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Abstract

 In the present study, concentration, distribution and speciation of trace metals were conducted to assess the overall 
classification of Ni, Cu and Pb as well as their risk status in the surface sediments of Klang River.  Sequential extraction 
technique (SET) was used to evaluate the four (exchangeable, acid-reducible, oxidisable-organic and residual) fractions of 
the surface sediments.  The total concentrations of metals ranged from 5.26 µg/g d.w. to 22.93µg/g d.w for Ni; 9.47-66.74 
µg/g d.w. for Cu; and 24.78-62.35 µg/g d.w. for Pb. The fractionation of studied metals (except Cu) in most stations were in 
the order of residual > acid-reducible > oxidisable-organic > exchangeable. The degree of surface sediments contamination 
was computed for Risk Assessment Code (RAC), Individual Contamination Factors (ICF) and Global contamination factor 
(GCF). The result of this study showed that none of the metals studied had potential risk to fauna and flora of the Klang 
River systems. 
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1. Introduction

 Since industrial revolution started in the mid-1800s, 
the bio-geochemical cycle of inorganic contamination  
present in the environment has been greatly acceler-
ated by human activities (Ahmed and Ishiga, 2006; 
Davydova, 2005). 
 Heavy metal contamination of sediments can 
critically degrade aquatic systems (Charkhabi et al., 
2005). In sediments, metals can be present in a number 
of chemical forms, exhibiting different physical and 
chemical behaviors with respect to chemical interac-
tions, mobility, biological availability, and potential 
toxicity (Arnason and Fletcher, 2003; Singh et al., 
2005). In the present study, sediment samples were 
collected and analyzed. Sediments have several advan-
tages including (1) sediment plays a major role in the 
transport and storage of metals (Salomons et al., 1987); 
(2) sediment is frequently used to identify sources of 
pollutants, spatially and temporally (Birch et al., 2001); 
And (3) metals in oxic sediments are mainly distributed 
in different operationally defined geochemical phases, 
such as carbonates, total organic carbon (TOC), and 
Fe-Mn oxides, which have diverse binding abilities with 
various metals and have contrasting influences on the 
metal bioavailability (Coquery and Welbourn, 1995; 
Tessier and Campbell, 1987). The toxicity of the metals 
particularly depend on their chemical forms rather than 

on their total contents, and therefore, speciation studies 
increasingly gain importance (Liu et al., 2007). Frac-
tionation is the process of classification of an analyte 
or a group of analytes into a certain matrix according to 
physical (size, solubility) or chemical (bonding, reactiv-
ity) properties (Weisz et al., 2000). In order to assay the 
fractionation of heavy metals from sediments, various 
sequential extraction procedures have been applied. 
Sequential extraction analysis is a technique applied 
to study the geochemical partitioning of heavy metals 
amongst solid mineral and organic phases in sediment 
or other earth material (Badri and Aston, 1983; Howard 
and Shu, 1996; Tessier et al., 1979).   
 In this investigation, the sequential extraction 
technique (SET) was used to fractionate resistant frac-
tion (lithogenous) from nonresistant (non-lithogenous) 
fractions. The procedure of SET consists of four (ex-
changeable, acid-reducible, oxidisable organic and 
residual) fractions. The mathematical summation of 
exchangeable, acid-reducible, and oxidisable-organic 
fractions constitutes the nonresistant phase (Badri and 
Aston, 1983). Even though there are two disadvantage 
of using sequential extraction technique, e.g. non-
specificity of extractants and metal re-absorption, it is 
still widely reported in the literature (Howard and Shu, 
1996).         
 In Malaysia, metal fractionations were reported 
in river sediments (Ismail and Ramli, 1997; Lim and 
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The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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Kiu, 1995; Mushrifah et al., 1995). But there is no 
information on the basis of metals in the Klang River. 
Hence, the study described in this paper would be of 
great value in this area. The main objectives of this 
study were: (1) to investigate the fractionation of Ni, 
Cu and Pb in surface sediments of the Klang River, (2) 
to assay their mobility and bioavailability in order to 
provide preliminary baseline data to control  pollution, 
and (3) to determine possible sources of anthropogenic 
inputs of trace metals in this river. 

2. Materials and Methods

2.1. Study area

 Klang River is one of the most important rivers in 
Malaysia (Fig. 1). It flows through Kuala Lumpur and 
Klang Valley and eventually flows into the Straits of 
Malacca. The Klang River consisted of 11 main tribu-
taries including Sungai Batu, Sungai Gombak, Sungai 
Ampang, Sungai Penchala which received sewage 
discharges from industrial area (e.g. breweries, soft 
drink, food processing, chemical manufacturing, semi-
conductor and electrical, rubber processing and palm oil 
processing discharges) and urban area (e.g., road traffic 

run-off and municipal sewerage), agricultural activities 
(e.g., fertilizers and other agricultural run-off) as well 
as atmospheric fallout (however, there is no sufficient 
information of atmospheric inputs on the Klang River). 
Klang River systems is a very important area of study 
due to the fact that: (1) it is situated along the most 
urbanized and heavily-populated area where more than 
4.4 million people (16% of the national population) 
lives and (2) the most industrial area of Selangor state 
is located along this river. it flows into the one of the 
busiest international shipping lanes in the world (Naji 
and Ismail, 2011). 

2.2. Sampling

 Surface (0-5cm) sediment samples were collected 
from 21 different sites along the Klang River (Fig. 1). 
The longitudes and latitudes of sampling stations were 
measured by using GPS (Table 1). The surface sedi-
ments were transferred in polyethylene plastic bag and 
labeled. They were then kept in an ice box for transport 
to the laboratory for processing and analyses. Samples 
for assessment were dried using an air-circulating oven 
at 80˚C, and sieved through 63µm mesh size, and kept 
in an acid-washed container for future use.

Figure 1.  Study area and geographical location of 21 stations in the Klang River
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Figure 1.  Study area and geographical location of 21 stations in the Klang River 
 
2.3. Sequential extraction 
 

Fractionations of Ni, Cu and Pb in surface sediments were analyzed by using the 
modified sequential extraction technique (Table 2) (Badri and Aston, 1983; Ismail and Ramli, 
1997).  

