
1. Introduction

 Recent scientific evidence has suggested that 
human-driven warming of the global climate system 
is unequivocal (IPCC, 2007). An increase in extreme 
events is one of the most serious challenges in cop-
ing with anthropogenic climate change due to their 
significant impacts on economy, society and environ-
ment. Extreme climate events, such as droughts and 
floods, by their nature are rare (Dai et al., 1998; Meehl 
et al., 2000). Therefore, they are located at the tails of 
distribution of climate variables and percentage-wise 
will change more rapidly than the mean in a changing 
climate (Greenough et al., 2001; Trenberth et al., 2003). 
Scenario-based global climate models indicate that, in 
a warmer climate, droughts may become longer lasting 
and more severe in current drought-prone regions and 
precipitation events may become more intense leading 
to more flooding (e.g., Gregory et al., 1997; Cameron 
et al., 2000; Wang, 2005). 
 Droughts and floods are complex and recurrent cli-
mate-related phenomena which are among the world’s 
costliest natural disasters causing social-economic 
damages annually and collectively affecting more 
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people than any other forms of natural disasters (e.g., 
Keyantash and Dracup, 2002; Heim, 2002; Below et al., 
2007). Given the consequences and pervasiveness of 
droughts and floods, it is crucially important to monitor, 
understand and predict their variability to better manage 
the associated risks. However, the precise quantifica-
tion of droughts and wet spells is difficult because 
they are many different definitions for these extreme 
events (Wilhite, 2000; Keyantash and Dracup, 2002) 
and the criteria for determining their start and end also 
vary (Dai et al., 2004; Wells et al., 2004). Moreover, 
historical records of direct measurements of the dry-
ness and wetness of the ground such as soil moisture 
content are sparse (Robock et al., 2000). To monitor 
droughts and wet spells, numerous specialized indices 
have been developed using readily available data such 
as precipitation and temperature (e.g., Palmer, 1965; 
McKee et al., 1993; Ntale and Gan, 2003). 
 The Palmer Drought Severity Index (PDSI) is the 
most prominent drought indices used today and one of 
the first procedures to demonstrate success at quanti-
fying the severity of drought across different climates 
(e.g., Palmer 1965; Keyantash and Dracup, 2002; Dai 
et al., 2004; Wells et al., 2004). Besides its routine use 
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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for monitoring droughts, the PDSI has been used to 
study drought climatology and variability in many areas 
of the world (e.g., Dai et al., 1998; Wells et al., 2004; 
Dai et al., 2004). The PDSI was also used in tree-ring-
based reconstruction of droughts (e.g., Li et al., 2007; 
Nicault et al., 2008).   
 In this study, the updated monthly gridded PDSI 
data were statistically examined for the Kingdom of 
Thailand to illustrate interannual/decadal variations 
and a long-term trend in droughts and wet spells and 
their association with the ENSO.  
   
2. A brief review of Palmer’s procedure

 The PDSI was first created by Palmer who used 
a two-layer model for soil moisture computations and 
made certain assumptions concerning field capacity 
and transfer of moisture to and from the layers (Palmer, 
1965). The other parts of the PDSI calculation account 
for climatic differences between locations and seasons 
of the year. These computations attempt to scale the 
PSDI index values so that they fit Palmer’s 11 categories 
(Table 1) that allows comparisons across regions and 
time (Palmer, 1965; Alley, 1984; Wells et al., 2004).  
 The PDSI assumes that evapotranspiration (ET) 
occurs close to the potential ET (PE) until a certain 
amount of the available water is depleted after which 
the actual ET is less than PE. Each month of every year, 
four values related to the soil moisture (ET, recharge 
[R], runoff [RO] and loss [L]) and their complementary 
potential values (PE, potential recharge [PR], potential 
runoff [PRO] and potential loss [PL]) are computed. The 
water-balance coefficients or weighting factors (α, β, γ 
and δ) are then estimated using the four potential values 
to give the climatically appropriate for existing condi-
tions (CAFEC) potential values (Alley, 1984; Wells 
et al., 2004), and are found in the following manner: 
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For example, to calculate the current value of Xi, 0.897 
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of the current moisture anomaly Zi. Palmer called the 
values 0.897 and 1/3 the duration factors. Three PDSI 
values are actually computed each month: X1, X2 and 
X3. The values of X1 and X2 are the severity of a wet or 
dry spell, respectively. While, X3 is the severity of a wet 
or dry spell that is currently established. 
   
