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Abstract
In this paper the combined free convective dynamic boundary layer and thermal radiation boundary

layer at a semi-infinite vertical plate has been studied with variable suction. The fluid is considered to be
gray absorbing-emitting. The governing equations of the problem, the coupled unsteady non-linear
momentum and energy equation of the combined layer, are reduced to be similar by the usual method of
similarity transformation. The similarity equations are solved numerically by adopting a shooting
method using a Nachtsheim-Swigert iteration technique. The resulting velocity and temperature
distributions are shown graphically for different values of the parameters.
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1. Introduction
The heating of rooms and buildings by the

use of radiators is a familiar example of heat
transfer by free convection. Heat losses from hot
pipes, ovens etc. surrounded by cooler air, are at
least in part, due to free convection. However, the
mixed types of problems are very important and
have many industrial and technological
applications. The problem ofreductive transfer in
a vertical channel has been studied in recent
times as a model for the re-entry problem. This is
due to the significant role of thermal radiation in
surface heat transfer when convection heat
transfer is similar, particularly in free convection
problems involving absorbing emitting fluids.
One of the initiators of the problem, Goody []
considered a neutral fluid. Soundalgekar and
Takhar [2] studied radiation effects on free
convection flow of a gas past a semi-infinite flat

plate using the Cogley-Vincntine-Giles
equilibrium model. Hossain and Takhar [3]
analyzed the effect of radiation using the
Rosseland diffirsion approximation that leads to
non-similar boundary layer equations goveming
the mixed convection flow of an optically dense
viscous incompressible fluid past a heated
vertical plate with a uniform free stream velocity
and surface temperature. Cess [4] however,
considered absorbing-emitting gray fluids with a
black vertical plate. His solution was based on a
perturbation technique and was applicable for
small values of the conduction-radiation
interaction parameter. A non- gray analysis on
the other hand was made by Bratis and Novotny

[5] employing limiting form to approximate the
band profile. Novotny et al. [6] studied the same
problem employing the method of local
non-similarity and the continuous correlation of
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Tien and Lowder [7] to account for the band
absorption.

A study of the interaction of natural
convection with thermal radiation in laminar
boundary layer with isothermal horizontal
surface in a gray gas was made by Ali et al. [8].
Following Ali et al., Mansour [9(a),(b)] studied
the interaction of mixed convection with thermal
radiation in laminar boundary layer flow over
horizontal, continuous moving sheets with
suction and injection. They then studied the
interaction of thermal radiation at a semi-infinite
plate longitudinally streamlined by visco-elastic
fluid. Albraba et al. [10] studied the same
problem of free convection interaction with
thermal radiation in a hydromagnetic boundary
layer taking into account the binary chemical
reaction and the less attended Soret and Dufour
effects.

Pohlhausen [11] first studied the thermal
boundary layer flow past a semi-infinite vertical
plate using the momentum integral method. A
Similarity solution to this problem was given by
Ostrach [12]. Siegel [3] f irst studied transient
free convection flow past a semi-infinite vertical
plate by an integral method. Since then many
papers have been published in free convection
flow past a semi-infinite vertical plate. Some of
them are due to Sparrow and Gregg [14];
Szewczyk [5]; Merkin [16]; Eshghy [17] and
Acrivos I I 8]. Spanow and Gregg; Szewczyk and
Menkin all gave numerical solutions to the
similarity equations, whereas Eshghy and
Acrivos both used an integral method for solving
free convection problems.

Soundelgekar et al. [9] studied the free
convection flow past a vertical porous plate. The
investigation of the flow streaming into a porous
and permeable medium with arbitrary but smooth
surface was done by Yamamoto et al. [20].
Further analysis for a free convection in a porous

medium bounded by an infinite plate was made
by Raptis [2] (a), (b)]. Bestmen l22l made
analytical efforts to study the free convection
flow in a very porous medium with mass transfer
and chemical reaction with finite Arrhenious
activation. However, Raptis et al. [23] made
numerical study of the free convection flow
through a very porous medium bounded by a
semi-infinite vertical porous plate. Following the
work of Raptis et al. [23], Sattar [24] obtained an
analytical solution to the same problem by the
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perturbation technique adopted by Singh and
Dikshit [25].

Sattar and Kalim [26] studied the effects of'
unsteady free convection interaction with
thermal radiation in a boundary layer flow. In
their work, local solutions were obtained. In the
present work, following the work of 1261, the
problem of unsteady free convection interaction
with thermal radiation of an absorbing emitting
fluid along a vertical plate with variable suction
has been investigated. The investigation is based
on a complete similarity analysis unlike the local
similar solutions of Sattar and Kalim [26],
similarity analysis by employing a time
dependent similarity parameter. The similarity
solutions are then obtained numerically for very
small values of conduction radiation parameter,
which are of practical interest from a physical
point of view.