(1) Fraction 1: Easily, freely or leachable and exchangeable (EFLE). About 10 g of 
sample was continuously shaken for 3 h with 50 ml 1.0M ammonium acetate (NH4CH3COO), pH 
7.0 at room temperature. 

(2) Fraction 2: Acid-reducible. The residue form (1) was continuously shaken for 3 h 
with 50 ml 0.25M hydroxyl-ammonium chloride (NH2OH.HCl) acidified to pH 2 with HCl, at 
room temperature. 

(3) Fraction 3: Oxidisable-organic.  The residue from (2) was first oxidized with 15ml 
H2O2 (R&M Chemicals 35%) in a water bath at 90˚C. After cooling, the metal released from the 
organic complexes was continuously shaken for 3 h with 50 ml of 1.0M ammonium acetate 
(NH4CH3COO) acidified to pH 2.0 with HCl, at room temperature. 

(4) Fraction 4: Resistant. The residue form (3) was digested in a 10 ml combination (ratio 
of 4:1) of concentrated HNO3 (AnalaR grade, R&M Chemicals 65%) and HClO4 (AnalaR grade, 
R&M Chemicals 70%). 
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2.3. Sequential extraction

 Fractionations of Ni, Cu and Pb in surface sedi-
ments were analyzed by using the modified sequential 
extraction technique (Table 2) (Badri and Aston, 1983; 
Ismail and Ramli, 1997). 
 (1) Fraction 1: Easily, freely or leachable and 
exchangeable (EFLE). About 10 g of sample was con-
tinuously shaken for 3 h with 50 ml 1.0M ammonium 
acetate (NH4CH3COO), pH 7.0 at room temperature.
 (2) Fraction 2: Acid-reducible. The residue form 
(1) was continuously shaken for 3 h with 50 ml 0.25M 
hydroxyl-ammonium chloride (NH2OH.HCl) acidified 
to pH 2 with HCl, at room temperature.
 (3) Fraction 3: Oxidisable-organic. The residue 
from (2) was first oxidized with 15ml H2O2 (R&M 
Chemicals 35%) in a water bath at 90˚C. After cool-
ing, the metal released from the organic complexes 
was continuously shaken for 3 h with 50 ml of 1.0M 
ammonium acetate (NH4CH3COO) acidified to pH 2.0 
with HCl, at room temperature.
 (4) Fraction 4: Resistant. The residue form (3) was 
digested in a 10 ml combination (ratio of 4:1) of con-
centrated HNO3 (AnalaR grade, R&M Chemicals 65%) 
and HClO4 (AnalaR grade, R&M Chemicals 70%).

 The residue of each step was rinsed to 20 ml double-
distilled water (DDW) and filtered through Whatman® 
No.1 filter paper into pre-cleaned 100 ml volumetric 
flasks. The supernatants liquid of each fractions after 
filtration were stored for metal determination, excepting 
for fraction 1 which is sensitive and must be analyzed 
immediately. The samples were measured for trace 
metals concentration by using an air-acetylene flame 
atomic absorption spectrophotometer (Perkin-Elmer 
Model AAnalyst 800). 

2.5. Quality control

 To prevent uncertain contaminations, all labora-
tory glassware used were washed with phosphate-free 
soap, double rinsed with distilled water and soaked 
in 10% HNO3 for 24 h after then all equipments were 
then rinsed two times with double distilled water and 
left semi-closed to dry at room temperature. Certified 
Reference Material (CRM) (International Atomic En-
ergy Agency, Soil-5,Vienna, Austria) was determined 
as a precision check. Percentage of recoveries (n=5 for 
each metal) for certified and measured concentration 
of those metals ranged from 95% for Cu to 98% for 
Ni (Table 3). Calibration curves for each trace metals 

Table 1. The locations of the sampling sites along the Klang River

Station NO. Designation Sites Latitude (N) Longitude (E)
1 Semi-urban Beringin 3°13′ 01″ 101°40′ 54″
2 Urban Gombak Jaya 3°11′ 20″ 101°42′ 03″
3 Urban Ulu  Klang 3°10′ 04″ 101°41′ 35″
4 Urban PWTC 3° 09′ 48″ 101° 45′ 03″
5 Urban Mesjid Jamek 3° 08′ 49″ 101°41′ 42″
6 Urban Seputeh 3° 08′ 49″ 101° 40′ 31″
7 Urban Sri Sentosa 3° 06′ 48″ 101° 39′ 41″
8 Semi-urban Puchong Jaya 3° 04′ 37″ 101° 36′ 53″
9 Industrial Penaga Industrial park 3° 03′ 27″ 101° 36′ 24″
10 Rural Puchong Tengah 3° 02′ 44″ 101° 35′ 49″
11 Industrial Kampung Seri Aman 3° 01′ 05″ 101° 34′ 47″
12 Industrial Kota Permai 2° 58′ 54″ 101° 33′ 03″
13 Industrial Alam Indah 2° 59′ 29″ 101° 32′ 48″
14 Industrial Kampung Baru Hicom 3° 00′ 48″ 101° 32′ 59″
15 Urban Seksyen 24 3° 01′ 49″ 101° 30′ 42″
16 Urban+Industrial Kampung Seri Kenangan 3° 02′ 29″ 101° 28′ 20″
17 Urban Klang Town 3° 02′ 43″ 101°26′ 49″
18 Semi-urban Sangai Udang 3° 03′ 11″ 101°25′ 31″
19 Fishing village+Urban area Sungai Sirih 3° 02′ 23″ 101°23′ 36″
20 Fishing village+Urban area Bandar Sultan Sulaiman 3° 01′ 07″ 101°22′ 28″
21 Near Port Bagan Hailam 3° 00′ 13″ 101°23′ 19″
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were determined with 1,000 mg/L (BDH Spectrosol®) 
stock solution. The reagent and procedural blanks were 
monitored for each fraction after five samples during 
the analysis as part of the quality accuracy program.
 
