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Sampling and analytical procedures were based on
NIOSH Method 0500 (NMAM, 1994). The filters
were pre-weighed at the Ministry of Public Health,
Thailand. After air sampling was conducted, each
filter was loaded into a separate petri dish (SKC
Inc., PA, USA), kept frozen (-20 C), and shipped
for further analyses at the Environmental Health
Laboratory, University of Washington, USA. The
filters were first analyzed for PM2.5 by gravimetric
analysis, then underwent the analyses of LG by gas
chromatography-mass spectometry (GC/MS) as
described previously (Simpson et al., 2004). Briefly,
filters were extracted by sonication in ethyl acetate,
reduced the extract volume in Turbo Vap bath under
N

2
, derivertized with a slating reagent (TMSI), and

analyzed by GC/MS. Field blank filters were also
included with each batch for quality control.

2.3.3. Urine sampling and analysis
Urine specimens were collected from each of

the eleven workers. The participants were asked
to provide urine samples at intervals of two to five
days in parallel with the air sampling. For two days
prior to urine collection, and for the duration of this
study, the subjects were asked not to consume food
cooked on open fires or charcoal or food containing
biomass smoke flavoring such as vanilla or cloves.
First morning urine samples (prior to work), and
after work urine samples were collected from each
subject in clean separate containers. An aliquot part
(40 mL) of the sample was transferred to the 50
mL polypropylene tubes. The samples were stored
frozen (-20 C) and shipped to the University of
Washington for analysis. Urine samples were
analyzed for creatinine by colorimetric assay
(Beckman Coulter Inc.) at the University of
Washington Medical Center, Chemistry Division.
MPs were analyzed at the Environmental Health

Laboratory by the procedures described by Dills et
al. (2001; 2006) and Simpson et al. (2005). Brief
summary of the procedure included acid hydrolysis
to deconjugate the MPs. Deuterated standard
compounds were added to the urine samples prior
to extraction to determine analytical recoveries in
each sample. Then, the samples were applied to
ion exchange solid phase extraction and analyzed
by GC/MS. Method blanks, method spike, and
benchmark were included in each batch of the
samples to monitor accuracy and precision.

2.4. Statistical analysis

In addition to descriptive statistics, correlation
analysis, and linear regression model, a one-way
random-effect model was employed to estimate the
between-worker (

bw
S2) and the within-worker

(
ww

S2) variance components. The kitchen and
worker were treated as random effect factors.
Variance component analyses were performed by
using Minitab 15 Statistical Software (Minitab Inc.).

3. Results

3.1. Subject characteristics

The demographic information of the study
participants was described in Table 1. There were
six males and five females with a median age of 53
(range: 29-68). All subjects worked in the kitchens
seven days a week for an average of six hours per
day. One subject worked for twelve hours a day.
The majority of the workers reported of drinking
occasionally. During the study period, four subjects
had alcoholic beverages. None reported that they
had eaten food cooked on open fires or charcoal or
food flavored with vanilla or cloves.

Table 1. Demographic information of the study subjects (n=11)

Gender: Male 6 

 Female 5 

Age (years) Median 53 (range 29-68) 

Height (cm.) Mean 56.57 

Weight (kg.) Mean 66 

Smoking history Ex-smoker 2 

 Never smoke 9 

Years in trade (years) Mean 18 

Daily work hour (hours) Mean 6 

Food and alcohol consumption during the study period  Number of subjects 

Alcoholic beverages 4

Wood smoke flavoring none 

Exposure to environmental tobacco smoke 2

T. Yingratanasuk et al. / EnvironmentAsia 2 (2009) 36-44



39



40

Table 3. Creatinine-adjusted urinary methoxyphenols for wood & husk group ( g methoxyphenol/mg creatinine)

Table 4. Creatinine-adjusted urinary methoxyphenols for charcoal group ( g methoxyphenol/mg creatinine)

