Economic Performances of Small Holding Rubber-based Farms in Southern Region Thailand: Case Study in Khao Phra, Phijit, and Khlong Phea Communities Songkhla Province

Parinya Cherdchom¹, Paratta Prommee¹ and Buncha Somboonsuke²

ABSTRACT

Rubber small holding farms, presently, were forced to adapt to maintain economic viability under the economic crisis in South East Asia. The results were founded that four systems of rubber based farms, namely, rubber-intercrop farming system, rubber-fruit tree farming system, rubber-livestock farming system and rubber-integrated framing system show better economic performances with greater gross margin, higher net farm income, and better justification as evidenced by investment appraisal than other farm types, especially in cases of the sub-systems including rubber-pineapple farming system (R21), Rubber–durian-mangosteen farming system (R43), rubber–durian-mangosteen-rambutan farming system (R44), rubber-chicken farming system (R53), and Rubber–durian-fishery farming system (R61). These system are, therefore, appropriate for promoting extension service in the rubber growing area in Thailand.

Key words: farming system economics, rubber-based farm, rubber small holder, economic performance, and economic development

INTRODUCTION

Rubber is a economic crop in southern Thailand, which has helped sustainability the development of quality of life and the increase in family income of rubber small holder in Thailand (RRIT, 1999). In during economic crisis of 1997, Thai rubber small holders were forced to adjust their farming strategies to maintain viability and remain sustainable. These adjustments were including

¹ Department of Agricultural and Resource Economics, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
² Department of Agricultural Development, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
economic adjustment, and social adjustment toward increasing their farm productivity and efficiency. However, small holding rubber-based farming system, presently, has forced with many challenges which have impacted the productivity and efficiency such as deficient direction of economic evaluated situation and deficient understanding of causal agents of their expenses and incomes. The purpose of this paper was to describe the approach of the economic analysis of small holding rubber-based farming system for finding what systems are excelled economic performance.

The objectives of this paper

1. Evaluate the economic performance of small holding rubber-based farming system by means of the calculation of net farm income and relative measurement, farm efficiency measurement, farm capacity and productivity, and investment appraisal.

2. Recommend the appropriate alternative rubber-based systems which show excelled economic performance for extension.

LITERATURE REVIEW

1. **Rubber farming system**

 Rubber farming system is one of cropping systems. In rubber farming system, it comprises two factors, namely, endogenous factors and exogenous factors (Ruthenberg, 1980; Spedding, 1998). Endogenous factors are bio-physical components that are direct impact on smallholding farms plan and implementation strategies such as rubber yielding breed, smallholder decision making process and empowerment (skill, knowledge and attitude) soil and soil fertility, farm management practices, input factors (farms’ capital for investment, labor, fertilizer), including farm production and yield. While the exogenous factors comprises some physical and economic factors that are indirect impact on smallholding farm plan and implementation strategies and largely out of control such as climate, temperature, the quantity of rain, natural resources socio-economic factors such as marketing and processing system, marketing plan and policy including the service. The changing of two factors is an impact on smallholding farm adjustment under the current farm situation. (Figure 1)

2. **Rubber small holding system**

 The rubber small holding system is usually interplant with fruit, coconuts and annual crop (as mixed cropping). The trees do not always form continuous stands but may be in clumps separated by other vegetation. Beyond the environs of the small holders’ house. The mixed stand of rubber and other crop (mixed crop) usually give away to a pure stand of rubber in the midst of tall undergrowth. The average of Rubber small holding farms in Thailand is between 0.3 ha and 8.0 ha, Malaysia (average) between 1 ha and 3 ha, Indonesia (average) between 1 ha to 4 ha, India (average) between 1 ha to 20 ha that is similar to Sri Lanka average farm size. In contrast with estate planting (300 trees per hectare), final-stand planting on small holdings is usually very dense, with 500-900 trees per hectare, disregarding higher labor input, while estates try to economize on labor by aiming at high yield per tree. Rubber tapping is not necessary a regular task and this makes
Figure 1 Smallholding rubber-based farming system.

Source: Spedding, 1988; Ruthenberg, 1980
rubber such an attractive crop for small holders, since, during the peak rice-planting and rice-harvesting seasons little labor need be devoted to rubber. Small holders prefer to tap when time permits or when cash is needed, although irregular tapping may lower average returns. In some cases, small holders tap only during periods when schools are closed-weekends and vacation. Another advantage of rubber for small holders lies in the possible employment of farm family labor at low costs. Small holders use unselected seeding. Usually, they do not receive maximum yields because of poor cleaning, leaking Lack of managing, irregular tapping, over tapping when cash is needed and often wasteful tapping techniques. They are, however, low-cost products, and so are competitive with estates and return per hour of work comparing favorably to arable crops. Whereas the prices of estates are severely falling by small holders may cultivate other crops more intensively or keep up animal such as sheep, cow and poultry and in the meantime, trees may rest for rejuvenation to produce larger yields when rubber prices rise (Ruthenberg, 1980: Barlow, 1978)

