
1. Introduction

 Over the past several decades, climate change 
and its impact on the environment received increasing 
attention from researchers around the world. Many 
recent studies have focused on the potential effects of 
climate change on specific aspects of water resources, 
such as water quality, streamflow, and water demand. 
However, few studies have considered the potential 
impacts of climate change on watershed erosion, and 
the resulting sediment loads of streams and rivers. 
Erosion due to heavy rainfall and high surface runoff 
causes the loss of fertile soil, and degrades inherent soil 
structure. The sediment produced by erosion process is 
eventually transported into streams, resulting in serious 
silting in streams, rivers and reservoirs (Verstraeten 
and Poesen, 1999). Heavy metals and other non-point 
pollutants, pesticides, and chemical fertilizers can also 
be transported with sediments by becoming attached 
to soil particles (Sakata et al., 2010). The resulting 
high sediment loads can impact the use of river water, 
especially for water supply. Changes in fluvial sediment 
loads impact channel morphology, material fluxes, 
water quality, aquatic geochemistry, and aquatic 
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habitats. Therefore, quantifying sediment loads under 
present and future conditions is important both for 
understanding and predicting sediment transport 
processes as well as for watershed-scale management 
of sediment in order to maintain high water quality 
(Mukudan et al., 2013). 
 Although climate change is a global issue, its 
impact varies from region to region and from country 
to country. It has been predicted that Southeast Asia 
is among the regions facing the most severe impacts 
(Pham et al., 2012; Watson et al., 2013). Despite this 
forecast, little research has been published on the 
potential impacts of climate change in this region. 
Research focusing on transnational watersheds is 
especially scarce due to the lack of collaboration and 
data sharing among riparian states. In this study, we 
focus on the impact of climate change on seasonal 
patterns of sediment yield in the upper part of the Ca 
River Watershed (UCRW) in mainland Southeast Asia, 
which is shared upstream by Laos and downstream by 
Vietnam and covers an area of 22,798 km2 (Fig. 1). The 
watershed is a typical example in terms of having a 
seasonally unbalanced distribution of rainfall, with 
the wet season receiving more than 80% of the annual 
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exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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rainfall (about 1600mm/ year). This high amount of 
rainfall in the wet season leads to high rates of soil 
erosion and high sediment concentration in streams 
and rivers. In the present study, We predicted seasonal 
trend in sediment yields for three time periods, the 2030s 
(near future), the 2060s (middle future), and the 2090s 
(far future) under three IPCC emission scenarios, A2, 
B2, and B1, which respectively represent high, medium, 
and low levels of greenhouse gas (GHG) emissions. 
The Soil and Water Assessment Tool (SWAT) was 
employed for hydrological simulation. The results of 
this study are expected to be useful for the development 
of effective watershed management strategies, 
especially for initiatives aimed at soil and water resource 
conservation and management to cope with future 
climate change impacts.

2. Materials and Methods

2.1. Hydrological simulation and data

 The SWAT model is a physically-based, semi-
distributed hydrological model designed to simulate 
runoff, sediment, and agricultural chemical yields in 
large complex watersheds with varying climate, soils, 
and land use management conditions over long time 
periods (Neitsch et al., 2011). In SWAT, a watershed 

is divided into multiple sub-watersheds that are 
then further subdivided into unique soil/land-use 
characteristics called hydrological response units 
(HRUs). SWAT calculates soil erosion and sediment 
yield within each HRU using the Modified Universal 
Soil Loss Equation (MUSLE) (Williams, 1975), which 
is shown as Equation (1).