Pre-shift  Post-shift  Cross-shift Paired t-test 

n mean SD n mean SD n mean SD p

Guaiacol 44 0.611 0.679  44 1.062 0.862  44 0.451 0.863   0.001* 

Methylguaiacol 43 0.143 0.361 43 0.287 0.351 43 0.144 0.289   0.002*

Ethylguaiacol 44 0.043 0.059 44 0.196 0.174 44 0.153 0.168 <0.001*

Syringol 44 0.291 0.489 44 0.848 0.735 44 0.558 0.765 <0.001*

Eugenol 41 0.880 1.633  41 0.546 0.762  41   -0.334 1.453  0.149 

Propylguaiacol 43 0.016 0.030 43 0.116 0.387 43 0.100 0.387  0.097

Vanilin 44 0.072 0.157  44 0.061 0.131  44   -0.011 0.040  0.086 

cis-isoeugenol 35 0.022 0.032 35 0.115 0.102 35 0.092 0.110 <0.001*

Methylsyringol 42 0.020 0.032  42 0.194 0.176  42 0.175 0.181 <0.001* 

trans-isoeugenol 44 0.056 0.056  44 0.199 0.172  44 0.142 0.186 <0.001* 

Acetovanillone 44 0.248 0.219 44 0.389 0.316 44 0.141 0.350   0.011*

Ethylsyringol 35 0.023 0.025  35 0.129 0.113  35 0.106 0.122 <0.001* 

Guaiacylacetone 43 0.499 1.304 43 0.101 0.272 43   -0.397 1.276   0.048*

Allylsyringol 43 0.031 0.033 43 0.056 0.048 43 0.052 0.058   0.007*

Propylsyringol 36 0.004 0.005  36 0.262 0.021  36 0.022 0.021 <0.001* 

Acetosyringone 44 0.027 0.044  44 0.025 0.020  44   -0.002 0.051  0.804 

Propionylsyringone 40 0.016 0.024  40 0.014 0.012  44   -0.002 0.028  0.594 
* Significant level: p<0.05
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Pre-shift  Post-shift  Cross-shift Paired t-test 

n mean SD n mean SD n mean SD p

Guaiacol 7 0.655 0.475  7 1.442 0.917  7  0.951 0.790  0.019* 

Methylguaiacol 7 0.112 0.092 7 0.552 0.599 7  0.440 0.552  0.048*

Ethylguaiacol 7 0.023 0.019 7 0.106 0.133 7  0.082 0.130 0.143

Syringol 7 0.239 0.191 7 0.143 0.066 7 -0.096 0.199 0.246

Eugenol 7 0.162 0.223 7 0.108 0.111 7 -0.054 0.134 0.332 

Propylguaiacol 7 0.045 0.086 7 0.008 0.009 7 -0.037 0.086 0.297

Vanilin 7 0.022 0.018  7 0.032 0.012  7  0.010 0.015 0.105 

cis-isoeugenol 6 0.020 0.018 6 0.020 0.012 6 -0.001 0.008 0.842

Methylsyringol 7 0.035 0.041  7 0.032 0.023  7 -0.002 0.023 0.800 

trans-isoeugenol 7 0.061 0.044  7 0.061 0.032  7  0.001 0.031 0.975 

Acetovanillone 7 0.186 0.175 7 0.434 0.364 7  0.249 0.282 0.085

Ethylsyringol 7 0.016 0.015  7 0.019 0.012  7  0.003 0.015 0.620 

Guaiacylacetone 7 0.032 0.043 7 0.027 0.023 7 -0.005 0.054 0.813

Allylsyringol 7 0.103 0.186 7 0.107 0.388 7  0.067 0.206 0.419

Propylsyringol 6 0.003 0.001  6 0.003 0.002  6  0.001 0.001 0.209 

Acetosyringone 7 0.016 0.012  7 0.014 0.011  7 -0.001 0.008 0.670 

Propionylsyringone 7 0.004 0.007 7 0.011 0.003 7  0.006 0.005 0.121

* Significant level: p<0.05
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The separate analyses for correlations of the
17 MPs were conducted by fuel type. Among wood
& coconut husk group, compounds in the guaiacyl
family (guaiacol, methylguaiacol, and ethylguaiacol),
syringyl family (methylsyringol, ethylsyringol,
propylsyringol,  acetosyringone, and
propionylsyringone) and some euginyl family were
significantly correlated (Table 6). Among the char-
coal using group, no significant correlation was de-
tected, except for guaiacol and propionylsyringone
(Table 7).