3. Typology of small holding rubber based farming system in Thailand

The rubber holding in Thailand can be classified into three different sizes namely; small, middle, and large the small size farm with the area between 0.32-8.0 hectares comprised of 1,012,000 farms or 93.0% of total rubber holdings in country in 1999 with an average farm size of 2.08 hectares. The middle size farm with the area between 8.01-40.0 hectares comprised of 73,000 farms or 6.7% of total rubber holdings in country with an average farm size of 9.6 hectares, while the large size farm comprised of 3,000 farms 0.3% of total rubber holdings with an average farm size of 63.2 hectares. (RRIT,1999)

In addition, there are various criteria to classify the typology of small holding rubber based Farming system such as :

Thungwa (1998) classified three types of small holding rubber based farming system based on the number of associated crop with rubber as follows: (1) Rubber plantation with associated one cash-production crop. (2) Rubber plantation with two other cash-production crops, and (3) Rubber plantation with three or more other cash-production crops grown in various patterns between the truck and/or row of rubber trees.

Kjonchaikun (1995) classified small holding rubber based farming system based on type of crop that are usefull in supplementing the household income : (1) Rubber-intercropping system, (2) Rubber-covercrop system, (3) Rubber-orchid system, and(4) Rubber-multicrop system.

Nissapa and et al. (1994) classified the types of small holding rubber based farming system in southern Thailand : (1) The jungle rubber community, (2) Tradition jungle rubber (3) Economic rubber system, and (4) Rubber monocultured system.

Somboonsuke and Shivakoti (2001) classified the six current main types of small holding rubber-based farming systems (R) in Southern Thailand based on the criteria of individual farm’s agricultural production activity, socio-economic structure and agroecozone : (1) Small holding rubber-monoculture farming system (R1), (2) Small holding rubber-
intercrop farming system (R2), (3) Small holding rubber-rice farming system (R3), (4) Small holding rubber-fruit tree farming system (R4), (5) Small holding rubber-livestock farming system (R5), and (6) Small holding rubber-integrated farming system (or rubber-integrated activity farming system) (R6).

METHODOLOGY

The Study area was Songkhla province that was divided the area into three agroecozones based on the criteria of topography, biodiversity, and socio-economic characteristics. Three communities were selected by purposive sampling method; Khao phra, Phijit, and Khlong Phea communities, receptively. The economic analysis of the representative small holding rubber-based farming systems were as net farm income and relative measurement, farm efficiency measurement, the measurement of farm financial capacity and productivity and investment appraisal, respectively. (Johl and Kapur, 1992) Simple random sampling technique was used to select 177 small holding farms for net farm income and relative measurement and 379 farms for measurements of farm efficiency measurement and investment appraisal that cover 25 farming system cases from six main types of small holding rubber-based farming system for economic analysis: net farm income and relative measurement. Select the systems that show the excelled economic performance to analyze farm efficiency measurement, measurement of farm financial capacity and productivity and investment appraisal from 379 farms.

1. The concept of economic analysis

The economic performances of the small holding rubber-based farming systems were identified through calculation of net farm income and relative measurement such as gross margin analysis, return to family labor, return to fixed cost, and return to variable cost, and investment appraisal. The result of these have been the basis for evaluating the economic status of small holding rubber-based farming system. (Johl and Kapur, 1992) (Figure 2).

1.1 Net farm income and relative measurement

Net farm income has been used in the context of “measure of rubber small holding farm performance”. It is calculated as the total gross output per farm by computing the value of all farm products and deducting the total variable costs. By using net farm income (NI), one can derive further relative measures of economic performances such as productivity, which are then used to compare factors such as family labor input or total cash cost, etc. Several relative measurements of economic performances of small holding rubber-based farms were used which included gross margin (GM), return to family labor (NFL), return to fixed cost (RFC) and return to variable cost (RVC).

\[
\text{gross margin (GM)} = \frac{\text{total gross output}}{\text{total variable cost}}
\]

\[
\text{return to family labor (RFL)} = \frac{\text{gross output} - \text{variable cost except labor}}{\text{amount of labor}}
\]

\[
\text{return to fixed cost (RFC)} = \frac{\text{gross output}}{\text{total fixed cost}}
\]

\[
\text{return to variable cost (RVC)} = \frac{\text{gross output}}{\text{total variable cost}}
\]
Step I

Net farm income and relative measurement

Step II

Farm efficiency measurement

Physical efficiency measurement

Financial efficiency measurement

Step III

Farm capacity and productivity

Step IV

Investment appraisal

Figure 2 Conceptual framework of rubber-based farming system.

1.2 Farm efficiency measurement

Farm efficiency measurement is important for small holding farm business management and the small holder decision making process relate to the manner in which available farm resources are allocated vis-a-vis the objectives of the small holder. Farm efficiency is divided into two measures, the physical efficiency measurement and the financial efficiency measurement, for comparison among the small holding systems, and this study has used both aggregate and ratio measures for analyzing farm efficiency.

