

# Tropical Ground-level Ozone Modeling in Urban Areas of Thailand

Jirateep Theapiriyakit, Sawarose Suwannakoot and Sitthichok Puangthongthub

Department of Environmental Science, Faculty of Science, Chulalongkorn University, Thailand

#### Abstract

This work applied multiple linear regression to model day time ozone (O<sub>3</sub>day) and daily maximum ozone (O<sub>3</sub>max) during 7:00-18:00 h by using its lagged day time ozone (O<sub>3</sub>lagday) and lagged daily maximum ozone (O<sub>3</sub>lagmax) in two urban areas (Bangkok and Samutprakarn) having different ozone precursor sources and urban topography, and in two seasons (wet and dry) having different meteorological variation by using a SAS<sup>®</sup> 9.2 software to analyze 16-year (1997-2012) data including 14,247,085 actual hourly measurements of O<sub>3</sub>, CO, NO<sub>2</sub>, and SO<sub>2</sub> and meteorological variables such as temperature (T), wind speed (WS), relative humidity (RH) and solar radiation (SR). The results showed that a daily O<sub>3</sub> average in Samutprakarn was 19.77 ± 11.30 ppb, higher than that in Bangkok at an average of 14.06 ± 8.74 ppb. In dry season, a daily O<sub>3</sub> average (17.71 ± 10.08 ppb) was higher and more fluctuating than that in wet season (10.84 ± 6.24 ppb). O<sub>3</sub>day and O<sub>3</sub>max metrics showed the strongest correlation with O<sub>3</sub>lagday (*r* at 0.77 and 0.68 respectively) and O<sub>3</sub>lagmax (*r* at 0.68 and 0.66 respectively) following by RH, SR, CO, and NO<sub>2</sub>. The models with log-transformed O<sub>3</sub> outcomes (lnO<sub>3</sub>day and lnO<sub>3</sub>max) and a lnO<sub>3</sub>lagday predictor provided better model *R*<sup>2</sup> values. The lnO<sub>3</sub>day model had *R*<sup>2</sup> ranging from 0.644 - 0.692 and was commonly predicted by lnO<sub>3</sub>lagday, CO7-18 and RHmin7-18. The lnO<sub>3</sub>max model had *R*<sup>2</sup> ranging from 0.551 - 0.661 and was commonly predicted by lnO<sub>3</sub>lagday, COmin7-18 and RHmin7-18. The validation *R*<sup>2</sup> values between observed O<sub>3</sub> and predicted O<sub>3</sub> using testing data ranged from 0.370 to 0.659. The predicted values trended to follow lagged O<sub>3</sub> that was a dominant predictor. Model fitting could be improved in future if total VOCs data were available.

Keywords: ground-level ozone; ozone regression modeling; wet and dry seasons; meteorological effects

# 1. Introduction

Ground-level ozone  $(O_3)$  is the principal index substance of photochemical smog. It has been recognized as one of the principal pollutants that degrade air quality. It is therefore a strong oxidizing agent. High ozone level has a direct effect on human, vegetation and materials. Effects on human are headache, eyes irritation, upper respiratory system irritation and lung tissue damage as well as premature death (Wilson *et al.*, 2017). Prediction and control of ozone concentrations can therefore manage and minimize effects of tropospheric ozone on human health and ecosystems (Nghiem and Oanh, 2004).

Ozone is produced when primary pollutant oxide of nitrogen (NO<sub>x</sub>) and volatile organic compounds (VOCs) (often called non-methane hydrocarbons, NMHC) interact under the action of sunlight. NO<sub>x</sub> and VOCs are referred to as ozone precursors (Abdul-Wahab *et al.*, 2005; Singla *et al.*, 2012). Both NO<sub>x</sub> and VOCs are emitted from fuel combustion. As ozone is a secondary photochemical pollutant and it is not emitted directly into the air, this is the main reason why ozone is difficult to be controlled and modeled (Al-Alawi *et al.*, 2008; Rajab *et al.*, 2013; Sousa *et al.*, 2007). Ozone formation is strongly related to meteorological parameters such as temperature, solar radiation, and wind speed (Barrero *et al.*, 2006; Brönnimann and Neu, 1997; Rubio and Eduardo, 2014; Singla *et al.*, 2012). Therefore, understanding how ozone variation can be predicted by its precursors and meteorological factors is helpful especially where urban source activities and season fluctuation are significantly different.