3. Data used and analytical methods 

Table 1. Drought classification by PDSI value 

PDSI value Classification
4.00 or more Extremely wet
3.00 to 3.99 Very wet
2.00 to 2.99 Moderately wet
1.00 to 1.99 Slightly wet
0.50 to 0.99 Incipient wet spell
0.49 to -0.49 Near normal
-0.50 to -0.99 Incipient dry spell
-1.00 to -1.99 Mild drought
-2.00 to -2.99 Moderate drought
-3.00 to -3.99 Severe drought
-4 or less Extreme drought
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 The updated 2.5° x 2.5° gridded PDSI data were 
used in this study. The dataset was developed by Dai 
et al. (2004) and is available via the web site, http://
www.cgd.ucar.edu/cas/catalog/climind/pdsi.html. 
These data consist of monthly PDSI over global land 
areas from 1870 to 2005 derived using historical pre-
cipitation and temperature records. We selected the 
PDSI at eight grid cells in the region of 7.50-20.00 °N, 
98.25-102.50 °E, covering most areas of Thailand (Fig. 
1). At these locations, the PDSI data extends from 1951 
to 2005, without missing value.   
 In order to identify an overall spatial structure of 
PDSI variations in Thailand, empirical orthogonal func-
tion (EOF) analysis was performed based on the covari-
ance matrix calculated from the eight PDSI series. The 

EOF technique is multivariate statistics among the most 
widely and extensively methods used in meteorology/
oceanography data analysis (e.g., Preisendorfer, 1988; 
Jolliffe, 2002; Hannachi et al., 2007). The method is in 
essence an exploratory tool, which allows a time display 
and a space display of the space-time field. In practice, 
EOF technique aims at finding a new set of variables 
that capture most of the observed variance from the data 
through linear combination of the original variables. It 
involves decomposition of a multivariate data set into 
its orthogonal (uncorrelated) principal components. 
Time-series of the PDSI can be represented by a linear 
combination of the eigen-function (Fn) as equation (8) 
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Figure 1. Eight grid cells of the monthly PDSI data used in this study. The selected PDSI extends from 1951 to 
2005 and in the region of 7.50-20.00 N, 98.25-102.50 E covering most areas of Thailand.   
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new set of variables that capture most of the observed variance from the data through linear 
combination of the original variables. It involves decomposition of a multivariate data set into its 
orthogonal (uncorrelated) principal components. Time-series of the PDSI can be represented by a 
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in the region of 7.50-20.00 °N, 98.25-102.50 °E covering most areas of Thailand.  
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where Fn (eigenvector) represents orthogonal spatial 
EOF pattern and an is the time-dependent amplitude or 
the EOF expansion coefficient which carries informa-
tion about the temporal variance of the data set along 
Fn. 
 To further examine temporal variability, a linear 
trend was first analyzed for the PDSI EOF1 coeffi-
cient time series by using a non-parametric Kendall’s 
tau based slope estimator (Aguila et al., 2005). This 
method is resistant to the effect of outliers in the series. 
The significance of the trends was determined using 

Kendall’s test, since this approach does not assume an 
underlying probability distribution of the data series 
resulting robust significant trends. The PDSI EOF1 
coefficient time series was further considered interan-
nual (11-term smoothed series) and decadal (60-term 
smoothed series) timescales. The two different tim-
escales were chosen on the basis that the separated 
interannual/decadal variability corresponds to short 
and long-term behavior of the ENSO phenomenon. 
To compare the PDSI EOF1 coefficient time series on 
interannual/decadal time-scales with the well-known 

Figure 2. Monthly PDSI time series plots at each grid cell shown in Fig. 1. Solid lines denote 60-term running means 
representing decadal variations.     

 where Fn (eigenvector) represents orthogonal spatial EOF pattern and an is the time-dependent 
amplitude or the EOF expansion coefficient which carries information about the temporal variance of 
the data set along Fn.