Measure of physical efficiency

Production efficiency (PE)

\[
PE = \frac{\text{production per hectare of farm} \times 100}{\text{average production per hectare of farm in community}}
\]

Crop yield index (CY)

\[
CY = \frac{\text{yield of crop in farm} \times 100}{\text{average yield of all farm in community}}
\]

cropping intensity (CI) = \frac{\text{area cropped} \times 100}{\text{total cultivated area}}

total labor per area (LPA) = \frac{\text{total man - equivalent}}{\text{total cultivated area}}
crop area per man (C.A.P.M) = \frac{\text{total area in crops}}{\text{man - equivalent}}

productive man-work unit per man-equivalent (P.M.W.U) = \frac{\text{total P.M.W.U}}{\text{man - equivalent}}

Measure of financial efficiency

gross output per gross input = \frac{\text{total gross output}}{\text{total gross input}}

Fertilizer cost per cultivated area
= \frac{\text{total fertilizer}}{\text{total cultivated area of farm}}

M.P and E investment per crop area
= \frac{\text{total machinery investment}}{\text{total cultivated area}}

Cost Ratio:
- operation cost ratio = \frac{\text{total operation cost}}{\text{total profit}}
- fixed cost ratio = \frac{\text{total fixed cost per year}}{\text{gross profit}}
- gross cost ratio = \frac{\text{total expense}}{\text{gross profit}}
- cost per area = \frac{\text{total expense}}{\text{unit of area}}

Income Ratio:
- net income per area = \frac{\text{total net income}}{\text{total area}}
- net farm income per farm labor = \frac{\text{total net income}}{\text{man - equivalent}}

1.3 The measurement of farm financial capacity and productivity

Further measures of productivity such as rate of return to capital and farm equity capital are employed to analyze farm efficiency.

measure of farm productivity
rate of return to capital (RRC)

rate of return to farm equity capital (RRFEC)

measure of financial capacity

self financing capacity and debt servicing capacity method:

+ net farm income
- depreciation
- family expenses
= self financial capacity
- repayment of interest
= debt servicing capacity

1.4 Investment appraisal analysis

For the investment appraisal, benefit and cost analysis including net present value, internal rate of return are used for assessing the economic characteristics of proposed farm projects.

benefit and cost analysis (B/C)

net Present value (NPV)

internal rate of return (IRR)

Where \(\frac{1}{(1+i)^n} \) = the discount factor that is the
process of finding the present worth of a future income is called discounting.

\[
\begin{align*}
&b = \text{annual benefit} \\
&c = \text{annual cost} \\
&n = \text{number of year} \\
&i = \text{Rate of interest} \\
&\text{inv} = \text{investment project}
\end{align*}
\]