In Thailand, it has been reported that ground-level ozone trends to exceed ozone standards of 1-hour and 8-hour averages (100 ppb and 70 ppb respectively), especially in Samutprakarn following by Bangkok and its other vicinity provinces. In 2014, the highest 1-hour and 8-hour averages in Samutprakarn were reported at 233 ppb and 173 ppb respectively. These areas have made the national highest 1-hour ozone average exceeding the standard for the past 2 decades (Thai Pollution Control Department, 2015). In Thailand, Bangkok is the most populated urban area with the greatest economic growth having a lot of vehicles and traffic congestion with high ozone precursors of VOCs and NO<sub>x</sub> emission causing

atmospheric smog for less sun light intensity while Samutprakarn, a suburban area with different city topography with less atmospheric smog episodes has less severe traffic problem but has many more industrial plants emitting different species of VOCs. These differences in the ozone-precursor source activities and the city topography in two areas can affect ozone variation in different ways.

In order to model ozone levels, a multiple linear regression analysis (MLR) can be used to fit co-pollutants and meteorological predictors. However, the MLR approach can face a problem of multicollinearity as independent variables are well correlated to each other in a yielded regression equation. This can affect a variance of regression coefficients, if a modeler did not take this ambiguity into account. All of the above makes us interested in modeling day time ozone and daily maximum ozone in two specific areas (Bangkok and Samutprakarn) and in two seasons. We aimed to address correlation between ground-level ozone and its associated factors (ozone's co-pollutants and meteorological variables) and to develop ozone regression models.

#### 2. Materials and Methods

# 2.1 Data acquisition

Hourly average measurements of ambient air pollutants and meteorological parameters from 1997 to 2012 were acquired from an 18-automatic monitoring station network operated by the Thai Pollution Control Department (PCD) in Bangkok city and Samutprakarn province. Locations of the monitoring station network are shown in Fig. 1. The monitoring network in Bangkok comprised of 13 automatic stations located in 10 districts and the Samutprakarn monitoring network comprised of 5 stations located in 3 districts. Data sets included 8 parameters that were 4 gaseous pollutants  $(O_3, CO_3)$  $NO_2$ , and  $SO_2$ ), and 4 meteorological parameters (temperature (T), wind speed (WS), relative (RH) and solar radiation (SR)). In urban city setting areas of Bangkok and Samutprakarn, wind may not dilute daily air pollutants well due to surface boundary obstacles or seasonal atmospheric condition factors such as low wind speed, termperature inversion, or no precipitaiton resulting in stagnant air. Thus, a generated independent variable, the previous day O<sub>3</sub>, i.e., lagged daytime ozone (O<sub>3</sub>lagday) or lagged daily O<sub>3</sub> maximum (O<sub>3</sub>lagmax) is useful and can be applied for predicting its next day  $O_3$ . The lagged ozone has also been showed as one of the helpful predictors in another study. (Barrero et al., 2006).

# 2.2 Data preparation

For all 8 acquired parameters from 18 stations in 16 years, we obtained 14,247,085 actual hourly average measurements out of 20,196,864 possible measurements as some were missing measurements. We then arranged hourly average measurements using a criterion of having at least 18 hourly measurements a day and yielded 616,840 daily observations of the 8 parameters. The yielded daily data were divided into 2 data sets for 2 purposes: 1) for fitting regression models using data from years 1997 to 2008; and 2) for testing model data set using data from years 2009 to 2012. Two  $O_3$  metrics were modeled in this study, daily daytime ozone (O<sub>3</sub>day) and daily maximum ozone (O<sub>3</sub>max), in 5 sub analyses: 1) ALL including data from all 18 stations; 2) BKK including data from 13 stations in Bangkok; 3) SPK including 5 stations in Samutprakarn; 4) WET including data from all 18 stations only recorded in wet season between mid-May and mid-October; and 5) DRY including data from 18 stations only recorded in dry season between mid-October and mid-May. For an amount of valid observations available for modeling O<sub>3</sub>day metric with its complete co-pollutant and meteorological predictors in ALL sub analysis, there were 27,453 station-day observations ready for model fitting, and 26,199 observations for BKK, 1,254 observations for SPK, 11,951 observations for WET and 15,502 observations for DRY. For O<sub>3</sub>max metric analysis, there were 27,464 (ALL), 26,210 (BKK), 1,254 (SPK), 11,953 (WET) and 15,511 (DRY) observations.