Figure 2. Monthly PDSI time series plots at each grid cell shown in Fig. 1. Solid lines denote 60-term running 
means representing decadal variations.      

 To further examine temporal variability, a linear trend was first analyzed for the PDSI EOF1 
coefficient time series by using a non-parametric Kendall’s tau based slope estimator (Aguila et al.,
2005). This method is resistant to the effect of outliers in the series. The significance of the trends was 
determined using Kendall’s test, since this approach does not assume an underlying probability 
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mode of global climate variability, we examined the 
Multivariate ENSO Index (MEI) calculated as the first 
unrotated Principal Component of six observed atmo-
spheric and oceanic variables in the tropical Pacific 
(Wolter and Timlin, 1998). Since the MEI integrates 
more information than other indices, it fully reflects 
the nature of the coupled ocean–atmosphere system and 
thereby is better for monitoring the ENSO phenomenon 
including, for instance, world-wide correlations with 
surface temperatures and rainfall than the SOI or SST-
based indices (Wolter and Timlin, 1998).

4. Results and Discussions 

4.1. PDSI variations 

 Fig. 2 shows the PDSI time series of each grid cell 
in Thailand. During 1951-2005, PDSI values typically 
ranged from -11.97 to 7.98. As can be seen, each series 
exhibited irregular oscillations in which prominent 
year-to-year variations were superimposed on long-term 
trends with time-scales of a few to multi years (Fig. 2). 

4.2. PDSI versus river flow  

 Annual river flow rates at selected five stations 
across Thailand (Fig. 1) and the PDSI at grid cell B, 
C, D, E, G and H that have long records ranging from 
1973-2005, 1956-2005, 1967-2005, 1954-2005 and 
1951-2005 respectively were compared (Fig. 3). Both 
the PDSI and annual streamflow rates in Thailand 
have large multi-year and decadal variations, and they 
covaried reasonably as correlation coefficient for each 
grid cell was in range of  0.41 – 0.70 with all significant 
at 95% level. Thailand PDSI-streamflow relationships 
are strong in the North and South and become low over 
the Central, East and Northeast. This may be due to the 
fact that more rainfall evaporates instead of going into 
streamflow in these rapid land-use changes. Based on 
the results, it is reasonable to suggest that the PDSI is 
a good proxy of both surface moisture conditions and 
streamflow in Thailand, and they are consistent with 
the previous studies showing coherent variations with 
comparable magnitudes between the two in many parts 
of the world (Dai et al., 1998; 2004). 

Figure 3. Scatter plots of PDSI and annual anomalies of streamflow rates for P1 (a), N.5A (b), C2 (c), E18 (d), KGT12 (e) 
and X64 (f). Locations of annual streamflow records used are shown in Fig. 1. 

distribution of the data series resulting robust significant trends. The PDSI EOF1 coefficient time 
series was further considered interannual (11-term smoothed series) and decadal (60-term smoothed 
series) timescales. The two different timescales were chosen on the basis that the separated 
interannual/decadal variability corresponds to short and long-term behavior of the ENSO 
phenomenon. To compare the PDSI EOF1 coefficient time series on interannual/decadal time-scales 
with the well-known mode of global climate variability, we examined the Multivariate ENSO Index 
(MEI) calculated as the first unrotated Principal Component of six observed atmospheric and oceanic 
variables in the tropical Pacific (Wolter and Timlin, 1998). Since the MEI integrates more information 
than other indices, it fully reflects the nature of the coupled ocean–atmosphere system and thereby is 
better for monitoring the ENSO phenomenon including, for instance, world-wide correlations with 
surface temperatures and rainfall than the SOI or SST-based indices (Wolter and Timlin, 1998). 

4. Results and discussions  

4.1. PDSI variations  

Fig. 2 shows the PDSI time series of each grid cell in Thailand. During 1951-2005, PDSI 
values typically ranged from -11.97 to 7.98. As can be seen, each series exhibited irregular 
oscillations in which prominent year-to-year variations were superimposed on long-term trends with 
time-scales of a few to multi years (Fig. 2).  