RESULTS AND DISCUSSIONS

1. Net farm income (NFI) and relative measurement

Table 1 shows that the rubber cultivation as monocultured cultivation has the lowest benefit while the rubber cultivation associated with other activities has more benefit. This was confirmed in R_2, R_4, R_5, and R_6 systems. The results found in R_{21} system (Rubber-pineapple farming system) show the excellent economic performance as Net Farm Income (NFI), Gross Margin (GM), Return to Family Labor (RFL), Return to Fixed Cost (RFC) and Return to Variable Cost (RVC). For NFI, it was found that R_{64} system (Rubber-Durian-Fishery farming system) has the highest economic performance with 114,829.26 baht/year. But, it uses more farm’s resources and high cost of input factor. This result shows higher total cost of 169,872.00 baht/ha/year. The second rank was R_{63} system (Rubber—rice—durain farming system) with the value of 91,571.64 baht/ha/year. The third rank was R_{21} system (Rubber—pineapple farming system) with the value of 79,752.62 baht/ha/year. Small holders in this system are more business-oriented than other R_2 systems. The pineapple market system is efficient and production is normally sent to industry system. However, small holders use high cost of input factor that confirmed the total cost with 37,503.58 baht/ha/year. The R_4 systems (Rubber-fruit tree farming system) also have the excellent NFI. It was found that R_{412} (Rubber-Durian system), R_{413} (Rubber-Mangosteen farming System), R_{421} (Rubber-Durian-Mangosteen System), and R_{432} (Rubber-Durian-Mangosteen-Rambutan farming System) have the excellent NFI with 35,093.97, 22,597.46, 64,601.20 and 61,683.14 baht/ha/year, respectively. However, this system uses high investment. In R_5 systems (Rubber-livestock farming system), it was found 3 sub-systems have similarly high NFI, but lower than R_4 systems because R_5 systems normally use higher cost of production and more management skill than R_4 systems. In Gross Margin Analysis, the highest gross margin value was found in R_{64} system (Rubber-Durian-Fishery farming System) with the value of 132,908.11. Also, the results show that nine systems (R_{63}, R_{21}, R_{421}, R_{432}, R_{424}, R_{422}, R_{412}, R_{423}, and R_{413}) also have the high gross margin value when compared among within systems. In RFL, it implies the labor’s ability in production system, and the unit of labor used in farm’s operation that small holders can get unit of output. Table 1 shows that R_4 systems show high value of RFL, which means the ability of labor in this systems is higher than those in other system. Especially, R_{412} (Rubber-Durian system) has the highest NFL of 10.40 units. It means that with 1 unit of labor used in farm’s operation, small holders can get 10.40 units of output. R_2 systems and R_6 systems have lower value. RFC and RVC show the ability to return cost of production as relationship between the unit of investment cost (fixed cost and variable cost) and the
Table 1 Net farm income and relative measurements of small holding rubber - based farming systems.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>R₁ (n=22)</th>
<th>R₂ (n=33)</th>
<th>R₃ (n=23)</th>
<th>R₄ (n=34)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R₂₁</td>
<td>R₂₂</td>
<td>R₂₃</td>
<td>R₂₄</td>
</tr>
<tr>
<td>1. Total cost (baht/ha/yr)</td>
<td>26,513.74</td>
<td>37,503.58</td>
<td>29,384.00</td>
<td>24,428.00</td>
</tr>
<tr>
<td>2. Total variable cost (baht/ha/yr)</td>
<td>20,064.27</td>
<td>30,076.91</td>
<td>25,957.33</td>
<td>20,147.33</td>
</tr>
<tr>
<td>2.1 Cash</td>
<td>15,188.65</td>
<td>22,768.22</td>
<td>19,649.70</td>
<td>15,251.53</td>
</tr>
<tr>
<td>2.2 Non - cash</td>
<td>48,75.61</td>
<td>7,308.68</td>
<td>6,307.63</td>
<td>4,895.80</td>
</tr>
<tr>
<td>3. Total fixed cost (baht/ha/yr)</td>
<td>6,449.47</td>
<td>7,426.67</td>
<td>3,426.67</td>
<td>4,280.67</td>
</tr>
<tr>
<td>4. Total gross output (baht/ha/yr)</td>
<td>41,300.51</td>
<td>117,256.2</td>
<td>34,000.00</td>
<td>26,057.66</td>
</tr>
<tr>
<td>5. Net farm Income (baht/ha/yr)</td>
<td>14,786.77</td>
<td>79,752.62</td>
<td>4,616.00</td>
<td>1,629.66</td>
</tr>
<tr>
<td>6. Gross margin (GM) (baht/ha/yr)</td>
<td>21,236.24</td>
<td>87,179.34</td>
<td>8,042.67</td>
<td>5,910.33</td>
</tr>
<tr>
<td>7. Return to family labor (RFL)</td>
<td>9.46</td>
<td>7.52</td>
<td>1.68</td>
<td>1.22</td>
</tr>
<tr>
<td>9. Return to variable cost (RVC)</td>
<td>2.06</td>
<td>3.90</td>
<td>1.31</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Source : Field survey, 2000
Remark : The cost of production in calculated in terms of baht per hectare per year, and uses the average price for ten years of cultivation (1990-1999) from RRIT, 1999

R₁ : Smallholding rubber-based farming system with
R₂ : Rubber-monocultured farming system, R₃ : Rubber-intercrop farming system
With R₂₁: Rubber-pineapple farming system, R₂₂ : Rubber-sweet corn farming system, R₂₃ : Rubber-rice farming system and R₂₄ : Rubber-banana farming system
R₃ : Rubber-rice farming system with R₃₁ : Rubber-rice in the same plot of rubber farming system (pattern I) and R₃₂ : Rubber-rice in different plot of rubber (Pattern II)
R₄ : Rubber-fruit tree farming system with R₄₁ : Rubber with one associated fruit tree; R₄₁₁ : Rubber-rambutan farming system, R₄₁₂ : Rubber-durian farming system,
R₄₁₃ : Rubber-mongosteen farming system, R₄₁₄ : Rubber-longkong farming system and R₄₁₅ : Rubber-pistole farming system
<table>
<thead>
<tr>
<th>Measurement</th>
<th>(R_4) (n=34)</th>
<th>(R_5) (n=33)</th>
<th>(R_6) (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total cost (baht/ha/yr)</td>
<td>57,610.56</td>
<td>56,403.23</td>
<td>55,042.47</td>
</tr>
<tr>
<td>2. Total variable cost (baht/ha/yr)</td>
<td>47,722.78</td>
<td>47,002.63</td>
<td>45,913.80</td>
</tr>
<tr>
<td>2.1 Cash</td>
<td>36,126.14</td>
<td>35,580.99</td>
<td>34,756.75</td>
</tr>
<tr>
<td>2.2 Non-cash</td>
<td>11,596.64</td>
<td>11,421.64</td>
<td>11,167.05</td>
</tr>
<tr>
<td>3. Total fixed cost (baht/ha/yr)</td>
<td>9,887.78</td>
<td>9,400.60</td>
<td>9,128.63</td>
</tr>
<tr>
<td>4. Total gross output (baht/ha/yr)</td>
<td>122,211.76</td>
<td>95,011.76</td>
<td>77,746.57</td>
</tr>
<tr>
<td>5. Net farm income (baht/ha/yr)</td>
<td>64,601.20</td>
<td>38,608.53</td>
<td>22,704.10</td>
</tr>
<tr>
<td>6. Gross margin (GM) (baht/ha/yr)</td>
<td>74,888.98</td>
<td>48,009.13</td>
<td>31,832.77</td>
</tr>
<tr>
<td>7. Return to family labor (RFL)</td>
<td>9.00</td>
<td>8.95</td>
<td>9.42</td>
</tr>
<tr>
<td>9. Return to variable cost (RVC)</td>
<td>9.26</td>
<td>2.02</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Source: Field survey, 2000
Remark: The cost of production is calculated in terms of baht per hectare per year, and uses the average price for ten years of cultivation (1990-1999) from RRIT, 1999.