2.6. Statistical analysis

 All statistical analyses were computed using Statis-
tical Package for Social Science (SPSS) version 16. 

3. Results and Discussion

3.1. Ni sequential fractionation

 The mean concentrations and percentages of 
sequential extraction of Ni for each sampling station 
are shown in Table 4. The total Ni concentration ranged 
from 5.26 to 22.93 (µg/g d.w.). The exchangeable frac-
tion of Ni ranged from 0.12 to 1.53 µg/g with mean 
percentage of 3.81%. The acid-reducible fraction ranged 
from 0.22 to 2.4 (µg/g d.w.) with mean percentage of 
6.82%. The oxidisable-organic fraction ranged from 
0.63 to 11.16 (µg/g d.w.) with mean percentage of 
31.72%. The resistant fraction ranged from 4.31 to 13.18 
(µg/g d.w.). In this investigation about 57.66% of Ni 
in average was computed in the resistant fraction. The 
fractionation of Ni in the surface sediments of Klang 
River was in descending order of resistant > oxidisable-
organic > acid-reducible > exchangeable. The most Ni 
ions contained to residual and oxidisable-organic frac-
tions. The mathematical summations of exchangeable, 
acid-reducible and oxidisable-organic fractions consti-
tute the nonresistant fraction (non-lithogenous) (Badri 
and Aston, 1983). The nonresistant fraction ranged from 
18.37 to 60.3% with mean value of 42.08%. Between 
the nonresistant fractions, the mean percentages of 

exchangeable, acid-reducible and oxidisable-organic 
constituted 8.99, 16.1 and 74.9%, respectively. The Ni 
concentrations in most of the sampling stations were 
dominated by the resistant fraction. Exchangeable is 
most toxic in contrast with the rest of the fractions for 
aquatic organisms, because it is easily removed and 
is soluble. In the present study, the small portion of 
exchangeable fraction showed poor bioavailability of 
this metal in the surface sediment of the Klang River. 

3.2. Cu sequential fractionation

 Copper is a micronutrient, essential for most physi-
ological growth for aquatic and terrestrial organisms 
(Alagarsamy, 2009). Geochemical fractions of Cu in 
surface sediment of The Klang River are tabulated in 
the Table 5. The total Cu concentration ranged from 
0.28 to1.55 (µg/g d.w.). The exchangeable fraction of 
Cu range from 0.28 to 1.55 (µg/g d.w.) with mean per-
centage of 2.28%. The acid-reducible fraction ranged 
from 0.01 to 0.65 (µg/g d.w.) with mean percentage of 
0.7%. The oxidisable-organic fraction ranged from 3.87 
to 44.43 (µg/g d.w.) with mean percentage of 53.01%. 
The resistant fraction ranged from 5.13 to 33.75 (µg/g 
d.w.) with mean percentage of 44%.  The fractionation 
of Cu in the surface sediments of Klang River was in 
the order of oxidisable-organic > residual > exchange-
able > acid-reducible. This investigation showed that 
more than 50% of Cu was associated with oxidisable-
organic. Organic matter is the most significant sink 
for Cu in sediments (Chartier et al., 2001). The Cu 
in the Oxidisable fraction is associated with biogenic 
carriers, which settled through the water column (Cal-
lender and Bowser, 1980; Chester et al., 1988). Once 
the particulate material is precipitated at the surface of 
sediments, the Oxidisable-organic fraction undergoes 

Table 2.  Sequential extraction technique (SET) scheme

Fraction(s) Extracting reagent(s) Comment
1-Exchangeable          NH4CH3COO 1 mol/L pH=7 Soluble and exchangeable cations
2-Acid-reducible          NH2OH.HCl 0.25 mol/L pH=2 Easy to mobilize
3-Oxidisable-organic    H2O2 (30%), NH4CH3COO 1mol/L pH=2 Difficult to mobilize
4-Resistant                     HNO3 (65%), HClO4 (70%) Strong extracting reagents

Table 3. Total metals concentrations (μg/g dry weight) in certified reference materials (CRM) (Mean±standard deviations; 
n=5).

Element Measured concentration (μg/g d.w.) Certified concentration (μg/g d.w.) Recovery (%)
Ni 12.75±0.09 13.00±0.3 98
Cu 73.09±0.8 77.10±1.20 95
Pb 123.84±22.00 129.00±26.00 96
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phase transformations as the organic carriers decom-
pose (Alagarsamy, 2009). The present investigation 
determined that most Cu ion in surface sediments is as-
sociated with oxidisable-organic (53.01%) and residual 
(44%) fractions. The Cu concentrations in the most 
sampling stations were dominated by the nonresistant 
fraction. The high level of nonresistant of Cu can be 
due to industrial activities, dumping and road run-offs in 
the Klang River. Among the nonresistant fractions, the 
mean percentages of exchangeable, acid-reducible and 
oxidisable-organic constituted 4.07, 1.25 and 94.67%, 
respectively. The high percentage of oxidisable-organic 
fraction identified that the organically-bound materials 
such as humic and fulvic can be easily available for 
biological uptake (Yap et al., 2003). The concentration 
of Cu in the acid-reducible fraction (0.01to 0.65) was 
low, because of the low affinity of Cu in acid-reducible 
fraction in surface sediments of Klang River. On the 
other hand, Iron and manganese-oxides, constituted in 
acid-reducible fraction have high scavenging efficien-
cies for trace metals but they are thermodynamically 
unstable under anoxic circumstances (Tokalioglu et al., 
2000).   