The regression analyses showed that summed
guaiacols correlated mostly with LG (r2 = 0.59,
p<0.001), but for summed syringols it was not cor-
related (r2 = 0.07), as detailed in Table 8. Figs 3-5

Table 6. Pearson’s correlation coefficient of cross-shift creatinine adjusted MPs for wood & coconut husk group

depicted the correlations and linear regression mod-
els between MPs and LG. Based on these analy-
ses, the summed guaiacols was selected as the sur-
rogate of biomass smoke exposure in this study.

3.4. Comparison of PM
2.5

, LG, and MPs

Table 9 shows the estimated within- and
between-worker variance components and the
corresponding variance ratios of PM2.5, LG, and
MPs concentrations. The variance components for
the between-worker (bwS2) were higher for LG and
MPs but showed the opposite direction for PM2.5.
This indicated that there was a larger day-to-day
variation of exposure within each worker (the same
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Table 5. Creatinine-adjusted urinary methoxyphenols for unexposed reference group ( g methoxyphenol/mg creatinine)

G U  1.0 00  SY  0 .0 74  E U G  0 .23 8  V A N  0 .1 13  

M T G U  0.3 78 *  M E S Y  0 .3 44 *  C IS O E U  0 .38 8*  A C E T V  0 .1 59  

E T G U  0.4 07 **  E T S Y  0 .4 03 *  T IS O E U  0 .53 6**   

P R G U  -0 .75 3*  PR S Y  0 .3 37 *      

G U A C E  -0 .27 6  A LL S Y  0 .1 38      

  A C E T S Y  0 .5 61 **      

  PR S Y O N  0 .5 59 **      

*  S ignifican t level:  p < 0 .05
**  S ign ifica n t level:  p < 0 .0 1

 Pre-shift  Post-shift Cross-shift Paired t-test

n mean SD    n mean SD n mean SD p

Guaiacol 4 0.455 0.196  4 0.235 0.197  4 -0.220 0.390  0.340 

Methylguaiacol 4 0.019 0.018 4 0.015 0.009 4 -0.004 0.031 0.832

Ethylguaiacol 4 0.018 0.009 4 0.032 0.019 4   0.014 0.012 0.088

Syringol 4 0.031 0.009 4 0.041 0.015 4   0.009 0.024 0.564

Eugenol 4 0.055 0.027  4 0.027 0.014  4 -0.016 0.022  0.244 

Propylguaiacol 4 0.002 0.001 4 0.342 0.189 4 -0.339 0.588 0.423

Vanilin 4 0.021 0.001  4 0.064 0.085  4   0.042 0.085  0.394 

cis-isoeugenol 4 0.012 0.009 4 0.023 0.011 4 -0.001 0.008 0.682

Methylsyringol 4 0.011 0.017  4 0.191 0.375  4 -0.002 0.023  0.387 

trans-isoeugenol 4 0.060 0.047  4 0.032 0.014  4 -0.001 0.031  0.269 

Acetovanillone 4 0.072 0.047 4 0.039 0.011 4   0.134 0.006   0.003*

Ethylsyringol 4 0.009 0.008  4 0.016 0.015  4   0.007 0.016  0.436 

Guaiacylacetone 4 0.013 0.004 4 0.045 0.002 4   0.031 0.070 0.292

Allylsyringol 4 0.026 0.015 4 0.019 0.011 4 -0.007 0.011 0.429

Propylsyringol 4 0.003 0.003  4 0.025 0.042  4   0.022 0.040  0.429 

Acetosyringone 4 0.014 0.007  4 0.012 0.007  4 -0.001 0.008  0.622 

Propionylsyringone 4 0.006 0.001 4 0.011 0.006 4   0.006 0.005 0.184

* Significant level: p<0.05
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