# 2.3 Correlation analysis

Correlation coefficient (r) was estimated as a measure of the strength and the direction of a linear relationship between two parameters, for example a pair of each O<sub>3</sub> metric and its predictor or a pair of a predictor and other each predictor. The population value is given by p (rho) (Field, 2009; Kuzma and Bohnenblust, 2001; O'Rourke *et al.*, 2005). The sample correlation coefficient between 2 variables is defined in equation (1)

$$r = \sum (x_i - \bar{x})(y_i - \bar{y}) /$$
(1)  
$$\sqrt{(x_i - \bar{x})^2} \sqrt{(y_i - \bar{y})^2}$$

where  $x_i$  is the x value for observation i,

 $\overline{x}$  is the mean x value,

 $y_i$  is the y value for observation i, and  $\overline{y}$  is the mean y value



Figure 1. Location of an automatic ambient air quality monitoring station network of PCD in Bangkok and Samutprakarn

# 2.4 Regression modeling analysis

MLR analysis is one of the most widely used method to identify relationship between predictors and an outcome (Barrero *et al.*, 2006). In this study, MLR was used to develop 10 prediction models to predict 2 ozone metrics with co-pollutants and meteorological parameters in 5 sub analyses using a forward stepwise method for variable introduction by the SAS<sup>®</sup> statistical software version 9.2 to determine a model coefficient of determination ( $R^2$ ) and standardized regression coefficients ( $\beta$ ) (O'Rourke *et al.*, 2005). The regression model has a general form in equation (2)

$$0_3 = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_i x_i \quad (2)$$

where  $\beta_i$  is a regression coefficient of a predictor  $i(X_i)$ , and

X<sub>i</sub> is an independent predictor i.

However, MLR has a restriction when the predictors are highly correlated with each other in a regression equation, which is called "multicollinearity". Multicollinearity identifying that the predictors are highly intercorrelated so that little changes in the data values may cause large changes in the prediction model. In other words, a slight change in predictors results in a large change in regression coefficients (Field, 2009; Mustafa and Mohammed, 2012). Thus, it makes difficulty in identifying what major predictors are primary factors controlling ozone variation. However, we can detect how much the variance of each coefficient is inflated by multicollinearity with Variance Inflation Factors (VIF). VIF can be calculated to measure the variance magnitude of each coefficient that is inflated by multicollinearity. VIF values must be well below 10 to conclude that there is no collinearity within the model, i.e. VIF < 3 or VIF < 5 (Field, 2009). Thus, the VIF value was estimated for each model in this study.

# 3. Results and Discussion

#### 3.1 Exploratory result

Hourly measurements during 1997-2012 from 18 monitoring stations of  $O_3$ , co-pollutants and meteorological parameters were averaged at hours 1-24 and their histograms were illustrated in Fig. 2. From the histograms, we noticed that the diurnal changes for these 8 parameters had 3 patterns. For pattern 1, it showed that  $O_3$ , and T were at a maximum level per day at 14:00 h, an hour after SR level at 13:00 h and WS was at a maximum level per day