3.3. Pb sequential fractionation

 Most often Pb due to its high toxicity entails con-
tamination concern. The geochemical distributions and 
mean concentrations of Pb are shown in Table 6. The 
total concentration of Pb ranged from 24.78 to 62.35 
(µg/g d.w.). The exchangeable fraction of Pb ranged 
from 0.59 to 4.07 (µg/g d.w.) with mean percentage of 
4.06%. The acid-reducible fraction ranged from 0.38 
to 4.16 (µg/g d.w.) with mean percentage of 3.59%. 
The oxidisable-organic fraction ranged from 2.81 to 
28.9 (µg/g d.w.) with mean percentage of 25.09%. The 
resistant fraction ranged from 14.29 to 49.64 (µg/g d.w.) 
with mean percentage of 67.26%. The fractionation of 
Pb in the surface sediments was in descending order of 
residual > oxidisable-organic > exchangeable > acid-
reducible. More than 60% of the total concentration 
of Pb was dominated by residual fraction in surface 
sediments of the Klang River. Pb associated largely in 
the residual fraction and can be less bioavailable except 
under harsh condition. Since one of the main sources of 
Pb in the environment is automotive. Our result showed 
that those stations closed to the intensive main traffic 

Table  4. Sequential chemical Concentration of  Ni  (µg/g d.w.) in surface sediments of Klang River

Station
NO.

Ni Total
Exchangeable Acid-reducible Oxidisable-organic Resident

1 0.12±0.01 (2.3) 0.22±0.00(4.18) 0.63±0.02 (11.89) 4.31±0.05(81.63) 5.26
2 0.15±0.02(1.06) 0.67±0.03 (4.29) 2.53±0.05 (18.49) 10.32±1.5 (75.5) 13.67
3 0.21±0.02(1.73) 0.99±0.01 (8.33) 2.58±0.14 (21.65) 8.15±1.02(68.29) 11.93
4 0.5±0.04(4.21) 0.8±0.02 (6.7) 1.07±0.06 (9) 9.53±0.49 (80.09) 11.90
5 0.73±0.03 (4.54) 0.41±0.04(2.55) 5.43±0.14 (33.93) 9.54±0.34 (58.98) 16.11
6 0.45±0.05 (4.52) 0.34±0.02 (3.41) 1.45±0.11 (14.43) 7.81±0.73 (77.65) 10.05
7 0.53±0.01(2.98) 0.87±0.05 (4.87) 3.23±0.16 (18.15) 13.18±2.31 (74) 17.81
8 0.5±0.05(3.43) 0.7±0.06 (4.82) 4.86±0.21(33.55) 8.44±0.35 (58.2) 14.50
9 0.74±0.07 (3.79) 1.72±0.03 (8.8) 3.59 ±0.15(18.37) 13.7±1.7 (69) 19.75

10 0.78±0.03 (5.68 ) 0.86±0.06 (6.26) 6.08±0.08(44.2) 6.03± (43.86) 13.75
11 0.97±0.06 (4.25) 1.64±0.03 (7.18) 11.16±1.23(48.87) 9.07± (39.7) 22.84
12 0.9±0.06 (4.42) 1.73±0.1(8.49) 6.39±0.97 (31.36) 11.3±1.03 (55.7) 20.32
13 0.25±0.01(1.45) 1.23±0.06 (6.99) 7.64±0.54 (43.42) 8.47±0.68(48.14) 17.59
14 0.58±0.03 (3) 1.33±0.03 (6.89) 8.57±0.47 (44.48) 8.79±0.70 (45.63) 19.27
15 0.48±0.01 (3.23) 1.1±0.1(7.4) 6.59±0.54(44.44) 6.67±0.46 (44.93) 14.84
16 0.6±0.04 (2.84) 2.17±0.09 (10.24) 8.45±0.30 (39.79) 10.01±0.87 (47.1) 21.23
17 0.97±0.05 (4.53) 1.48±0.06 (6.92) 9.18±0.78(42.92) 9.7±0.32(45.6) 21.33
18 1.03±0.04 (4.5) 2.23±0.01 (9.71) 9.47±0.36(41.21) 10.2±0.56 (44.6) 22.93
19 1.44±0.1(7.19) 2.15±0.08(10.74) 7.67±0.75 (38.21) 8.8±0.32 (43.86) 20.06
20 0.56±0.03 (3.44) 0.79±0.03 (4.78) 5.3±0.38 (33.71) 9.53±0.21 (58.07) 16.18
21 0.79±0.01 (6.8) 1.04±0.02 (8.99) 3.95±0.87 (34) 5.83±0.43 (50.21) 11.61

Range 0.12-1.53 0.22- 2.4 0.63-11.16 4.31-13.18 5.26-22.93
Note: The values in parentheses Shows percentage of elemental concentration
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had high non-lithogenous percentage of this element 
such as stations 5, 8, 17, 18, 19 and 20. 
 Overall, chemical speciation of studied metals in 
the surface sediments of Klang River from all sampling 
stations followed the order below:    
Ni: residual (57.66%) > Oxidisable-organic (31.72%) 
> acid-reducible (6.82%)> exchangeable (3.81%);  
Cu: Oxidisable-organic (53.01%) > residual (44%) > 
exchangeable (2.28%) > acid-reducible (0.7%); Pb: 
residual (67.26%) > Oxidisable-organic (25.09%) > 
exchangeable (4.06%) > acid-reducible (3.59).    

3.7. Contamination assessment 

3.7.1. Risk assessment code (RAC)
 Heavy metals in the sediments can pose hazard to 
aquatic biota through (1) being released into overlaying 
water, which may cause acute toxicity; (2) being directly 
digested by bottom feeders or being transferred through 
bioaccumulation in food web (Forstner, 1995). 
 The metals in the sediments are bound with dif-
ferent strengths to the fractions (Singh et al., 2005). In 

the present investigation, the Risk Assessment Code 
(RAC) has been used to evaluate the risk of heavy 
metals concentration in surface sediments of the Klang 
River. The RAC assess the potential release of metals 
in solution based on the percentage of exchangeable 
and carbonate fractions in sediments (Tang et al. 2010). 
This classification is tabulated in Table 7 (Singh et al., 
2005). 
 The amount of Ni in the exchangeable and carbon-
ate fractions ranged from 5.98% (Station 2) to 17.93% 
(Station 19), Cu ranged from 1.1 (Station 11) to 5.34% 
(Station 9) and Pb ranged from 2.25 (Station 19) to 
14.60% (Station 4). Based on the classification of the 
RAC, in all stations the risk associated with Cu in 
surface sediment was low risk, while Ni was medium 
risk in most stations. And also, Pb was medium risk 
in upstream stations (vicinity of intensive main traffic 
stations), whereas downstream stations can be classi-
fied as low risk.