Figure 3. Scatter plots of PDSI and annual anomalies of streamflow rates for P1 (a), N.5A (b), C2 (c), E18 (d), 
KGT12 (e) and X64 (f). Locations of annual streamflow records used are shown in Fig. 1.  
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4.3. A leading EOF mode of Thailand’s PDSI

 The EOF analysis of monthly PDSI from 1951-2005 
revealed that the leading mode accounted for 62% of 
the total variance. The principal component time series 
of the first EOF represented multi-timescale changes 
ranging from interannual/decadal variations to a long-
term trend (Fig. 4). From a long-term perspective, there 
was a declining trend towards remarkable drying over 
Thailand for period 1951-2005. The results are in line 
with the previous studies showing the significant surface 
warming, the unusual and persistent deficit in rainfall 
and a concomitant reduction of rainy days observed in 
Thailand over the last three decades (Limsakul et al., 
2007; Limsakul and Goes, 2008). These changes are 
expected to be a major cause for the progressive and 
widespread drying over the region, as clearly evidenced 
from the PDSI and rainfall records. In addition, an 
abrupt shift from mild wet spells to remarkable drying 
was identified in the mid 1970s (Fig. 4), consistent 
with the well-known climatic regime shift occurred in 
1976/1977 with coherent atmosphere-ocean changes 
and far-reaching impacts in many parts of the world 
(e.g., Trenberth and Hurrell, 1994; Mantua et al., 
1997; Zhang et al., 1997; McGowan et al., 1998). On 
interannual/decadal basis, the principal component 
time series of PDSI EOF1 correlated significantly with 
ENSO events (Table 2). This is not surprising in view 
of the well documented changes in the distributions of 

rainfall, droughts and floods throughout the world 
during the warm and cold phases of ENSO. Dai et al. 
(2004) pointed out that the second EOF of global PDSI 
highly correlated with ENSO, since it was mainly in-
duced by the precipitation anomalies associated with 
ENSO, rather than ENSO-driven temperature anoma-
lies. Limsakul et al. (2007) further demonstrated that 
the recent drought-like condition in Thailand has been 
closely associated with the shift in the ENSO towards 
more El Niño events since the late 1970s, and coincided 
with the high global mean temperature.

4.4. Temporal frequencies of severe/extreme droughts 
and very/extremely wet spells
 
 We also estimated occurrence frequencies in 
severe/extreme droughts (PDSI <-3) and very/extremely 
wet spells (PDSI >3) for 1951-2005. This was done 
by counting the annual occurrence frequencies at each 
grid cell and summing all to represent an overall tem-
poral change over Thailand. Figs. 5-7 show the annual 
occurrence frequencies in severe/extreme droughts, 
very/extremely wet spells and the sum of the two 
respectively, together with estimated linear trends. It 
can be seen that the multi-year and decadal variations 
of the annual occurrence frequencies in severe/extreme 
droughts, very/extremely wet spells and the sum of the 
two were very large. In the second half of 20th century, 
the annual occurrence frequencies in severe/extreme 
droughts in Thailand has more than doubled with a large 
jump in the mid 1970s (Fig. 5) as a result of rainfall 
decrease (Limsakul et al., 2007) and subsequent expan-
sion primarily due to surface warming (Limsakul and 
Goes, 2008). Coinciding with increased occurrence 
frequency in severe/extreme droughts over 55 years, 
very/extremely wet spell frequency gradually declined 
by 2.5% per year as compared with the 1951-2005 
mean (Fig. 6). Together, the sum of the annual occur-
rence frequencies in severe/extreme droughts and very/
extremely wet spells increased by 2% per year relative 
to the long-term mean. This finding agrees well with 
the study of Dai et al. (2004). They found that global 
very dry areas defined as PDSI< -3 have more than 
doubled since the 1970s with a large shift in the early 

Table 2. Spearman correlation coefficients (rs) between MEI and 11-term and 60-term smoothed PDSI EOF1 

Variables N Neff rs p value

11-term smoothed PDSI EOF1 & MEI 650 89 0.59 <0.01
60-term smoothed PDSI EOF1 & MEI 600 59 0.88 <0.01

N and Neff are the number of data points in each series and the effective number of independent observation. Significant 
levels of computed rs were assessed by calculating the effective number of independent observations (Neff) following the 
approach of Emery and Thomson (1997). 