(1)
 where sed is the sediment yield in a given day 
(metric tons), Qsurf is the surface runoff volume (mm ha-1), 
qpeak is the peak surface runoff rate (m3 s-1), areahru is 
the area of the HRU (ha), K is the Universal Soil Loss 
Equation (USLE) soil erodibility factor, C is the USLE 
cover and management factor, P is the USLE support 
practice factor, LS is the USLE topographic factor, and 
CFRG is the coarse fragment factor. These parameters 
are adjusted in the model calibration process.
 For sediment transport in the channel network, 
deposition and degradation are the two dominant 
processes that influence sediment yield at the watershed 
outlet. The sediment routing model (Arnold et al., 1995) 
was used to simulate these processes. The amount 
of deposition and degradation is calculated based on 
the maximum concentration of sediment in the reach 
and the concentration of sediment in the reach at the 
beginning of the time step. The final amount of sediment 

Figure 1. Geographic location of the entire Ca River Watershed (inset) and its upper part (UCRW)
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in the reach is determined by Equation (2):

(2)
 where sedch is the amount of suspended sediment in 
the reach (metric tons), sedch, ini is the initial amount of 
suspended sediment in the reach at the beginning of the 
time period (metric tons), seddep is the amount of sediment 
deposited in the reach segment (metric tons), sedre-entr 
is the amount of sediment reentrained in the reach 
segment (metric tons). The amount of sediment 
transported out of the reach is calculated by Equation (3). 

(3)
 where sedout is the amount of sediment transported 
out of the reach (metric tons), Vout is the volume of 
outflow during the time step (m3). Vch is the volume of 
water in the reach segment (m3). In this study, the term 
“sediment load” refers to the total amount of sediment, 
while the term “sediment yield” refers to the sediment 
load per unit of area (sediment yield = sediment load/ 
area).
 SWAT requires a very large amount of data, 
including weather variables, topography, soil properties, 
and land cover data. In this study, weather data on a 
daily basis were available for five observed stations 
i.e. Con Cuong, Do Luong, Quy Chau, Quy Hop, 
Tuong Duong. In addition, weather data at five points 
ST1-ST5 were obtained from the National Centers 
for Environmental Prediction (NCEP) Climate Forecast 
System Reanalysis (CFSR) (http://rda.ucar.edu/pub/
cfsr.html). The location of these stations is shown 
in Fig. 1. Future climate data under three emission 
scenarios A2, B2 and B1 of the IPCC Fourth Assessment 
Report (AR4) were generated using MAGICC/ 
SCENGEN model (Wigley, 2008), which contains 
20 Global Climate Models (GCMs). Because the 
resultant data generated from MAGICC/SCENGEN 
have a coarse spatial resolution and a monthly basis, 
downscaling methods were used to downscale these 
data to at-site daily data, which can be used for 
hydrological simulation by SWAT. The downscaling 
process for climate stations in Vietnam can be referred 
to in MONRE (2012).

2.2. Model calibration and validation

 Calibration and validation of the SWAT model 
were performed using observed stream discharge and 
sediment data collected from Yen Thuong hydrological 
station. For convenience, the total available historical 
data (1971-2010) was divided into two sets: 25 years 
(1971-1995) for calibration and 15 years (1996 - 2010) 
for validation. To evaluate the model predictions 
for both time periods, we used several different 
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 Time-series comparisons of simulated and 
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SWAT model accurately tracked the observed data 
for both sediment and stream discharge during both 
time periods, although some of the low flow months 
were overpredicted and most of the peak flow months 
were underpredicted. Regarding stream discharge, 
according to Luo et al. (2012), one explanation for the 
problem of underestimation in SWAT is the assumption 
behind the model that water entering deep aquifers 
is not included in the water budget, but is considered 
lost from the system. In addition, Beven (2006) argues 
that the setting of model parameters to obtain the 
highest NSE values may cause underestimation due 
to the parameter equifinality or over-parameterization 
problem. For sediment, according to Shrestha et al. 
(2013), the underprediction of peak sediment values 
can be due to an uncertainty in the soil erosion model 
used in SWAT. SWAT simulates soil erosion using 
MUSLE, which was originally designed to predict 
annual soil loss from agricultural fields. In addition, 
Babel et al. (2011) state that the topographic factor 
(LS) in MUSLE, which is normally derived from DEM 
(Digital Elevation Model, which contains information 
of the topography of an area), may not be accurate 
enough due to inaccuracies in DEM. Johnson et al. 
(1986) also reported that for sediment yield prediction, 
MUSLE tends to overpredict for small events and 
underpredict for large events. In the present study, 
the UCRW is located in a tropical climate zone 
with heavy storms and intense rainfall events in the 
flooding season, which have great potential to erode 
surface soil and to cause landslides and river bank 
erosion, but MUSLE is not capable of accounting for 
such factors.
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 Evaluation statistics for stream discharge and 
sediment simulation computed for both time periods 
are presented in Table 1. All of the NSE and R2 values 
were higher than 0.8, RSR values were below 0.4, 
and PBIAS values were below 5%. Based on the 
guidelines recommended by Moriasi et al. (2006), 
the performance of SWAT in this study met the 
criterion for “very good”. Although the model was 
found to underestimate most of the peak values 
both for stream discharge and for sediment load, on 
average, there was an overestimation bias for the 
validation period of stream discharge simulation as 
the PBIAS value was -1.44. For sediment simulation, 
an underestimation was found for both time periods. 
Considered overall, although the ability of SWAT to 
capture the peak values of stream discharge and 