3.5.2. Individual and global contamination factor
 The bioavailability and toxicity of trace metals 

Table 5. Sequential chemical Concentration of Cu (µg/g d.w.) in surface sediments of Klang River

Station
NO.

Cu Total
Exchangeable Acid-reducible Oxidisable-organic Resistant

1 0.35±0.01 (3.65) 0.11±0.00 (1.21) 3.87±0.24 (40.92) 5.13±0.1 (54.23) 9.46
2 0.62±0.02 (2.98) 0.19±0.01 (0.94) 11.7±0.03 (56.71) 8.12±0.09 (39.37) 0.63         
3 1.39±0.09 (3.46) 0.29±0.02 (0.71) 26.1±0.53 (64.57) 12.60±1.11 (31.26) 40.38  
4 1.08±0.02 (3.23)    0.38±0.03 (1.13 ) 21.6±1.02 (64.54) 10.40 ±0.98 (31.1) 33.46
5 1.55±0.04 (2.86)  0.65±0.02 (1.19) 37.3±2.1 (68.8) 14.71±1.24 (27.17) 54.12
6 0.67±0.01 (2.41)  0.39±0.01 (1.41) 15.6±1.02 (56.26) 11.11±0.87 (39.9) 27.77
7 1.02±0.03 (3.1)  0.37±0.03 (1.4) 19.21±1.43 (58.43) 12.28±0.74 (37.3) 32.88
8 0.88±0.03 (1.98) 0.46±0.02 (1.02)     20.68±2.14 (46.22) 22.73±3.45 (50.8) 44.75
9 1.36±0.03 (3.72) 0.59±0.03 (1.62) 15.08±1.21 (41.22) 19.62±2.31 (53.5) 36.65

10 0.38±0.01 (1.73) 0.13±0.00 (0.6)  9.23±1.16 (41.17) 12.43±1.34 (56.0) 22.17
11 0.37±0.00 (0.56)  0.37±0.01 (0.56) 44.43±5.65 (41.6) 21.57±3.41 (32.3) 66.74
12 0.85±0.03 (2.25) 0.18±0.00 (0.47) 15.03±2.1 (66.5) 21.62±1.75 (57.4) 37.68
13 0.81±0.04 (1.92)   0.14±0.00 (0.34) 22.73±3.21 (39.9) 18.83±2.18 (44.2) 42.51
14 1.48±0.07 (2.66)  0.14±0.01 (0.26) 31.39±5.87 (53.52) 22.80±1.67 (40.8) 55.81
15 0.73±0.06 (2.08)  0.13±0.00 (0.37) 18.52±0.45 (56.27) 15.52±0.78 (44.4) 34.9
16 0.96±0.05 (1.73)  0.23±0.01 (0.41) 20.78 ±1.87 (53.2) 33.77±4.53 (60.6) 55.74
17 1.15±0.11 (2.96)   0.22±0.02 (0.52) 23.97±3.10 (37.3) 17.39±1.67 (40.5) 42.73
18 0.80.04 (1.57)  0.12±0.00 (0.21) 36.16±4.32 (56.2) 18.61±0.81 (33.4) 55.76
19 0.42±0.02 (0.82) 0.15±0.00 (0.3)  26.87±2.65 (64.9) 21.93±2.1 (44.4) 49.37
20 0.51±0.01 (1.1)   0.14±0.01 (0.3)  22.27±1.98 (54.5) 23.03±1.89 (50.1) 45.95
21 0.28±0.00 (1.48) 0.01±0.00 (0.06) 8.30±0.76 (43.3) 10.68±0.45 (55.2) 19.27

Range 0.28-1.55 0.01-0.65 3.87-44.43 5.13-33.75 9.47-66.74
  Note: The values in parentheses Shows percentage of elemental concentration
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depend on its chemical forms. The individual and global 
contamination factor was calculated to evaluate the 
metal contamination and their bioavailability in surface 
sediments of Klang River. The individual contamina-
tion factors (ICF) for the various sampling sites were 
calculated from the result of the fractionation study 
by dividing the sum of the first three extractions (i.e. 
exchangeable, acid-reducible and oxidisable organic 
forms) by the residual fraction for each sampling sta-
tion. The global contamination factor (GCF) for each 
sampling station was computed by summing the ICF 

for Ni, Cu and Pb obtained for a sampling station (Ikem 
et al., 2003). 

The ICF and GCF were expressed as in the following 
expression:
 
 ICF metal =                Equation 1

 
 GCF =    Equation 2

 The individual and global contamination factors 
for Ni, Cu and Pb in the surface sediments are shown 
in Table 8. The result of ICF showed that contamina-
tion degree of Cu was higher than the rest of the metals 
studied. On the basis of the Ikem (2003), ICF reflects 
the risk of contamination of a water body by a pollutant. 
Therefore, Cu had highest risk to water body. However, 
the bioavailability of metals from sediment into the 
water column will be influenced by factors such as 
pH, chemical forms of the heavy metals, and the physi-
cochemical characteristics of the water column (Ikem 

Table 6. Sequential chemical concentration of Pb (µg/g) in surface sediments of Klang River

Station
NO.