Figure 4. The PDSI EOF1 principal component time series. 
The bar charts denote interannual variability while the solid 
and dash lines represent decadal variability and a long-term 
trend, respectively

Figure 4. The PDSI EOF1 principal component time series. The bar charts denote interannual variability while 
the solid and dash lines represent decadal variability and a long-term trend, respectively 

4.4. Temporal frequencies of severe/extreme droughts and very/extremely wet spells 

We also estimated occurrence frequencies in severe/extreme droughts (PDSI <-3) and 
very/extremely wet spells (PDSI >3) for 1951-2005. This was done by counting the annual occurrence 
frequencies at each grid cell and summing all to represent an overall temporal change over Thailand. 
Figs. 5-7 show the annual occurrence frequencies in severe/extreme droughts, very/extremely wet 
spells and the sum of the two respectively, together with estimated linear trends. It can be seen that 
the multi-year and decadal variations of the annual occurrence frequencies in severe/extreme 
droughts, very/extremely wet spells and the sum of the two were very large. In the second half of 20th

century, the annual occurrence frequencies in severe/extreme droughts in Thailand has more than 
doubled with a large jump in the mid 1970s (Fig. 5) as a result of rainfall decrease (Limsakul et al.,
2007) and subsequent expansion primarily due to surface warming (Limsakul and Goes, 2008). 
Coinciding with increased occurrence frequency in severe/extreme droughts over 55 years, 
very/extremely wet spell frequency gradually declined by 2.5% per year as compared with the 1951-
2005 mean (Fig. 6). Together, the sum of the annual occurrence frequencies in severe/extreme 
droughts and very/extremely wet spells increased by 2% per year relative to the long-term mean. This 
finding agrees well with the study of Dai et al. (2004). They found that global very dry areas defined 
as PDSI< -3 have more than doubled since the 1970s with a large shift in the early 1980s due to 
ENSO-induced precipitation decrease and surface warming, while global very wet areas (PDSI> 3) 
declined slightly during the 1980s. Overall, the global land areas in either very dry or very wet 
condition have increased from about 20% to 38% since 1972.  

Figure 5. The annual occurrence frequency in severe/extreme drought (PDSI< -3) summing for all grid cells. 
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Figure 4. The PDSI EOF1 principal component time series. The bar charts denote interannual variability while 
the solid and dash lines represent decadal variability and a long-term trend, respectively 
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Figure 6. The annual occurrence frequency in very/extremely wet spells (PDSI> 3) summing for all grid cells.  

Figure 7. The annual occurrence frequency in severe/extreme drought + very/extremely wet spells summing for 
all grid cells. 

An additional analysis further shows significant correlations between the annual occurrence 
frequencies in severe/extreme droughts, very/extremely wet spells and the sum of the two and the 
MEI (Table 3). It is suggested that severe/extreme droughts and very/extremely wet spells tended to 
occur more frequently during either El Niño or La Niña phase of ENSO years. The results show good 
correspondence to Limsakul et al. (2007) and Limsakul and Goes (2008) who indicated that 
temperature and rainfall in Thailand were higher (lower) and lower (higher) than average during El 
Niño (La Niña) events, respectively. On basis of the previous results in combination additional 
evidence from this study, it is obvious that ENSO cycle is the most prominent driving force of 
interannual climate variability and associated extreme events in Thailand. 

Table 3. Spearman correlation coefficients (rs) between MEI and the annual occurrence frequencies in 
severe/extreme droughts, very/extremely wet spells and the sum of the two.  N and Neff  are the same as Table 2. 

Variables N Neff rs p value 

Severe/extreme drought (PDSI< -3) & MEI 55 50 0.58 <0.01 

Very/extremely wet spells (PDSI> 3) & MEI 55 42 -0.45 <0.01 

The sum of the two 55 43 0.45 <0.01 

       
5. Summary and concluding remarks 

Temporal variations in droughts and wet spells and associated extreme frequencies in Thailand 
for the period 1951-2005 were examined on the basis of the updated monthly gridded PDSI data on a 
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Figure 6. The annual occurrence frequency in very/extremely 
wet spells (PDSI> 3) summing for all grid cells.

Figure 7. The annual occurrence frequency in severe/extreme 
drought + very/extremely wet spells summing for all grid cells. 