2. Governing equation of the flow:
We consider a two-dimensional unsteady

flow in a combined dynamic boundary layer and
thermal radiation boundary layer over a vertical
plate. The plate is maintained at a uniform
temperature T* and placed vertically in a
quiescent fluid of infinite extent at a constant
temperature T. There is a variable suction at the
plate taken to be a function of time. The fluid is
assumed to be gray, emitting and absorbing, but a
non-scattering medium. The physical
co-ordinates (x,y) are chosen such that the x-axis
lies in the plane of the plate and is oriented in the
direction ofthe flow, and the y-axis is normal to it.
The radiative heat flux in the x-direction is
considered negligible in comparison with that in
the y-direction. Now, considering the
Boussinesque approximation, the two
dimensional boundary layer equation related to
our problem can be put forward as the equation of
continuity:

( l )a u &
a x 4

equation of momentum:
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and the energy equation:

AT AT aT A'T a As-
Ar 0x Ay 0y' r 0y

The boundary conditions for the present problem
are as follows:

J u = o . v : 0 , T = r _ a t y = 0  l  t o f
lu  -+ 0.v -+ 0,T -+ T-  at  y-+"o J

The radiative heat flux term is simplified by
making use of Rosseland approximation as:

4o ATa
LI , 

-

3 k a

Where o and k are the Stefan-Boltzman
constant and mean absorption coefficient.

Since the plate is considereJ to be of infinite
extent, all derivatives with respect to x vanish.
Here the goveming equations relevant to our
problem reduces to:

Av
-  =u  (6 )
0y

+ - , + = " 1 ' : ' e ! f f  r , )  ( t )
o l  o v  o v -

,  aT  AT A 'T  aAaa n o  -  * y  ^  = a - :  * - - -  ( E )
ot oy dy' K Oy

3. Mathematical Formulation:
Our aim is to obtain a similarity solution. For

this purpose we introduce a similarity parameter
d defined as:
o = d \ t )

d is a time dependent length scale. The
continuity equation (l) can then be satisfied in
terms of this lensth scale das:

v
v  =  - - v "

o

Here the constant vo represents the
dimensionless suction or injection parameter. We
now introduce the followine dimensionless
variable:

n _ y' 5

u =U06,-f(ry) trr l

drl= r -r*
T* -T-

Where 5.=+ is  the value of  6at  t=to and
6o

Uo is the uniform constant velocity.

From the equations (9) to ( I I ) we get:

0 u  _ r ,  2 6  t d d  , ,  r 7 5  . d 6- - u ^ - t - - u ^ - r -

0 t  " 6 ; "  d r  " 6 n "  d t

o ) u  - � r ,  , ,  7
a  ?  " 0 J  - )
cly- o;

A T  - r 5

? = -o'(r* -r-)+L
d t  

* ' 6  
d t

s 2 r  t

? =(r_-r^)s +
oy- o'

Substituting the above values in equations (2)
and (3) we get respectively:

-N-+.?{9-ro- f ,= f ,  +G,o (12)
v d t v d t

- 4!aa' -,,0' = | r,.{ !tc, * g): e, +(, + a)' rf
vd t  P ,  P ,
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Where !9 ^the dimensionless quantity.
v d t

olJ
G,=o=\7,-T-)6:  is  the local  Grashof

v U o

number.

P, = L is the Prandtl number.
d

R=16o  (T  -L )  i s  t he  conduc t i on  rad ia r i on
3 ^ ' K

parameter.

(5)
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= -#lo" - r-\' na' a !. tr- - r-Ye a j]

(e)

(  10)

2 l



cr
T

T _ T
is the temperature difference
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method. For the purpose of this method, we have
used the Nacthsheim-Swigert iteration technique
(Nachtsheim & Swigert, 1965). In a shooting
method, the missing (unspecified) initial
condition at the initial point of the interval is
assumed, and the differential equation is then
integrated numerically as an initial value
problem to the terminal point. The accuracy of
the assumed missing initial condition is then
checked by comparing the calculated value of the
dependent variable at the terminal point with its
given value there. If a difference exists, another
value of the missing initial condition must be
assumed bnd the process is repeated. This
process is continued until the agreement between
the calculated and the given condition at the
terminal point is within the specified degree of
accuracy. For this type ofiterative approach, one
naturally inquires whether or not there is a
systematic way of finding each succeeding
(assumed) value of the missing initial condition.
The Nachtsheim-Swigert iteration technique thus
needs to be discussed elaborately.