Pb Total
Exchangeable Acid-reducible Oxidisable-organic Residual

1 1.32±0.10 (5.33) 1.71±0.04 (6.91) 3.33±0.06 (13.42) 18.42±1.13 (74.34) 24.78
2   2.39±0.12 (5.45) 3.06±0.05 (6.83) 6.90±0.21 (15.71) 31.63±3.23 (72.01) 43.98
3    2.31±0.14 (4.08)     3.17±0.17 (5.61) 11.13±1.1 (19.7) 39.93±2.43 (70.61) 56.54  
4  3.44±0.21 (6.77) 3.98±0.31 (7.83) 8.26±0.16 (16.26) 35.13±1.54 (64.14) 50.81
5   3.02±0.07 (4.9) 4.16±0.10 (6.75) 17.60±0.79 (28.53) 36.91±3.41 (59.81) 61.69
6   2.07±0.04 (5.34)  0.91±0.05 (2.36) 9.59±0.32 (24.77) 26.13±1.98 (67.53)    38.70
7    2.98±0.18 (6.98)  2.78±0.07 (6.5)  8.81±0.51 (26.59)  28.20±0.98 (65.94)        42.77
8    3.67±0.22 (6.28)   1.62±0.02 (2.78) 15.11±0.11 (25.88) 37.96±3.6 (65.05)        58.36
9 4.07±0.32 (6.53)   3.67±0.14 (5.89) 4.96±0.56 (7.95) 49.64±2.5 (79.63) 62.34

10 0.59±0.07 (1.57)    0.77±0.05 (1.92) 10.97±0.67 (29.3) 25.13±1.23 (67.19) 37.46
11 2.39±0.21 (4.45)    0.68±0.06 (1.27) 2.81±0.54 (5.25) 47.73±3.53 (89.03 53.61
12  0.67±0.05 (1.31)  0.67±0.03 (1.3)  12.93±2.87 (25.1) 37.19±2.34 (72.27) 51.46
13  0.71±0.04 (1.31)  0.65±0.02 (1.2)  12.72±1.23 (23.4) 40.31±3.52 (74.1) 54.39
14  0.98±0.02 (2.05)  0.61±0.01 (1.29) 6.73±3.23 (14.15) 39.27±2.13 (82.52)    47.59
15  1.64±0.26 (3.74)  0.56±0.06 (1.27) 9.14±0.34 (20.89) 32.41±3.54 (74.09)    43.75
16  1.19±0.07 (1.93)  1.14±0.09 (1.84) 17.23±1.23 (27.88) 42.23±2.49 (68.35)     61.79
17  2.26±0.18 (3.9)    2.48±0.023 (4.28) 17.01±2.2 (29.3) 36.27±3.45 (62.51)   58.02
18 1.17±0.04 (1.98)  0.54±0.03 (0.9) 23.23±1.32 (39.2) 34.38±2.65 (57.95)   59.32
19 0.87±0.03 (1.57) 0.38±0.01 (0.68) 25.13±3.2 (45.3) 29.12±3.24 (52.45) 55.50
20 3.40±0.17 (6.32)  2.94±0.04( 5.47) 28.90±4.1 (53.74) 18.53±1.63 (34.46) 53.77
21 0.94±0.03 (3.53)  0.65±0.02 (2.43) 10.83±0.67 (40.55) 14.29±0.76 (53.49) 26.71

Range 0.59-4.07 0.38-4.16 2.81- 28.9 14.29-49.64 24.78-62.35
Note: The values in parentheses Shows percentage of elemental concentration

Table 7.  Risk Assessment Code

Risk Metal in carbonate and exchangeable 
fraction (%)

No risk <1
Low risk 1-10
Medium risk 11-30
Very high risk 31-50
High risk ≥75

The metals in the sediments are bound with different strengths to the fractions (Singh et 
al., 2005). In the present investigation, the Risk Assessment Code (RAC) has been used to 
evaluate the risk of heavy metals concentration in surface sediments of the Klang River. The 
RAC assess the potential release of metals in solution based on the percentage of exchangeable 
and carbonate fractions in sediments (Tang et al. 2010). This classification is tabulated in Table 7 
(Singh et al., 2005).  

 
Table 7.  Risk Assessment Code 
 
Risk Metal in carbonate and exchangeable fraction (%) 
No risk <1 
Low risk 1-10 
Medium risk 11-30 
Very high risk 31-50 
High risk  ≥75 

 
The amount of Ni in the exchangeable and carbonate fractions ranged from 5.98% 

(Station 2) to 17.93% (Station 19), Cu ranged from 1.1 (Station 11) to 5.34 % (Station 9) and Pb 
ranged from 2.25 (Station 19) to 14.60% (Station 4). Based on the classification of the RAC, in 
all stations the risk associated with Cu in surface sediment was low risk, while Ni was medium 
risk in most stations. And also, Pb was medium risk in upstream stations (vicinity of intensive 
main traffic stations), whereas downstream stations can be classified as low risk. 
 
3.5.2. Individual and global contamination factor 

The bioavailability and toxicity of trace metals depend on its chemical forms. The 
individual and global contamination factor was calculated to evaluate the metal contamination 
and their bioavailability in surface sediments of Klang River. The individual contamination 
factors (ICF) for the various sampling sites were calculated from the result of the fractionation 
study by dividing the sum of the first three extractions (i.e. exchangeable, acid-reducible and 
oxidisable organic forms) by the residual fraction for each sampling station. The global 
contamination factor (GCF) for each sampling station was computed by summing the ICF for Ni, 
Cu and Pb obtained for a sampling station (Ikem et al., 2003).  
 
The ICF and GCF were expressed as in the following expression: 
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The individual and global contamination factors for Ni, Cu and Pb in the surface 
sediments are shown in Table 8. The result of ICF showed that contamination degree of Cu was 
higher than the rest of the metals studied. On the basis of the Ikem (2003), ICF reflects the risk of 
contamination of a water body by a pollutant. Therefore, Cu had highest risk to water body. 
However, the bioavailability of metals from sediment into the water column will be influenced by 
factors such as pH, chemical forms of the heavy metals, and the physicochemical characteristics 
of the water column (Ikem et al., 2003). The mean individual concentration factor in the surface 
sediments ranged in the descending order of Cu > Ni > Pb.  

The metals in the sediments are bound with different strengths to the fractions (Singh et 
al., 2005). In the present investigation, the Risk Assessment Code (RAC) has been used to 
evaluate the risk of heavy metals concentration in surface sediments of the Klang River. The 
RAC assess the potential release of metals in solution based on the percentage of exchangeable 
and carbonate fractions in sediments (Tang et al. 2010). This classification is tabulated in Table 7 
(Singh et al., 2005).  