R: Smallholding rubber-based farming system with
- \(R_{42} \): Rubber with one associated fruit tree
- \(R_{421} \): Rubber-durian-mangosteen farming system
- \(R_{422} \): Rubber-durian-rambutan farming system
- \(R_{423} \): Rubber-durian-longkong farming system
- \(R_{424} \): Rubber-mangosteen-longkong farming system
- \(R_{43} \): Rubber with more than two associated types of fruit tree
- \(R_{431} \): Rubber-durian-durian-longkong-rambutan farming system
- \(R_{432} \): Rubber-durian-mangosteen-durian-rambutan farming system
- \(R_{433} \): Rubber-durian-mangosteen-durian-longkong-rambutan farming system
- \(R_{5} \): Rubber-livestock farming system
- \(R_{51} \): Rubber-cattle farming system
- \(R_{52} \): Rubber-goat farming system
- \(R_{53} \): Rubber-chicken farming system
- \(R_{6} \): Rubber-Integrates farming system
- \(R_{61} \): Rubber-fruittree-livestock (goat+chicken) farming system (Pattern I)
- \(R_{62} \): Rubber-rice-livestock (cattle) farming system (Pattern II)
- \(R_{63} \): Rubber-rice-fruittree (durian) farming system (Pattern III)
- \(R_{64} \): Rubber-fruittree-fishery farming system (Pattern IV)
unit of profit or output that small holders can get. The results show that R2, R3, and R5 systems have high value of RFC because small holders in these systems have used a little equipment and building in operation, confirmed by the value of RVC that was quite low due to use of the high variable cost of production.

2. The farm efficiency measurement

The results in Table 1 show that they were founded the 11 representative systems which show the excelled net farm income and relative measurement so, these systems were selected and identified the farm efficiency measurement in terms of Physical Efficiency Measurement and Financial Efficiency Measurement (Table 2).

2.1 Physical efficiency measurement

It was found R52 systems (Rubber-livestock farming system), and R413 systems (Rubber-Fruit tree farming system) show the high percentage of production efficiency (PE) that correlate with crop year index (CY1). It indicated that land use of R4 systems was the most efficient when compared to other systems. The result, also, shows the correlation with labor efficiency measurement. It was found R4 systems, especially R412 and R413 show the high total labor md./ha/year with the value of 193 and 178 md./ha/year respectively. Also it was found R5 systems and R6 system especially, in R51 and R64 have 198 and 173 md./ha/year, respectively. In comparing the productivity of manpower (Full-time worker), it was found that R21 system (Rubber-pineapple system), R432 system (Rubber-durian-mangosteen-rambutan system) and R64 system (Rubber-durian-fishery system) show high values with 54.44, 71.22 and 60.88 kg/md., respectively. The summary shows that though the systems have high land use efficiency, their labor efficiency is quite low. This is because these systems require more labor, that leads to high cost of production.

2.2 Financial efficiency measurement

In aggregate measurement, the results show that R4-systems (R41, R42, R43, and R44 systems) have the excellent economic performance in NFI, total operation cost, and total variable cost. However, these systems also have high total cost of production. R1 system and R3 system show quite low economic performance. This is because the monoculture crop cultivation, normally, does not require complicated management and more input factor and equipment. In ratio measurement, there are 5 financial measurements for the farm’s efficiency to set plan and implementation strategy and decision making process. The measurements are as follows: (1) Gross output per gross input that measures the ability to investment, (2) Fertilizer cost per cultivated area that measures the use of fertilizer per farm’s size, (3) Machinery cost per area that measures the total cost of machinery in operation per farm’s size, (4) Cost ratio, and (5) Income ratio that measures the financial capacity of farms in production system.