sediment load during the wet season was not 
particularly good, the model was able to capture 
average system behavior well, which confirms that 
it is applicable to our study.

3.2. Impacts of climate change on stream discharge 
and sediment yield

 Our climate change projection indicates that 
temperature and potential evapotranspiration (PET) 
will increase in all months of future years throughout 
the 21st century. In comparison with the baseline period 
(1980-1999), temperature increases range from 0.8 
to 1.2 oC in the 2030s, 1.8 to 2.2 oC in the 2060s, and 
2.8 to 3.4 oC in the 2090s depending on the scenario, 
while annual PET increases range from 5 to 7%, 10 

underestimate most of the peak values both for stream discharge and for sediment load, on average, there 
was an overestimation bias for the validation period of stream discharge simulation as the PBIAS value was -
1.44. For sediment simulation, an underestimation was found for both time periods. Considered overall, 
although the ability of SWAT to capture the peak values of stream discharge and sediment load during the 
wet season was not particularly good, the model was able to capture average system behavior well, which 
confirms that it is applicable to our study. 
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although the ability of SWAT to capture the peak values of stream discharge and sediment load during the 
wet season was not particularly good, the model was able to capture average system behavior well, which 
confirms that it is applicable to our study. 

 

 
 
Figure 2. Simulated versus observed river discharge with reference to monthly precipitation during calibration and 
validation periods 
 

 
 
Figure 3. Simulated versus observed sediment load during calibration and validation periods 
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Sediment calibration 0.89 0.88 0.34 0.90 
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Figure 2. Simulated versus observed river discharge with reference to monthly precipitation during calibration and valida-
tion periods

Figure 3. Simulated versus observed sediment load during calibration and validation periods
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to 14%, and 14 to 20% in the same periods, respectively. 
PET increases in both the dry and the wet season, 
but the increase in the dry season is more significant 
than that in the wet season (Fig. 4). Changes in 
precipitation are complicated, varying by emission 
scenario, weather station, and month (Fig. 7a). However, 

Table 1. Model performance evaluation statistics

Simulation period
Evaluation statistic

NSE R2 RSR PBIAS (%)