at 15:00 h (see Fig. 2(a)-2(d)). For pattern 2, it showed that only RH came with a minimum level per day at 14:00 h coinciding with a maximum level time of O3 (see Fig. 2(e)). For pattern 3, it was noticed for all co-pollutants, CO, NO<sub>2</sub> and SO<sub>2</sub> that they had two maximum levels a day, in the morning at 8:00 h or 9:00 h before the O<sub>3</sub> maximum level time and in the evening at 20:00 h, 21:00 h or 22:00 h and had a minimum level a day at 14:00 h matching the  $O_3$  maximum level time (see Fig. 2(f)-2(h)). These histograms implied a sort of positive or negative linear relationship between O<sub>3</sub> and other variables during daytime. For a positive relationship example, O<sub>3</sub> increased and decreased when SR, T and WS did or  $O_3$  increase in the afternoon followed co-pollutants increase in the morning. For a negative relationship example,  $O_3$  increased when RH decreased or  $O_3$  was maximized when co-pollutants were minimized. These patterns were also reported in other O<sub>3</sub> studies (Barrero et al., 2006; He and Lu, 2012; Nghiem and Oanh, 2004). From these exploratory results, we noticed and applied these relationships to build different metrics of O<sub>3</sub> predictors of co-pollutants and meteorological variables. We formed their average, maximum or minimum metric during daytime (7:00-18:00 h) or in the morning before the O<sub>3</sub> maximum level time regarding to histograms in Fig. 2 (7:00-10:00 h for co-pollutants and 7:00-12:00 h for meteorological variables). For example,  $NO_2$  had 4 metrics:  $NO_2$  maximum during daytime ( $NO_2max7-18$ );  $NO_2$  minimum during daytime ( $NO_2min7-18$ );  $NO_2$  average during daytime ( $NO_27-18$ ); and  $NO_2$  average in the morning ( $NO_27-10$ ). There were 26 metrics formed for 8 parameters.

Mean and standard deviation of 16-year daily average of 8 parameters from all 18 stations by sub analyses were shown in Table 1. A daily O<sub>3</sub> average in Samutprakarn was  $19.77 \pm 11.30$  ppb which was higher than that in Bangkok at an average of  $14.06 \pm$ 8.74 ppb. This has been also reported by PCD as more industrial VOC sources, emitting high concentration, present in Samutprakarn. Difference of O<sub>3</sub> concentration in the two areas may not depend only on emissions, but also as a role of atmospheric transport and diffusion of O<sub>3</sub> precursors and O<sub>3</sub> itself. In dry season, a daily  $O_3$  average (17.71  $\pm$  10.08 ppb) was higher and more fluctuated than that in wet season (10.84  $\pm$  6.24 ppb). PCD has also reported the same result during October-April due to clearer sky with low RH, low wind speed, lack of precipitation and temperature inversion resulting in high NO<sub>2</sub> and ozone (Thai Pollution Control Department, 2015). These atmospheric conditions well supported the photochemical ozone formation reaction and an accumulation of ozone precursors (Moustris et al., 2012; Özbay et al., 2011; Singla et al., 2012). We

| Sub analyzag |      | O <sub>3</sub> | NO <sub>2</sub> | $SO_2$ | СО    | Т      | RH                                                                                                                                                                                                                              | SR      | WS    |
|--------------|------|----------------|-----------------|--------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| Sub anal     | yses | (ppb)          | (ppb)           | (ppb)  | (ppm) | (°C)   | RH<br>(%) SR<br>(W/m²)   84019 50405   73.567 146.390   12.231 59.902   64968 43879   73.071 140.450   12.429 57.338   19051 6526   75.258 186.332   11.367 61.460   35430 21414   77.177 147.077   10.741 55.389   48589 28991 | (m/s)   |       |
| ALL          | n    | 64100          | 87169           | 89053  | 73956 | 85058  | 84019                                                                                                                                                                                                                           | 50405   | 83080 |
|              | mean | 14.781         | 23.243          | 5.206  | 0.882 | 28.758 | 73.567                                                                                                                                                                                                                          | 146.390 | 1.750 |
|              | SD   | 9.293          | 13.309          | 4.938  | 0.698 | 3.536  | 12.231                                                                                                                                                                                                                          | 59.902  | 3.166 |
| BKK          | n    | 56029          | 60797           | 62444  | 62432 | 65946  | 64968                                                                                                                                                                                                                           | 43879   | 65891 |
|              | mean | 14.062         | 25.307          | 5.270  | 0.956 | 28.736 | 73.071                                                                                                                                                                                                                          | 140.450 | 1.732 |
|              | SD   | 8.736          | 13.633          | 4.195  | 0.717 | 3.881  | 12.429                                                                                                                                                                                                                          | 57.338  | 3.502 |
| SPK          | n    | 8071           | 26372           | 26609  | 11524 | 19112  | 19051                                                                                                                                                                                                                           | 6526    | 17189 |
|              | mean | 19.771         | 18.484          | 5.056  | 0.477 | 28.833 | 75.258                                                                                                                                                                                                                          | 186.332 | 1.818 |
|              | SD   | 11.295         | 11.158          | 6.347  | 0.382 | 1.909  | 11.367                                                                                                                                                                                                                          | 61.460  | 1.186 |
| WET          | n    | 27345          | 37398           | 38084  | 31173 | 35880  | 35430                                                                                                                                                                                                                           | 21414   | 35257 |
|              | mean | 10.845         | 18.455          | 5.081  | 0.784 | 29.017 | 77.177                                                                                                                                                                                                                          | 147.077 | 1.731 |
|              | SD   | 6.243          | 9.448           | 4.237  | 0.638 | 3.248  | 10.741                                                                                                                                                                                                                          | 55.389  | 3.049 |
| DRY          | n    | 36755          | 49771           | 50969  | 42783 | 49178  | 48589                                                                                                                                                                                                                           | 28991   | 47823 |
|              | mean | 17.709         | 26.840          | 5.300  | 0.953 | 28.569 | 70.934                                                                                                                                                                                                                          | 145.883 | 1.764 |
|              | SD   | 10.075         | 14.594          | 5.402  | 0.730 | 3.720  | 12.574                                                                                                                                                                                                                          | 63.024  | 3.249 |