The boundary conditions (18) associated
with the linear ordinary differential equations
(16) and (17) ofthe boundary layer type are of
the two-points asymptotic class. Two-points
boundary conditions have values of the
dependent variable specified at two different
values of the independent variable. Specification
of an asymptotic boundary condition implies the
value ofvelocity approaches unity and the value
of the temperature approaches zero as the outer
specified value of the independent variable is
approached. The method of numerically
integrating a two-point asymptotic boundary
value problem of the boundary layer type, the
initial value method, requires that it be recast as
an initial value problem. Thus it is necessary to
estimate as many boundary conditions at the
surface as were given at infinity. The governing
differential equations are then integrated with
these assumed surface boundary conditions. If
the required outer boundary condition is satisfied,
a solution is achieved. However, this is not
generally the case. Hence a method must be
devised to logically estimate the new surface
boundary conditions for the next trial integration.
Asymptotic boundary value problems such as
those governing the boundary layer equations are
further complicated by the fact that the outer
boundary condition is specified at infinity. The

parameter.

The equations (12) and (13) are similar and

expect the dimensionless quantity 
6 4{ *6"r",
v clt

appears explicitly.

Thus, the similarity condition requires that this

.  6d6
quantity - _ must be a constant quantity. We

v d t

therefore suppose that
6 d 5

(constant)

(14 )

v d t

Now integrating (14) with the constant when

t : 0 ,

d= 0 we obrain d = J)cvt ( 1 5 )

It appears from (15) that the length scale d is
consistent with the usual length scale considered
for various non-steady flows.

Thus taking a realistic value of C to be 2 in ( I a),
the equation (12) and (13) finally reduces to:

f , + z (  n * r t . ] r , -  4 f  + G , o = o  r r 6 )r  - l ' t  
t  l | J

\  L )

e'. zn(,/ -\Ja = -*[rt., + o)' g'2 +(c, + 4' d]

(11\

Subject to the equations (16) and (17) the
boundary conditions (4) now transfer to:

1 f : 0 . e = |  
a t r 7 : 0  

' f  
, , r ,

l f  =0 ,0=0 ,  as  r7  -+  oo  , l

The above equations (16) and (17) thus describe
the basic ordinary differential equations of our
problem subject to the boundary conditions (18).

4. Method of solution:
Equations (16) and (17) with boundary

conditions (18) are solved numerically using a
standard initial value solver called the shooting
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trial integration's infinity is numerically
approximated by some large value of the
independent variable. There is no a priori general
method of estimating this value. Selecting too
small a maximum value for the independent
variable may not allow solutions to
asymptotically approach the required accuracy.
Selecting a large value may result in divergence
ofthe trial integration or in slow convergence of
surface boundary conditions satisfuing the
asymptotic outer boundary condition. Selecting
too large a value of the independent variable is
expensive in terms of computer time.

Nachtsheim-Swigert developed an iteration
method, which overcomes these difficulties.
Extension of the Nachtsheim-Swigert iteration
shell to the above equation system ofdifferential
equations (16) and (17) is straightforward. In
equation (18) there are two asymptotic boundary
conditions and hence two unknown surface
conditions /'(0) and d,(0). Within the context of
the initial-value method and the
Nachtsheim-Swigert iteration technique, the
outer boundary conditions may be functionally
represented as:

t 0r ̂̂ ) = t[t'(o) a(o)] = 4

4,t^)=4f'@),a(o)l=a, (20)
with the asymptotic convergence criteria given

by:

"r'(,/^^.)= r'V'@),a'(o)l= a, (21)

o'(,t^.)= alt'@),s(o)l= a^ (22)

Expanding in a first order Taylor series using
equation (19) to (22) yields:

,f (r/^^*) = .f,(q^ *)+ f,t, + f ,L1t = 6,

(23)

4r/^.)= 0,(r/^ *)+ 0"Lx + ?rLy = 6,

(24)

.f'(r/^ *)= fi\t^^ )+ flt + fiLy = g,
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g(r/^^*)= 4(r/^^)* 4u + 0,Ly = 6o

(26)

where ,="f'\o),y=glo) and the x and y

subscripts

Indicate partial differentiation, e.g. :

,, _ Of'(r/^,) ,, _ af '(r/^ 
,)t '  - ar@) 't '  

- 
aglA

The subscript "c" indicates the value of the
function dt 4-u determined from the trial
integration. Solutions ofthese equations in a least
squares sense requires determining the minimum
value of:

L = o i + o ; + o ; + d ;

Differentiating E with respect to x:

(t: *a: + fi '�+Q')tx+V,f,*e"a,+ fifl+Qa,\y
= -U"f, + o,o, + f!f i+ Qa,)

(28)

Differentiating E with respect to y:

V: * el, + f',' + fl'\y +(f,f, * o,o, + fifi, + e:e;L'
= -(t"t, + o,o, + fifl + e;e;)