Discharge calibration 0.86 0.87 0.37 3.17

Discharge validation 0.89 0.89 0.32 -1.44

Sediment calibration 0.89 0.88 0.34 0.90

Sediment validation 0.87 0.87 0.35 4.14

3.2. Impacts of climate change on stream discharge and sediment yield 
 

Our climate change projection indicates that temperature and potential evapotranspiration (PET) will 
increase in all months of future years throughout the 21st century. In comparison with the baseline period 
(1980-1999), temperature increases range from 0.8 to 1.2 oC in the 2030s, 1.8 to 2.2 oC in the 2060s, and 2.8 
to 3.4 oC in the 2090s depending on the scenario, while annual PET increases range from 5 to 7%, 10 to 
14%, and 14 to 20% in the same periods, respectively. PET increases in both the dry and the wet season, but 
the increase in the dry season is more significant than that in the wet season (Fig. 4). Changes in precipitation 
are complicated, varying by emission scenario, weather station, and month (Fig. 7a). However, a general 
trend can be drawn. Precipitation is likely to increase in the wet season and to decrease in the dry season, but 
the increase in the wet season is more significant than the decrease in the dry season, leading to an increase 
in annual precipitation. On a basin average, annual precipitation is projected to increase by 2.0 to 2.3% in the 
2030s, by 3.3 to 4.3% in the 2060s, and by 4.5 to 6.7 % in the 2090s, depending on the emission scenario. 
Fig. 5a shows the spatial pattern of precipitation for the baseline period, and Fig. 5b shows the pattern for the 
projected increase in annual precipitation in the 2090s under the high emission scenario (scenario A2). 

 

 
 
Figure 4. Predicted change in PET 

 

 
a) Average annual precipitation of the baseline period 

(1980-1999) 
 

     b) Increase in annual precipitation in the 2090s 
according to scenario A2 (%) 

Figure 5. Spatial patterns of precipitation in the baseline period and projected increases in precipitation in the 2090s 
compared to the baseline period. 
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a general trend can be drawn. Precipitation is likely 
to increase in the wet season and to decrease in the 
dry season, but the increase in the wet season is 
more significant than the decrease in the dry season, 
leading to an increase in annual precipitation. On a basin 
average, annual precipitation is projected to increase 

Figure 4. Predicted change in PET

Figure 5. Spatial patterns of precipitation in the baseline period and projected increases in precipitation in the 2090s com-
pared to the baseline period.
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by 2.0 to 2.3% in the 2030s, by 3.3 to 4.3% in the 
2060s, and by 4.5 to 6.7 % in the 2090s, depending on 
the emission scenario. Fig. 5a shows the spatial pattern 
of precipitation for the baseline period, and Fig. 5b 
shows the pattern for the projected increase in annual 
precipitation in the 2090s under the high emission 
scenario (scenario A2).
 Fig. 6 shows the average data of precipitation, 
stream discharge, and sediment load for the baseline 
period (1980-1999). The difference between the wet 
season and the dry season is obvious. On average, 
precipitation in the wet season accounts for 84% of 
annual precipitation. Meanwhile, sediment load in the 
wet season accounts for 89% of annual sediment load, 
and stream discharge in the wet season is approximately 
3 times higher than in the dry season.
 Prediction of changes in monthly precipitation, 
stream discharge, and sediment load for the three time 
stages (2030s, 2060s, and 2090s) relative to the average 
data of the baseline period (Fig. 6) is presented in Fig. 
7. The overall trend is that the behavior of scenarios 
B1, B2, and A2 is fairly similar for the prediction of 
monthly data until the near future period (2030s), 
as the lines B1 2030s, B2 2030s, and A2 2030s 
almost coincide. The difference in behavior increases 
slightly in the middle future period (2060s). From 
then on, the A2 scenario simulation predicts the 
largest changes, followed by the B2, and then the B1 
scenario. This is consistent with the characteristics 
of the emission scenarios, which evolve similarly 
until the middle of the 21st century, when A2 becomes 
more negative due to the continuous increase in 
population growth and, therefore, the increase in GHG 
emissions. In contrast, B1 becomes less negative 
due to the slowing of population growth, with a 
corresponding reduction in GHG emissions (IPCC, 
2000). The same behavior has also been reported 
in several very recent studies using IPCC AR3 or 