Table 1. Daily average of O<sub>3</sub> and their predictors from 18 stations (1997-2012)

noticed that all meteorological parameters were not greatly different between wet and dry seasons except RH. For co-pollutants, we found NO<sub>2</sub>, CO and SO<sub>2</sub> were greater in Bangkok, especially for NO<sub>2</sub>. In dry season, NO<sub>2</sub> was noticeably higher than in wet season while CO and SO<sub>2</sub> were slightly higher. NO<sub>2</sub> was known to be more fluently emitted from vehicle sources when compared with CO and SO<sub>2</sub> (Abdul-Wahab et al., 2005). SR intensity was lower in Bangkok than in Samutprakarn by the reason that Bangkok has significantly higher level of particulate matter and smog that can give some shade thus reducing ground SR intensity depending on monitoring station location and sun position. Furthermore, Bangkok's topography and boundary surface may play an important role supporting more stagnant airflow or less mixing capacity, which inhibit ozone formation.

# 3.2 Correlation result

Pearson correlation r metrics of ozone and each predictor were presented in Table 2. Most correlation coefficients were statistically significant (p < 0.05) except those marked with an asterisk symbol. This finding indicates a positive or a negative relationship between O<sub>3</sub> metrics and their predictors. Considering absolute value of r, we observed that O<sub>3</sub>day and O<sub>3</sub>max metrics showed the strongest correlation with O<sub>3</sub>lagday (r at 0.77 and 0.68 respectively) and O<sub>3</sub>lagmax (r at 0.68 and 0.66 respectively) following by RH, SR, CO, and NO<sub>2</sub>. Previous day O<sub>3</sub> has showed a good correlation with current day O<sub>3</sub> due to an O<sub>3</sub> accumulation in the urban setting atmosphere. All RH metrics showed a negative correlation (r ranging from -0.24 to -0.42) as it can decrease O<sub>3</sub>

Table 2. Pearson correlation coefficients (r) between  $O_3$  metrics and their predictors