 
Table 7.  Risk Assessment Code 
 
Risk Metal in carbonate and exchangeable fraction (%) 
No risk <1 
Low risk 1-10 
Medium risk 11-30 
Very high risk 31-50 
High risk  ≥75 

 
The amount of Ni in the exchangeable and carbonate fractions ranged from 5.98% 

(Station 2) to 17.93% (Station 19), Cu ranged from 1.1 (Station 11) to 5.34 % (Station 9) and Pb 
ranged from 2.25 (Station 19) to 14.60% (Station 4). Based on the classification of the RAC, in 
all stations the risk associated with Cu in surface sediment was low risk, while Ni was medium 
risk in most stations. And also, Pb was medium risk in upstream stations (vicinity of intensive 
main traffic stations), whereas downstream stations can be classified as low risk. 
 
3.5.2. Individual and global contamination factor 

The bioavailability and toxicity of trace metals depend on its chemical forms. The 
individual and global contamination factor was calculated to evaluate the metal contamination 
and their bioavailability in surface sediments of Klang River. The individual contamination 
factors (ICF) for the various sampling sites were calculated from the result of the fractionation 
study by dividing the sum of the first three extractions (i.e. exchangeable, acid-reducible and 
oxidisable organic forms) by the residual fraction for each sampling station. The global 
contamination factor (GCF) for each sampling station was computed by summing the ICF for Ni, 
Cu and Pb obtained for a sampling station (Ikem et al., 2003).  
 
The ICF and GCF were expressed as in the following expression: 
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tresis
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The individual and global contamination factors for Ni, Cu and Pb in the surface 
sediments are shown in Table 8. The result of ICF showed that contamination degree of Cu was 
higher than the rest of the metals studied. On the basis of the Ikem (2003), ICF reflects the risk of 
contamination of a water body by a pollutant. Therefore, Cu had highest risk to water body. 
However, the bioavailability of metals from sediment into the water column will be influenced by 
factors such as pH, chemical forms of the heavy metals, and the physicochemical characteristics 
of the water column (Ikem et al., 2003). The mean individual concentration factor in the surface 
sediments ranged in the descending order of Cu > Ni > Pb.  
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et al., 2003). The mean individual concentration factor 
in the surface sediments ranged in the descending order 
of Cu > Ni > Pb. 
 The global contamination factor analyzed from 
ICF values showed that Station 3 (confluence of Batu 
River and Gombak river) and Station 5 (confluence of 
Klang River and Gombak River) in upstream and most 
downstream stations were highly impacted by trace 
metal pollutants. The results obtained were in accor-
dance with Luoma and Rainbow (2008) statement in 
which the trace metals tend to accumulate in a hotspot 
near the inputs (Luoma and Rainbow, 2008). GCF is 
significant because it reflects the overall potential risks 
posed by the toxic elements (Ikem et al., 2003). Since 
no guidelines for GCF value available, comparison to 
the results can not be done and therefore, the effects 
of the combination of metals contamination cannot 
be assayed comprehensively (Naji et al., 2010). The 
results identified that those stations located near-by 
municipal and industrial area had high potential risk to 
the Klang River environment. Notably, determination 
of the degree of metal contamination is one of the most 
important aspects to reduce and control pollution in the 
aquatic environment.     

4. Conclusion

 Rivers in mega cities are more often vulnerable 
to metals contamination because of widespread point 
and non-point sources along and near-by them. The 
chemical fractionation of studied metals (except Cu) 
in majority of stations were in the order of residual > 
acid-reducible > oxidisable- organic > exchangeable. 
The mean percentages of anthropogenic portions of 
the investigated metals were decreased in the order of 
Cu (56.01) > Ni (42.08) > Pb (33.22). It showed that 
Ni and Pb in Klang River surface sediments existed in 
the resistant fractions (sedimentary matrix), while Cu 
existed in the non-resistant fractions. Likewise, more 
than 50% of Cu was associated with oxidisable-organic. 
The mean exchangeable (EFLE) concentration of Ni, 
Cu and Pb were less than the rest of the fractions. Since 
exchangeable fraction is most mobile, the small portion 
of exchangeable fraction of studied metals indicated 
the poor bioavailability of these metals in the Klang 
River. In general based on ICF values many locations 
along Klang River are low risks except few stations 
located near-by municipal and industrial area had high 
potential risk to the Klang River environment This study 
was the first in accordance with chemical fractionation 
of metals in surface sediments of the Klang River and 
provided the baseline information for further study in 
Klang River systems. 

References

Ahmed F, Ishiga H. Trace metal concentrations in street  
 dusts of Dhaka city, Bangladesh. Atmospheric Environ- 
 ment 2006; 40: 3835-44.
Alagarsamy R. Geochemical variability of copper and iron  
 in Oman Margin sediments. Microchemical Journal  
 2009; 91: 111-17.
Arnason JG, Fletcher BA. A 40+ year record of Cd, Hg,  
 Pb, and U deposition in sediments of Patroon Reservoir,  
 Albany County, NY, USA. Environmental Pollution   
 2003; 123: 383-91.
Badri MA, Aston SR. Observations on heavy metal geo- 
 chemical associations in polluted and non-polluted  
 estuarine sediments. Environmental Pollution Series B,  
 Chemical and Physical 1983; 6: 181-93.
Birch G, Taylor S, Matthai C. Small-scale spatial and tempo- 
 ral variance in the concentration of heavy metals in  
 aquatic sediments: a review and some new concepts.  
 Environmental Pollution 2001; 113: 357-72.
Callender E, Bowser CJ. Manganese and copper geochem- 
 istry of interstitial fluids from manganese nodule-rich  
 pelagic sediments of the northeastern equatorial Pacific  
 Ocean. American Journal of Science 1980; 280:  
 1063-96.

Table 8. Individual and global contamination factors of Ni, 
Cu and Pb in the surface sediments of Klang River

Station
NO. 