IPCC AR4 models on a regional scale (Liu et al., 2012; 
Ribalaygua et al., 2013).
 Precipitation is predicted to increase for February, 
and for all months from June to December, and to 
decrease for January, March, April, and May. The 
trend for change in stream discharge, however, is more 
obvious. Discharge is projected to decrease for the 
first six months of the year, from January to June, 
and to increase for the last six months, from July 
to December. The magnitude of changes varies 
depending on the month and scenario. The increase in 
discharge for all months from July to December can 
be explained by the large increases in precipitation 
for these months. Similarly, the decrease in discharge 
in January, March, April, and May corresponds to 
the decrease in precipitation in these months (Fig. 7a). 
It is noticeable that discharge decreases in February 
and June, despite the increase in precipitation in these 
months. In February, the increase of about 1% in a 
small precipitation amount (about 20mm) cannot 
compensate for the increase in PET driven by the 
temperature rise, resulting in a discharge decrease. 
June is one of the hottest months in the studied 
watershed, with an average maximum temperature 
of about 38oC, and an average PET of more than 
100 mm. As the increase in PET in this month is 
predicted to be more significant than the increase in 
precipitation, the stream discharge decreases. The 
differences in the trends in precipitation change 
and discharge change in June may also be due to the 
time-lag between the precipitation events and the 
stream discharges. In addition to evaporation, 
saturation is also an important factor. When it rains, it 
takes time for the ground to become saturated, but once 
it has become saturated, any additional stormwater 
then runs over the land into streams. However, the  
increase in temperature in the month of June can 
cause an increase in the ground infiltration rate, 

Fig. 6 shows the average data of precipitation, stream discharge, and sediment load for the baseline 
period (1980-1999). The difference between the wet season and the dry season is obvious. On average, 
precipitation in the wet season accounts for 84% of annual precipitation. Meanwhile, sediment load in the 
wet season accounts for 89% of annual sediment load, and stream discharge in the wet season is 
approximately 3 times higher than in the dry season. 
 

 
Figure 6. Average monthly precipitation, river discharge and sediment load of the baseline period 
 

Prediction of changes in monthly precipitation, stream discharge, and sediment load for the three 
time stages (2030s, 2060s, and 2090s) relative to the average data of the baseline period (Fig. 6) is presented 
in Fig. 7. The overall trend is that the behavior of scenarios B1, B2, and A2 is fairly similar for the prediction 
of monthly data until the near future period (2030s), as the lines B1 2030s, B2 2030s, and A2 2030s almost 
coincide. The difference in behavior increases slightly in the middle future period (2060s). From then on, the 
A2 scenario simulation predicts the largest changes, followed by the B2, and then the B1 scenario. This is 
consistent with the characteristics of the emission scenarios, which evolve similarly until the middle of the 
21st century, when A2 becomes more negative due to the continuous increase in population growth and, 
therefore, the increase in GHG emissions. In contrast, B1 becomes less negative due to the slowing of 
population growth, with a corresponding reduction in GHG emissions (IPCC, 2000). The same behavior has 
also been reported in several very recent studies using IPCC AR3 or IPCC AR4 models on a regional scale 
(Liu et al., 2012; Ribalaygua et al., 2013). 

Precipitation is predicted to increase for February, and for all months from June to December, and to 
decrease for January, March, April, and May. The trend for change in stream discharge, however, is more 
obvious. Discharge is projected to decrease for the first six months of the year, from January to June, and to 
increase for the last six months, from July to December. The magnitude of changes varies depending on the 
month and scenario. The increase in discharge for all months from July to December can be explained by the 
large increases in precipitation for these months. Similarly, the decrease in discharge in January, March, 
April, and May corresponds to the decrease in precipitation in these months (Fig. 7a). It is noticeable that 
discharge decreases in February and June, despite the increase in precipitation in these months. In February, 
the increase of about 1% in a small precipitation amount (about 20mm) cannot compensate for the increase 
in PET driven by the temperature rise, resulting in a discharge decrease. June is one of the hottest months in 
the studied watershed, with an average maximum temperature of about 38oC, and an average PET of more 
than 100 mm. As the increase in PET in this month is predicted to be more significant than the increase in 
precipitation, the stream discharge decreases. The differences in the trends in precipitation change and 
discharge change in June may also be due to the time-lag between the precipitation events and the stream 
discharges. In addition to evaporation, saturation is also an important factor. When it rains, it takes time for 
the ground to become saturated, but once it has become saturated, any additional stormwater then runs over 
the land into streams. However, the increase in temperature in the month of June can cause an increase in the 
ground infiltration rate, resulting in a decrease in the amount of water running into streams. 
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Figure 6. Average monthly precipitation, river discharge and sediment load of the baseline period
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a) Change in precipitation 
 