1980s due to ENSO-induced precipitation decrease and 
surface warming, while global very wet areas (PDSI> 3) 
declined slightly during the 1980s. Overall, the global 
land areas in either very dry or very wet condition have 
increased from about 20% to 38% since 1972. 
 An additional analysis further shows significant 
correlations between the annual occurrence frequen-
cies in severe/extreme droughts, very/extremely wet 
spells and the sum of the two and the MEI (Table 3). 
It is suggested that severe/extreme droughts and very/
extremely wet spells tended to occur more frequently 
during either El Niño or La Niña phase of ENSO years. 
The results show good correspondence to Limsakul 
et al. (2007) and Limsakul and Goes (2008) who in-
dicated that temperature and rainfall in Thailand were 
higher (lower) and lower (higher) than average during 
El Niño (La Niña) events, respectively. On basis of the 
previous results in combination additional evidence 
from this study, it is obvious that ENSO cycle is the 
most prominent driving force of interannual climate 
variability and associated extreme events in Thailand.
      
5. Summary and concluding remarks

 Temporal variations in droughts and wet spells 
and associated extreme frequencies in Thailand for 
the period 1951-2005 were examined on the basis of 
the updated monthly gridded PDSI data on a 2.5° grid 
extracted from global dataset. The PDSI is a water-

budget-based drought index that uses a two-layer model 
with incorporation of evapotranspiration as a measure 
of water demand. The extracted gridded PDSI was 
compared with annual streamflow records at selected 
five stations across Thailand. The PDSI variations in 
Thailand were correlated well with those in the observed 
annual streamflow rates. This suggests that the PDSI is 
a good proxy for monitoring and assessing droughts/
wet spells and surface moisture conditions in Thailand 
and it can be further used as an index of annual-mean 
streamflow variations. However, the PDSI recalculation 
using a high spatial-temporal dataset and further modi-
fication (where necessary) will produce more realistic 
results that provide a useful resource for quantifying and 
evaluating both the regional vulnerability to droughts 
and wet spells and the seasonal monitoring and predict-
ability of the phenomenon.  
 The EOF analysis of the PDSI revealed a fairly 
linear trend resulting from a combination of rainfall 
and surface temperature trends and an ENSO-induced 
mode of large interannual/decadal variations as the 
leading pattern. The ENSO cycle and its shift toward 
more warm phases after about 1976 which has been 
linked to decadal changes in climate throughout the 
Pacific basin (e.g., Mantua et al., 1997; Zhang et al., 
1997) and is very unusual given the records of previ-
ous 100 years (Trenberth and Hoar, 1996) appears to 
be largely responsible for interannual variations and 
the recent progressive dying trend in Thailand. From 
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1951 to 2005, there were also large multi-year to dec-
adal variations in the occurrence frequencies in severe/
extreme droughts (PDSI< -3) and very/extremely wet 
spells (PDSI> 3) with the coherent jump occurred in the 
mid 1970s while an increased trend is still discernable. 
Similar to the leading PDSI EOF1 mode, the annual 
occurrence frequencies in severe/extreme droughts 
and very/extremely wet spells were closely related to 
ENSO events which extreme events tended to happen 
more frequently during ENSO years.
 Patterns of EOF-derived PDSI variations and 
their extreme frequencies are consistent with surface 
temperature warming in Thailand with a pronounced 
increase after 1970s (Limsakul and Goes, 2008), 
similar to the global trend which has been attributed 
to human-forced climate change arising primarily 
from increased greenhouse gases. Higher temperatures 
increase the water-holding capacity of the atmosphere 
and thus increased potential evapotranspiration (Dai 
et al., 2004). Hence recent global and regional warming 
not only promotes a more vigorous hydrological cycle 
but also enhances drying near the surface as is captured 
by the PDSI. Moreover, some global climate models 
indicate a more El Niño-like superposed on top of more 
general warming with increased greenhouse gases (e.g., 
Meehl and Washington, 1996; Knutson et al., 1997). If 
this is the case, Thailand as one of climate change and 
ENSO-sensitive regions will experience the increasing 
risk of severe and extreme droughts/floods in the years 
to come as anthropogenic global warming progresses 
and produces increased temperatures and the anomalous 
oscillations of ENSO.   
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