ICF GCF
Ni Cu Pb

1 0.22 0.84 0.35 1.41
2  0.32      1.54    0.39  2.25
3  0.46       2.20   0.42    3.08
4   0.25        2.22   0.45    2.91           
5   0.70         2.68     0.67   4.05                         
6    0.29        1.51    0.48    2.27            
7    0.35     1.68    0.52    2.54
8     0.72       0.97    0.54    2.22   
9    0.45     0.87  0.26    1.57
10  1.28      0.78    0.49    2.53    
11  1.52     2.09    0.12   3.74 
12   0.79         0.74    0.38   1.92
13  1.08        1.26    0.35 2.69
14   1.19         1.45    0.21    2.85
15   1.23         1.25    0.35    2.83
16  1.12      0.65    0.46    2.24       
17   1.19       1.47    0.60   3.26
18   1.24       2.00    0.73  3.97
19   1.28         1.25    0.91  3.44
20   0.72        0.99     1.90  3.62
21   0.99      0.81     0.87 2.67

A. Naji et al. / EnvironmentAsia 5(1) (2012) 17-25



25

Charkhabi AH, Sakizadeh M, Rafiee G. Seasonal Fluctuation  
 in Heavy Metal Pollution in Iran´s Siahroud River - A  
 Preliminary Study (7 pp). Environmental Science and  
 Pollution Research 2005; 12: 264-70.
Chartier M, Mercier G, Blais JF. Partitioning of trace metals  
 before and after biological removal of metals from sedi- 
 ments. Water Research 2001; 35: 1435-44.
Chester R, Thomas A, Lin F, Basaham A, Jacinto G. The solid  
 state speciation of copper in surface water particu- 
 lates and oceanic sediments. Marine chemistry 1988;  
 24: 261-92.
Coquery M, Welbourn PM. The relationship between metal  
 concentration and organic matter in sediments and  
 metal concentration in the aquatic macrophyte Eriocau- 
 lon septangulare. Water Research 1995; 29: 2094-102.
Davydova S. Heavy metals as toxicants in big cities. Micro- 
 chemical Journal 2005; 79: 133-36.
Forstner U. Non-linear release of metals from aquatic 
 sediments. Salomons, W; Stigliani, WM, eds.1995.
Howard JL, Shu J. Sequential extraction analysis of heavy  
 metals using a chelating agent (NTA) to counteract  
 resorption. Environmental Pollution 1996; 91: 89-96.
Ikem A, Egiebor NO, Nyavor K. Trace Elements In Water,  
 Fish and Sediment from Tuskegee Lake, Southeastern  
 USA. Water, Air, &amp; Soil Pollution 2003; 149:  
 51-75.
Ismail A, Ramli R. Trace metals in sediments and molluscs  
 from an estuary receiving pig farms effluent. Environ- 
 mental Technology 1997; 18: 509-15.
Lim P-E, Kiu M-Y. Determination and speciation of heavy  
 metals in sediments of the Juru River, Penang, Malaysia. 
 Environmental Monitoring and Assessment 1995; 35:  
 85-95.
Liu YS, Ma LL, Li YQ, Zheng LT. Evolution of heavy metal  
 speciation during the aerobic composting process of  
 sewage sludge. Chemosphere 2007; 67: 1025-32.
Luoma SN, Rainbow PS. ‘Metal Contamination in Aquatic  
 Environments.’ Cambridge University Press: New York. 
 USA. 2008.
Mushrifah I, Ahmad A, Badri M. Heavy metals content in  
 sediment of Terengganu River, Malaysia. Toxicological  
 & Environmental Chemistry 1995; 51: 181-90.
Naji A, Ismail A. Assessment of Metals Contamination in  
 Klang River Surface Sediments by using Different  
 Indexes. EnvironmentAsia 2011; 4: 30-38.
Naji A, Ismail A, Ismail AR. Chemical speciation and con- 
 tamination assessment of Zn and Cd by sequential  
 extraction in surface sediment of Klang River, Malaysia.  
 Microchemical Journal 2010; 95: 285-92.
Salomons W, Rooij NM, Kerdijk H, Bril J. Sediments as  
 a Source for Contaminants? Hydrobiologia 1987; 149:  
 13-30.
Singh, Mohan D, Singh VK, Malik A. Studies on distribution  
 and fractionation of heavy metals in Gomti river sedi- 
 ments - a tributary of the Ganges, India. Journal of  
 Hydrology 2005; 312: 14-27.

Tang WZ, Shan BQ, Zhang H, Mao ZP. Heavy metal sources  
 and associated risk in response to agricultural intensifica- 
 tion in the estuarine sediments of Chaohu Lake Valley, 
 East China. Journal of Hazardous Materials 2010; 176:  
 945-51.
Tessier A, Campbell P. Partitioning of trace metals in sedi- 
 ments: Relationships with bioavailability. Hydrobiologia  
 1987; 149: 43-52.
Tessier A, Campbell P, Bisson M. Sequential extraction proce- 
 dure for the speciation of particulate trace metals. 
 Analytical chemistry 1979; 51: 844-51.
Tokalioglu S, Kartal S, Elci L. Determination of heavy metals  
 and their speciation in lake sediments by flame atomic  
 absorption spectrometry after a four-stage sequential  
 extraction procedure. Analytica Chimica Acta 2000;  
 413: 33-40.
Weisz M, Polyak K, Hlavay J. Fractionation of elements in  
 sediment samples collected in rivers and harbors at Lake  
 Balaton and its catchment area. Microchemical Journal  
 2000; 67: 207-17.
Yap C, Ismail A, Tan S. Concentration, Distribution and  
 Geochemical Speciation of Copper in Surface Sediments  
 of the Straits of Malacca. Pakistan Journal of Biological  
 Sciences 2003; 6: 1021-26.

Received  3 July 2011
Accepted  20 August 2011

Correspondence to
Professor Dr. Ahmad Ismail
Department of Biology, 
Faculty of Science,
University Putra Malaysia (UPM),
Serdang, Selangor 43400,
Malaysia 
Tel: 603 8946 6617
Fax: 603 8656 7454
Email: aismail@science.upm.edu.my

A. Naji et al. / EnvironmentAsia 5(1) (2012) 17-25