 
 
b) Change in stream discharge 
 

 
 
c) Change in sediment load 
 
Figure 7. Change in monthly precipitation, stream discharge, and sediment load  
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resulting in a decrease in the amount of water running 
into streams.
 Monthly sediment load change (and as a result, 
sediment yield change) ranges from a 40.3% decrease 
to a 32.6% increase depending on the specific month, 
emission scenario, and period of time. The trend of 
changes in monthly sediment yield (Fig. 7c) is consistent 
with that of changes in monthly stream discharge 
(Fig. 7b), although the rates of changes are different 
between these two variables. This is because sediment 
yield at the outlet of a watershed is primary influenced 
by streamflow (Equation (3)). Interestingly, in general, 
the monthly changes in sediment yield are greater than 
the corresponding changes in discharge. This indicates 
that the impact of climate changes on sediment yield 
is greater than on streamflow. In a study conducted 
at Nam Ou Basin (Laos), which is located near the 
UCRW, Shrestha et al. (2013) reported a similar finding. 
One explanation for this is that sediment yield 
increases more than linearly with an increase in 
streamflow (Naik and Jay, 2011).
 From a seasonal point of view, in the dry season, 
there are four months in which sediment yield decreases 
and two months in which it increases. On the other hand, 
sediment yield increases for four of the six months of 
the wet season, and decreases for the other two months. 
Besides the effects of surface runoff, decrease in 
sediment yield during the dry season and early wet 
season (May and June) may also be related to changes 
in antecedent soil water content during rainfall events 
under future climate conditions. Even when an 
increase in rainfall was predicted (in February and June), 
increases in PET (Fig. 4) appeared to cause a reduction 
in soil water content which may result in increased 
saturation deficit. This means that more rainfall is 
required to bring the soil to saturation and generate 
the same amount of runoff as under the current 
conditions. The importance of antecedent soil water 
content on erosion (and consequently, sediment 
yield) in saturation excess dominated landscapes has 
been previously reported (Mukudan et al., 2013). In 
addition, increased temperature and increased rainfall 
in the dry months may also accelerate plant growth, 
which results in increased biological cover, and as a 
result, less erosion. However, in the late wet season 
and early dry season (November and December), 
this is not the case, because the mean monthly 
sediment cycle follows an increasing trend in both 
precipitation and discharge (Figs. 7a and 7b). This 
may be due to more intense rainfall in this period and 
the steep topography of the watershed. It should be 
noted that the UCRW is dominated by numerous high 
and steep hills, which are sensitive to rainfall-induced 
erosion. In fact, approximately 70% of the watershed 