In gross output per gross input, it was found that all systems show profitable operation. Especially in R4, R5, and R6 systems, they show high values, which means that with one unit of cost of input, small holders can get one unit of output. It indicated that the higher value of ratio was, the more profitable operation was. For the fertilizer per area, it was
Table 2 Farm efficiency measurements of small holding rubber-based farming systems.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Small holding rubber-based farming systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
</tr>
<tr>
<td>(n=33)</td>
<td>(n=44)</td>
</tr>
</tbody>
</table>

1. Physical efficiency measurement

1.1 Aggregate measure

1.1.1 Total area (ha) (Household area)

3.76 4.00 6.12 4.48 4.98 5.78 6.58 6.00 3.15 3.00 7.13

1.1.2 Total agricultural area (ha)

2.57 3.16 3.8 2.75 2.25 2.36 2.08 2.63 3.58 3.11 3.12

1.1.3 Total production (kg/year)

278 6.97 7,403.63 4695.07 663,8.53 441,6.92 5,790.82 12,036.60 8,683.31 8,770.74 5,008.89 10,532.43

1.2 Ratio measurement

1.2.1 Land use efficiency

1.2.1.1 Production efficiency (PE.)(%)

115 113.7 91.0 136.5 145.4 133.4 123.4 150.0 156.5 121.5 121.5

1.2.1.2 Crop year index (CYI)(%)

114 110.5 84.0 140.1 144.5 139.2 107.6 - - 112.2 112.2

1.2.1.3 Cropping intensity (CI)(%)

93.1 72.5 101.0 98.1 97.3 81.5 72.2 - - 92.3 92.8

1.2.2 Labor efficiency measurement

1.2.2.1 Total labor (md/ha/yr)

148 136 165 193 178 171 169 198 175 175 173

1.2.2.2 Crop area per man equivalence (ha/md)

0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

1.2.2.3 Productive manwork Unit (kg/md)

18.83 54.44 28.45 34.40 24.81 33.86 71.22 43.86 50.12 50.12 60.88

2. Financial efficiency measurement (baht/yr)

2.1 Aggregate measure

2.1.1 Total capital management (baht/yr)

6,449.47 3,426.67 3,162.67 3,652.67 3,153.85 5,011.25 4,454.76 8,350.64 7,770.00 8,045.11 9,280.85

2.1.2 Gross expense (baht/yr)

10,329.15 7,554.55 1,049.09 15,174.38 7,689.86 6,760.68 88,75.5 10,743.45 9,373.59 8,193.93 13,655.73

2.1.3 Gross income (baht/yr)

48,827.71 62,930.85 61,476.63 137,145.13 92,251.58 122,223.35 254,049.25 182,349.51 187,255.29 106,939.80 244,464.76

2.1.4 Net farm income (bath/yr)

6,629.47 15,991.05 1,055.22 8,733.94 9,235.61 9,907.78 9,790.82 26,073.33 11,023.33 17,753.33 38,078.85

2.1.5 Total operation cost (baht/yr)

22,133.97 31,427.27 25,011.48 86,027.34 39,242.37 64,612.79 19,121.22 95,592.36 74,848.76 11,753.33 54,922.76

2.2.1 Total operation cost (baht/yr)

20,064.27 15,519.05 35,409.93 42,383.85 47,733.6 47,702.78 52,341.56 60,683.2 101,383.20 77,433.20 151,793.15

2.2 Ratio measures

2.2.1 Gross output per Gross input

0.21 0.12 0.02 0.11 0.08 0.06 0.06 0.06 0.06 0.08 0.12

2.2.2 Fertilizer per Area (kg/ha)

4,597.27 5,688.40 9,200.60 3,659.90 3,716.50 5,825.30 6,606.60 39,242.37 19,121.22 95,592.36 4,207.92

2.2.3 Machinery cost per Area (baht/ha)

1,961.70 3,126.70 3,162.67 3,652.67 3,153.85 5,011.25 4,454.76 8,350.64 7,770.00 8,045.11 9,280.85

2.2.4 Cost ratio

2.2.4.1 Operating cost ratio

0.41 0.25 0.57 0.31 0.47 0.39 0.20 0.33 0.47 0.57 0.72 0.67

2.2.4.2 Fixed cost ratio

0.13 0.05 0.05 0.03 0.03 0.04 0.01 0.04 0.04 0.07 0.04 0.04

2.2.4.3 Gross cost ratio

0.54 0.3 0.62 0.34 0.5 0.4 0.21 0.37 0.58 0.79 0.61

2.2.4.4 Cost per area

10,316.63 9,969.49 9,596.09 18,588.28 23,559.65 24,411.34 29,873.5 32,987.27 31,404.06 30,606.60 54,446.15

2.2.5 Income ratio

2.2.5.1 Net farm income per area (baht/ha)

2,579.50031 5,060.4886 277,694,737 3,175,97818 4,104,71556 4,198,21816 4,709,29327 9,913,81369 3,079,14246 5,708,46624 12,204,7996

2.2.5.2 Net farm income per farm labor (baht/md)

190.77 231.08 151.38 445.74 220.46 375.85 1,135.58 482.79 406.78 67.16 315.56

Source: Field Survey, 2000 From 379 Small holding forms in three Communities of Songkhla Province
found R₄ systems show the high value. Especially, R₅₁ systems (Rubber-cattle system) have the highest value of 20,495.70 kg/ha. In the machinery cost per area, it was found R₄, R₅, and R₆ systems show high ratio of machinery cost per area, which indicated that these systems normally have more use of farm’s energy than other systems.

