Figure 11 Memory allocation.

Figure 12 Example program#1.

Figure 13 I2C Start, Write data and Stop signals.

446

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

 00, 01 : Line address

 04 : SUM

 00 : Condition1 (No condition command)

 01,5A : Push data 5AH to data stack

 4A : Send data in data stack to I2C

The third line 00, 02, 02, 00, 4F

 00, 02 : Line address

 02 : SUM

 00 : Condition1 (No condition command)

 4F : Write stop I2C signal

The second example is depicted in figure 14.

The program receives data from RS232 channel and

sends the same data back to host (Personal

computer). Figure 15 shows RS232 signals.

The first line 00, 00, 06, 64, 00, 00, 05, 00, 01

 00, 00 : Line address

 06 : SUM

 64 : Condition1 (Label command)

 00 : No Condition2

 00,05 : Label stack location

 00,01 : Line address for go to command

The second line 00, 01, 02, 00, 14

 00, 01 : Line address

 02 : SUM

 00 : Condition1 (No condition command)

 14 : Read data from RS232

The third line 00, 02, 02, 00, 04, 13

 00, 02 : Line address

 02 : SUM

 00 : Condition1 (No condition command)

 04 : Push RS232 data to data stack

 13 : Write data from data stack to RS232

The fourth line 00, 03, 05, 65, 00, 00, 05, 00

 00, 03 : Line address

 05 : SUM

 65 : Condition1 (Go to command)

 00 : No Condition2

 00, 05 : Reload Label at stack location 05

 00 : Reserved for further used

The third example is depicted in figure 16, the

program will send data to parallel port with data 1,

2, 4, 8, 10H, 20H, 40H and 80H with 400mS delay

time. Testing result is depicted in figure 17.

The first line 00, 00, 06, 64, 00, 00, 05, 00, 01

 00, 00 : Line address

 06 : SUM

Figure 15 TX232 and RX232.

Figure 14 Example program#2.

Figure 17 Parallel Port.

Figure 16 Example program#3.

447

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

 64 : Condition1 (Label command)

 00 : No Condition2

 00, 05 : Label stack location

 00,01 : Line address for go to command

The second line 00, 01, 04, 00, 01, 01, 4C

 00, 01 : Line address

 04 : SUM

 00 : Condition1 (No condition command)

 01, 01 : Push data 01 to data stack

 4C : Write data in data stack to parallel port

The third line 00, 02, 04, 00, 01,04, 10

 00, 02 : Line address

 04 : SUM

 00 : Condition1 (No condition command)

 01, 04 : Push data 01 to data stack

 10 : Delay time with data in data stack

multiply by 100mS

The fourth line 00, 03, 04, 00, 01, 02, 4C

 00, 03 : Line address

 04 : SUM

 00 : Condition1 (No condition command)

 01, 02 : Push data 02 to data stack

 4C : Write data in data stack to parallel port

The rest program will be repeated the same as

line1 and line2 but only change data out.

The last example is LCD command, figure 18

is program and figure 19 is testing result.

The first line 00, 00, 02, 00, A2

 00, 00 : Line address

 02 : SUM

 00 : Condition1 (No condition command)

 A2 : Initial LCD byte code command

The second line 00, 01, 19, 00, 01, 31, A0, 01,

32, A0, 01, 33, A0, 01, 34, A0, 01, 35, A0, 01, 36,

A0, 01, 37, A0, 01, 38, A0,

 00, 01 : Line address

 19 : SUM

 00 : Condition1 (No condition command)

 01, 31 : Push data 31(character “1”) to data stack

 A0 : Write data in data stack to LCD

 01, 32 : Push data 32(character “2”) to data stack

 A0 : Write data in data stack to LCD

 01, 33 : Push data 33(character “3”) to data stack

 A0 : Write data in data stack to LCD

 01, 34 : Push data 34(character “4”) to data stack

 A0 : Write data in data stack to LCD

The rest program will write data “5678

abcdefgh” to LCD.

4.1 Result Analysis

4.1.1 Memory Usage

This paper we have installed byte code

interpreter into 8051(CISC) microcontroller. The

interpreter is written by C language with KEIL

compiler. Table 1 is comparison for memory usage.

Table 1 Memory usage

MCU IDE Code Data

AT89C5131 KEIL 10.97KB 434B

PIC18F4620 MPLAB 14.96KB 450B

Figure 18 LCD program.

Figure 19 LCD output.

448

19 3 2552
The Journal of KMUTNB., Vol. 19, No. 3, Sep. - Dec. 2009

4.1.2 Speed Improvement

From the previous paper, the byte code

firmware for Microcontroller Device [11], user

program was stored in external memory EEPROM

with I2C protocol. It is the bottle neck of the system

because it took 10 clocks to fetch data from

EEPROM 1 Byte. In this paper we have improved

the problem by use built in Flash memory of the

microcontroller, it took only 2 clocks to fetch data 1

Byte.

5. Conclusion

According to testing results, even we have

changed system from PIC to 8051 microcontroller, the

interpreter still can execute byte code commands

correctly. It is proved that the hardware is independent.

The execution byte code command is improved by

changing external memory to internal Flash memory.

Further to reduce interpreter code size and speed

improvement, we can use Assembly language instead

of C language. Finally to check byte code syntax, the

complier should be developed as well.

Reference

[1] S. Wilson and J. Kesselman, Java platform

performance strategies and tactics, Addison-

Wesley, Boston, 2000.

[2] T. Lindholm and F. Yellin, The Java virtual

machine specification, Addison-Wesley,

Reading, Mass., 1997.

[3] Jin Sato, LEGO MINDSTORMS: The Master’s

Technique, O’Reilly Media, Inc., 2008.

[4] F. Matin, B. Mikhak and B. Silverman,

“MetaCricket: A designer’s kit for making

computational devices,” IBM Systems Journal,

vol. 39, no. 3&4, 2000.

[5] Arnan (Roger) Sipitakiat, “GOGO BOARD,”

Available from: http://www.gogoboard.org

[6] Al Williams, “Microcontroller Projects Using

The Basic Stamp,” CMP Books, 2002.

[7] Sun Microsystems, “picoJava-I: picoJava-I

Core MicroprocessorArchitecture,” Sun

Microsystems white paper, October 1996.

[8] Sun Microsystems, “picoJava-II: Java

Processor Core,” SunMicrosystems data sheet,

April 1998.

[9] Graham Mathias and Kenneth B. Kent “An

Embedded Java Virtual Machine Using

Network-on-Chip Design,” IEEE International

Workshop on Rapid System Prototyping, 2006.

[10] Kenneth B. Kent and Micaela Serra,

“Hardware/Software Co-Design of a Java

Virtual Machine,” IEEE, 2000.

[11] Narakorn Jeenjun, “The Byte code Firmware

Design for Microcontroller Device,” KKU

Journal, vol. 34, pp. 535-546, 2007.

[12] ETT-JR51USB Board Available from:

www.ett.co.th