area has a slope of above 15 degrees, and more than 
20% of it has a slope of above 30 degrees, with a long 
slope length (Fig. 8). The role of hillslope in causing 
erosion is represented by the topographic factor LS 
in Equation (1). The topographic factor LS (LS=Lhill/22.1)
m(65.41∙sin2(αhill+4.56∙sin αhill+0.065) is a function of 
the land slope length (Lhill), the angle of slope (αhill), 
and the exponential term m. The exponential term 
(m=0.6∙(1−exp [−35.835∙tan αhill ])) also depends 
on the angle of slope (i.e. tan αhill). Thus, the greater 
the slope length (Lhill) and the slope angle (αhill) are, the 
greater the topographic factor (LS) will be. In other 
words, the longer and steeper the slope of the surface, 
the higher the risk of erosion. In fact, in this study we 
found that in the upstream sub-watersheds, such as 
Numbers 8, 24, and 25 (Fig. 8), where the topography 
is dominated by excessively steep slopes, erosion rates 
were up to more than 50 tons/ha/year in the baseline 
period. Meanwhile, in the downstream sub-watersheds, 
such as Numbers 36, 37, and 39, where the topography 
is mostly flat, erosion rates were mostly below 3 tons/
ha/year. Hillslope and intense rainfall also accelerate 
the sediment transport process and bring more eroded 
soil into streams. The effect of climate-change-induced 
intense rainfall on hillslope erosion and sediment 
transport has also been reported previously (Mukudan 
et al., 2013). Furthermore, Zhu et al. (2008) also found 
that an increase in sediment yield is likely to occur 
in wetter and warmer climates, when higher transport 
capacity is accompanied by higher erosion rates.
 Projected future seasonal and annual changes 
in sediment load at the watershed outlet have been 
computed from monthly changes and are presented 
in Fig. 9, and corresponding net sediment yields are 
presented in Fig. 10. Overall, dry season sediment 
load is likely to decrease, while wet season sediment 
load is projected to increase. This trend is obvious for 
all three scenarios. There is a similarity among the 
three scenarios until the period of the 2030s, with a 
prediction for dry season sediment load to decrease 
by around 1.7%, and wet season sediment load to 
increase by approximately 6.0%. From the 2030s on, the 
magnitude of differences between the three scenarios 
increases. Sediment load/yield is likely to change the 
most quickly under scenario A2, faster than under 
scenario B2, and considerably faster than under scenario 
B1. This pattern reflects that found in the monthly 
changes previously discussed (Fig. 7). Annual sediment 
load increases both because sediment load in the wet 
season is much higher than that in the dry season (3.3 
million tons compared to 0.39 million tons, computed 
as the average of the baseline period), and because the 
increase in wet season sediment load is more significant 
than the decrease in dry season sediment load. Under 
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Figure 8. Slope map of the UCRW

 
 
Figure 8. Slope map of the UCRW 
 

 

Figure 9. Seasonal change in sediment load at the watershed outlet.
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Figure 9. Seasonal change in sediment load at the watershed outlet.

the high emission scenario (A2), the annual sediment 
load may increase by 16.5% in the 2090s, meaning that 
each year in this period 4.3 million tons of suspended 
sediment will be transported out of the watershed. 
On a basin average, this amount is equal to a yield of 
approximately 190 tons/ km2/ year (Fig. 10).

4. Conclusion

 Climate change is very likely to affect sediment 
generation and transportation processes, and 
resulting sediment yields in rivers. This study used 
the SWAT model coupled with downscaled future 

climate data to investigate the seasonal sensitivity 
of sediment yield to climate change in the Laos-Vietnam 
transnational Upper Ca River Watershed in 
Southeast Asia. It found that, although the ability 
of SWAT to capture the peak values of stream 
discharge and sediment yield during the wet 
season was not particularly high, the model was 
able to capture the average system behavior well, 
and that the model was applicable to our study. 
Impacts of climate change on stream discharge 
as well as sediment yield projected under three 
emission scenarios, B1, B2, and A2, are similar 
until the near future period (2030s). From then on, 
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scenario A2 resulted in the largest changes, followed 
by scenario B2, and then B1. The differences 
between the scenarios become larger with time. 
As this study used the average values of 20 GCMs, 
the uncertainty of each GCM was not assessed.
 The results of this study indicate that the trend 
of changes in sediment yield does not necessarily 
follow the trend of precipitation changes, but generally 
follows the trend of changes in stream discharge 
caused by the combined effects of increased 
temperature and PET as well as changes in 
precipitation. Sediment yield was found to increase 
significantly in the warmer and wetter climate 
of the wet season, when higher sediment transport 
capacity accompanied by the higher erosion rate 
caused by an increase in rainfall amount and 
intensity. Although sediment yield is likely to 
decrease in the dry season, its increase in the 
wet season appears to be more significant, both 
in terms of percentage and amount, resulting 
in a significant annual increase. 
 The results of this study should be useful to 
development planners, decision makers, and other 
stakeholders when planning and implementing 
appropriate soil and water management strategies, 
especially strategies for coping with future climate 
change impacts in the watershed. In addition, as the 
watershed is shared by two nations Laos and Vietnam, 
more collaborative studies on sediment sources, causes, 
and the relationship between sediment transport and 
climate change in the watershed should be conducted 
in order to develop better management plans for the 
watershed.