In cost ratio, the purpose is to indicate strong or weak points in the organization or operation of farm’s business. There are 4 cost ratios that were measured as the following: (1) Operation cost ratio measuring every unit of farm’s outcome, small holders have to pay one unit of operation cost. However, it may also increase or decrease because income may be increased or decreased due to the change of product price; (2) Fixed cost ratio measuring every single unit of farm’s outcome, small holders have to pay one unit of fixed cost in production system; (3) Gross cost ratio measuring every unit of outcome, small holders have to pay one unit cost of expenses; and (4) Cost per area measuring one unit of actual cultivated area, small holders have to pay one unit of total farm expense.

The result shows that R₂¹ systems (Rubber-pineapple system) and R₄₃₂ system (Rubber-Durian-Mangoteen-Rambutan system) have low value of operation cost ratio with 0.25 and 0.20, respectively. This means one unit of farm’s outcome, small holders have to pay 0.25 and 0.20 units of operation cost, which show the efficiency of using operation cost. While R₅₃ system (Rubber-goat system) and R₆₄ (Rubber-Durian-fishery system) have high value of operation cost ratio with value of 0.72 and 0.67. It indicated that R₅₃ and R₆₄ are less efficient in using operation cost than those of R₂¹ and R₄₃₂ system. This result is similar to the result of gross cost ratio. It was found that R₂¹ and R₄₃₂ show low value of gross cost ratios with 0.30 and 0.21, which reveals the most efficient use of farm’s expense per one unit of farm’s output.

For cost per area, it was found that R₄, R₅ and R₆ systems show high value of cost per area, indicating that these systems pay high cost of expense per one unit of cultivated area, while R₁, R₂, and R₃ systems show low value of cost per area. For income ratio, there are two measures: Net Farm Income per area that shows the farm’s efficiency to get net benefit per one cultivated area, and Net Farm Income per farm’s labor that shows the labor’s efficiency to get benefit in operation per man equivalent. The result shows that R₄, R₅ and R₆ systems show high value of net farm income per area while R₁, R₂, and R₃ systems show low value of net farm income per area. This result was similar to net farm income per man equivalent.

From above results of farm efficiency measurement, it indicated that R₂ systems (Rubber-pineapple farming system), R₄ systems (Rubber-fruit tree farming system), R₅ systems (Rubber-livestock farming system) and R₆ systems (Rubber-Durian-Fishery farming system) show the excellent farm efficiency measurement that they should be offered to small holders.

3. Measurement of farm financial capacity and productivity

Table 3 shows the result of farm’s financial capacity and productivity. In farm financial capacity,
it was found that R64, R21, R413 and R432 have the high self-financial capacity. It indicated that these systems have high financial potential and ability to take up new investment. Especially, R64 systems (Rubber-durian-fishery farming system) has the highest value of 90,440.06 baht/ha/year and a high value appeared in R413 (Rubber-durian-mangosteen Farming system), R432 (Rubber-durian-mangosteen-rambutan farming system), and R21 (Rubber-pineapple system) with 86,931.90, 79,665.80 and 79,750.63 baht/ha/year, respectively. For debt service capacity, the positive correlation was found with the self-financial capacity. The more self-financial capacity a system has, the more debt service capacity it has also. The result shows that R64, R421, R432 and R21 have the highest debt service capacity. It indicated that these systems have ability to pay interest and to cover loan payment in given period.

For farm productivity, it was found R64, R412, R413, R421 and R432 have high Rate of Return Capital (RRC) and Rate of Return to Farm Equity Capital (RRFEC). Especially, R64 and R412 show the highest value of RRC with the similar value of 186%. It indicated that small holders invest one unit of farm capital, they get more than one unit of net farm earning. R3 and R1 show low value of RRC. R64, and R413 show the high RRFEC with 179% and 174%, respectively. The results of RRC and RREFC show that R64 and R413 showing the excellent RRC and RREFC performance.

4. Project analysis of rubber-based farming system

In calculation of investment appraisal of 11 excellent small holding rubber-based farming systems as shown in Table 4, it was found that rubber-monoculture cultivation shows the lowest values of NPV, BCR, and IRR when compared to other rubber-integrated systems. It indicated that the rubber with associated activity provides more income than rubber-monoculture system. However, although these rubber-integrated systems have got high benefit, their cost of production is high. For example, in R21 system (Rubber-pineapple farming system) gets high benefit with the value of 920,500.68 baht/ha/year, but the cost of production is 310,825.82 bath/ha/year. Also, the similar result was found in other rubber-integrated systems such as R4, R5, and R6 (Table 4). This result is considered useful for small holders to make decision in selecting their appropriate production systems based on the potential of area with the highest benefit. Table 4 also illustrates that all systems show justification in investment appraisal, confirmed with NPV value more than zero, BCR value more than one, and IRR value more than the opportunity cost (Debt interest rate 5%). This means the rubber-integrated system needs more investment than rubber-monoculture system such as R61 systems (rubber-durian-fishery farming system) which shows high values of NPV, BCR, and IRR of 847,158.27 baht/ha/year, 1.64, and 31%, respectively. Similarly, R21 and R51 show high investment appraisals. Thus, rubber-integrated system should be contributed and extended to small holders and they should be involved in planning of sufficiency economics to improve small holders’ standard of living under the current economic crisis.
Table 3 The measurements of farm financial capacity and productivity of small holding rubber-based farming systems.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Small holding rubber-based farming system (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_1</td>
</tr>
<tr>
<td></td>
<td>(n=33)</td>
</tr>
<tr>
<td>1. Measurement of financial capacity</td>
<td></td>
</tr>
<tr>
<td>1.1 Self-financial capacity</td>
<td>15,166.81</td>
</tr>
<tr>
<td>1.2 Debt service capacity</td>
<td>13,916.81</td>
</tr>
</tbody>
</table>