(2e)

We can write (28) as a (29) in system of linear
equations in the following form as:

A,rLx+ ArrLy = d,

Ar rLx+Ar rAy=d,

Where

A,, =\"f: + o] + fi'� + o','� )
/  ^  ^ \

A , , = \ f :  + 0 j + f i ' + 0 ' , ' )

A,, = Ar, =("f,-f, + o,o, + "f:f;* A,gr)

d, = -(.f""f, + o,e, + f:"f: + eloi)

d, = -(f,f, + o"ey + f:f; + e!e)

(27)

( l e )

(30)

/ 1 1 \

(2s)
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From equations (30) and (31) we have

. det A, detA,
\ r -  . A l ' - -

d e t A '  d e t A

Where,

l A "
d e t  A = 1 . "

l A  t t
l z

d e t  A .  =  l " t t'  
l A , ,

l ,4., z,

Adopting the numerical technique
aforementioned, the solutions of the linear
ordinary differential equations (13) and (14) with
boundary conditions (15) are obtained, together
with sixth order implicit Runge-kutta initial
value solver. Here we applied the shooting
method for different values of pertinent
parameters. In the process ofintegration, the skin
friction coefficient /,(0) and the heat transfer rate

a,h\ are also calculated.

5. Numerical results:
In this paper we have considered the problem

of laminar free convection flow along with
thermal radiation of an absorbing-emitting fluid
along a vertical plate. The flow is also considered
to be unsteady. Similarity equations of these
problems are obtained by introducing a similarity
parameter, taken to be a time dependent length
scale. The suction velocity is also taken to be a
function of time. Under these conditions, the
solutions to the problem are finally solved
numerically, which is applicable for small values
of conduction radiation interaction parameter R.
For the purpose of discussing the numerical
solution, the effects of various parameters on the
flow behavior have been calculated for different
values of suction parameter V6 r the conduction
radiation interaction parameter R, temperature
difference C., Prandtl number P, and Grashof
number G, . Since these are free parameters of
interest in the present problem, values of these
parameters are respectively taken to be:

vo = 0.5,0.8,1 .0,1 .5 ;  R :

Cr = 0'0,0.5,1 '0,1 '5 ; P,

and G" = 3.0,5.0,8.0,10.0

0 .0 ,  0 .1 ,  0 .3 ,  0 .5 ;
:0 . '71 ,1 .0 ,2 .0 ,3 .0

The effects of temperature difference C. on
the velocity profiles are shown in Fig. L It can be
seen from the figure that the velocity profiles
increase with increasing values of C. . An
increase in C. correspondingly increases the
effects on fiee convection. Thus from Fig.l we
conclude that as the free convection increases,
velocity also increases.

ln Fig.2, the effects of the conduction
radiation interaction parameter R on the velocity
profiles are shown. From this figure, it is
observed that as the interaction of the thermal
radiation intensifies (increase in R), the velocity
increases with an accompanying increase in the
velocity gradient at the wall.

In Fig.3, the effects of suction on the velocity
profiles are shown. It can be noted that velocity
profiles decreases with the increase ofthe suction
parameter. From this figure it can also be noted
that boundary layer thickness decreases with the
increase of suction parameter.

In Fig.4, the effects of the Prandtl number on
the velocity profiles are shown. It can be. seen
that the velocity profiles decrease due to
increasing values of the Prandtl number.

In Fig.5, the effects of the Grashof number
on the velocity are displayed. It is apparent from
the figure that the increasing values of Grashof
number enhance the velocity.
In Fig.6, the effects of the Prandtl number on the
temperature profiles are seen. The temperature in
this case reduces with the increase of Prandtl
number, with reduction of the thermal boundary
layer thickness.

In Fig.7, the temperature profiles are viewed
for different values of vo In this case the
temperature reduces with the increase of vo .

Fig.8 shows the effects of C, on the
temperature profiles. The temperature profile is
found to increase with the increase of the
parameter C..

l d  ,  A , ,
- l

t )  / l
l u  t  f , t t

,l^ 1 2

,|^ 2 2
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)u 2
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6. Nomenclature:
x,y,z Cartesiancoordinates
u,%w Components of velocity
t t ime

z Similarity variable
p Coeffrcient of kinematics viscosity
d Dimensionless temperature
p Density of fluid
p Coeffrcient of volume expansion
g Gravitational acceleration
G, Grashof number
C p Specific heat at constant pressure
P, Prandtl number
q, Local radiative flux
T* Local shear stress
vo Suction parameter
T Temperature
T* Plate temperature
T- Free steam temperature
K Heat diffusivity coefficient
k Permiability coefficient
Un Free steam velocity
d Thermal diffusivity
6 Time dependent length scale
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