 
Figure 10. Prediction of seasonal sediment yield at the watershed outlet, calculated as the quotient of sediment load and 
the watershed area. 
 

Projected future seasonal and annual changes in sediment load at the watershed outlet have been 
computed from monthly changes and are presented in Fig. 9, and corresponding net sediment yields are 
presented in Fig. 10. Overall, dry season sediment load is likely to decrease, while wet season sediment load 
is projected to increase. This trend is obvious for all three scenarios. There is a similarity among the three 
scenarios until the period of the 2030s, with a prediction for dry season sediment load to decrease by around 
1.7%, and wet season sediment load to increase by approximately 6.0%. From the 2030s on, the magnitude 
of differences between the three scenarios increases. Sediment load/yield is likely to change the most quickly 
under scenario A2, faster than under scenario B2, and considerably faster than under scenario B1. This 
pattern reflects that found in the monthly changes previously discussed (Fig. 7). Annual sediment load 
increases both because sediment load in the wet season is much higher than that in the dry season (3.3 
million tons compared to 0.39 million tons, computed as the average of the baseline period), and because the 
increase in wet season sediment load is more significant than the decrease in dry season sediment load. 
Under the high emission scenario (A2), the annual sediment load may increase by 16.5% in the 2090s, 
meaning that each year in this period 4.3 million tons of suspended sediment will be transported out of the 
watershed. On a basin average, this amount is equal to a yield of approximately 190 tons/ km2/ year (Fig. 
10). 
 
4. Conclusion 

Climate change is very likely to affect sediment generation and transportation processes, and 
resulting sediment yields in rivers. This study used the SWAT model coupled with downscaled future 
climate data to investigate the seasonal sensitivity of sediment yield to climate change in the Laos-Vietnam 
transnational Upper Ca River Watershed in Southeast Asia. It found that, although the ability of SWAT to 
capture the peak values of stream discharge and sediment yield during the wet season was not particularly 
high, the model was able to capture the average system behavior well, and that the model was applicable to 
our study. Impacts of climate change on stream discharge as well as sediment yield projected under three 
emission scenarios, B1, B2, and A2, are similar until the near future period (2030s). From then on, scenario 
A2 resulted in the largest changes, followed by scenario B2, and then B1. The differences between the 
scenarios become larger with time. As this study used the average values of 20 GCMs, the uncertainty of 
each GCM was not assessed. 

The results of this study indicate that the trend of changes in sediment yield does not necessarily 
follow the trend of precipitation changes, but generally follows the trend of changes in stream discharge 
caused by the combined effects of increased temperature and PET as well as changes in precipitation. 
Sediment yield was found to increase significantly in the warmer and wetter climate of the wet season, when 
higher sediment transport capacity accompanied by the higher erosion rate caused by an increase in rainfall 
amount and intensity. Although sediment yield is likely to decrease in the dry season, its increase in the wet 
season appears to be more significant, both in terms of percentage and amount, resulting in a significant 
annual increase.  
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Figure 10. Prediction of seasonal sediment yield at the watershed outlet, calculated as the quotient of sediment load and 
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