2. Measurement of farm productivity

	R_1	R_21	R_32	R_412	R_413	R_421	R_432	R_51	R_52	R_53	R_64
2.1 Rate of return capital (RRC)(%)	119.83	133.10	110.31	186.35	183.10	160.30	171.47	121.43	123.16	104.97	186.28
2.2 Rate of return to farm equity											
capital(RRFEC)(%)	129.81	159.22	116.50	155.43	174.6	128.69	167.21	139.28	153.95	149.96	179.42
Source: Field Survey, 2000 From 379 Small holding farms in three communities of Songkhla Province											

Table 4 The comparison projected analysis between rubber-based farming systems.

<table>
<thead>
<tr>
<th>Item</th>
<th>R_1</th>
<th>R_21</th>
<th>R_32</th>
<th>R_412</th>
<th>R_413</th>
<th>R_421</th>
<th>R_432</th>
<th>R_51</th>
<th>R_52</th>
<th>R_53</th>
<th>R_64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total present worth cost (C)</td>
<td>177,320.94</td>
<td>310,825.82</td>
<td>299,080.50</td>
<td>346,214.50</td>
<td>298,616.20</td>
<td>455,162.87</td>
<td>563,495.19</td>
<td>945,303.85</td>
<td>351,590.58</td>
<td>283,677.64</td>
<td>1,331,226.28</td>
</tr>
<tr>
<td>Total present worth benefit (B)</td>
<td>350,477.35</td>
<td>929,500.68</td>
<td>459,958.56</td>
<td>657,008.71</td>
<td>724,455.72</td>
<td>1,002,538.71</td>
<td>1,061,363.05</td>
<td>1,763,659.76</td>
<td>796,491.76</td>
<td>20,119.12</td>
<td>2,178,384.55</td>
</tr>
<tr>
<td>BCR at df 5%</td>
<td>1.98</td>
<td>2.99</td>
<td>1.54</td>
<td>1.90</td>
<td>2.43</td>
<td>2.20</td>
<td>1.88</td>
<td>1.87</td>
<td>2.27</td>
<td>2.54</td>
<td>1.64</td>
</tr>
<tr>
<td>NPV at df 5%</td>
<td>173,156.41</td>
<td>618,674.86</td>
<td>160,878.06</td>
<td>310,794.21</td>
<td>425,839.52</td>
<td>547,375.84</td>
<td>497,867.86</td>
<td>818,355.91</td>
<td>444,901.18</td>
<td>436,441.40</td>
<td>847,158.27</td>
</tr>
<tr>
<td>IRR</td>
<td>12.92%</td>
<td>34%</td>
<td>14%</td>
<td>16%</td>
<td>23%</td>
<td>24%</td>
<td>19%</td>
<td>30%</td>
<td>23%</td>
<td>23%</td>
<td>31%</td>
</tr>
<tr>
<td>The justification</td>
<td>OK</td>
</tr>
</tbody>
</table>

Source: Field Survey, 2000 From 379 Small holding farms in three communities of Songkhla Province
CONCLUSION AND RECOMMENDATION

Eleven representative systems show high net farm income (NI) and relative measurement including in rubber-monocultured farming system, (R1) Rubber-intercrop farming, system (R21), Rubber-rice farming system (R31), Rubber-durian farming system (R412), Rubber-mangosteen farming system (R413), Rubber-durian-mangosteen farming system (R421), Rubber-durian-mangosteen-rambutan farming system (R432), Rubber-cattle farming system (R51), Rubber-goat farming system (R52), Rubber-chicken farming system (R53) and rubber-fruittree-fishery farming system (R64), respectively. For farm efficiency measurement, it was found that three system types including Rubber-intercropped system (R2), rubber-fruittree system (R4), and rubber-integrated system (R6) show the excellent farm efficiency measurement that they should be offered to smallholders. In calculation farm’s financial capacity and productivity, five systems of R64, R21, R421, R432 and R21 show high self-financial capacity, and also four systems of R64, R421, R432 and R21 show high dept service. It indicated that these systems have ability to pay interest and to cover loan payment in given period.

For farm productivity, two systems of R64 and R421, show the excellent RRC and RREFC performance. And also, it was found that all representative systems show significance of investment appraisal, these systems should be contributed and extended to smallholders and they should be involved in planning of sufficiency economics to improve small holders’ standard of living under the current economic crisis.

LITERATURE CITED