| Parameters              | O <sub>3</sub> day | O <sub>3</sub> max |
|-------------------------|--------------------|--------------------|
| O <sub>3</sub> lagmax   | 0.677              | 0.660              |
| O <sub>3</sub> lagday   | 0.768              | 0.683              |
| CO7-10                  | -0.139             | -0.069             |
| CO7-18                  | -0.196             | -0.120             |
| COmax7-18               | -0.171             | -0.092             |
| COmin7-18               | -0.164             | -0.119             |
| NO <sub>2</sub> 7-10    | 0.109              | 0.193              |
| NO <sub>2</sub> 7-18    | -0.066             | 0.064              |
| NO <sub>2</sub> max7-18 | 0.049              | 0.175              |
| NO <sub>2</sub> min7-18 | -0.158             | -0.055             |
| SO <sub>2</sub> 7-10    | -0.050             | -0.001*            |
| SO <sub>2</sub> 7-18    | -0.062             | 0.009              |
| SO <sub>2</sub> max7-18 | -0.069             | 0.002              |
| SO <sub>2</sub> min7-18 | -0.014             | 0.022              |
| T7-12                   | -0.084             | -0.080             |
| T7-18                   | -0.004*            | -0.005*            |
| Tmax7-18                | 0.051              | 0.065              |
| WS7-12                  | -0.016             | -0.047             |
| WS7-18                  | -0.016             | -0.047             |
| WSmax7-18               | -0.006*            | -0.034             |
| RH7-12                  | -0.315             | -0.239             |
| RH7-18                  | -0.396             | -0.317             |
| RHmin7-18               | -0.423             | -0.375             |
| SR7-12                  | 0.185              | 0.120              |
| SR7-18                  | 0.235              | 0.146              |
| SRmax7-18               | 0.233              | 0.162              |

Most values were statistically significant  $\alpha = 0.05$ .

\* Not statistically significant at  $\alpha = 0.05$ 



Figure 2. O<sub>3</sub>, SR, T, WS, RH, CO, NO<sub>2</sub> and SO<sub>2</sub> hourly average from 18 stations (1997-2012)

level by wet deposition (Abdul-Wahab et al., 2005; Al-Alawi et al., 2008; Goswami and Midya, 2016; Özbay et al., 2011). Ozone levels may be decreased by water as it can absorb ozone which is water-soluble. Because this significant effect of water on ozone formation, many studies showed the effect of water in the form of humidity and rainfall (Goswami and Midya, 2016; Özbay et al., 2011; Rajab et al., 2013). Relative humidity can affect ozone in wet and dry season differently regarding other meteorological factors. In dry season, there are lower relative humidity, higher temperature, stronger sunlight and less cloud whereas in wet season there are higher relative humidity, lower temperature, weaker sun light and cloudier sky (Moustris et al., 2012; Özbay et al., 2011; Rubio and Eduardo, 2014).

All SR metrics were slightly positive correlated with 2  $O_3$  metrics (r ranging from 0.12 to 0.24) as they promoted the photochemical formation of O<sub>3</sub> (Moustris et al., 2012; Pires and Martins, 2011). There were weak correlations for CO and NO<sub>2</sub>. All CO metrics were negatively correlated. CO as a product from an incomplete combustion can be implied as having a positive correlation to VOCs, an O<sub>3</sub> precursor, released from incomplete combustion of vehicle engines as well, thus CO could be declined when O<sub>3</sub> was increased (Singla et al., 2012). O<sub>3</sub> was noticed for positive correlations with NO<sub>2</sub>7-10 and NO<sub>2</sub>max7-18 as they were O<sub>3</sub> precursors and recorded in the morning before the level O<sub>3</sub> maximum period at 14:00 h while NO<sub>2</sub>min7-18 showed a negative correlation as observed in the afternoon and already dissociated to form O<sub>3</sub> (He and Lu, 2012). For other parameters, SO<sub>2</sub>, T and WS, they showed very weak or no correlation as their metrics had r values close to 0. For T, only Tmax7-18 showed small positive r values as it was read at 14:00 h right just at the level O<sub>3</sub> time. In contrast, T7-12 and T7-18 showed small negative r values (not statistically significant for T7-18) as they were averaged over long continuous hours which may not capture  $O_3$ fluctuation well.

# 3.3 Regression modeling result

We analyzed ozone data by 2 approaches (logtransformed  $O_3$  and non log-transformed  $O_3$  models) for 2  $O_3$  outcome metrics ( $O_3$ day and  $O_3$ max) using 2 log-transformed lagged  $O_3$  predictors ( $lnO_3$ lagday and  $lnlagO_3$ lagmax) leading to 2<sup>3</sup> or 8 examinations. However, the obtained results showed higher model  $R^2$  only when using log-transformed  $O_3$  outcomes and predictors because the MLR method predicts better

with variables having normal distribution. The natural logarithm can transform  $O_3$  and adjust its distribution closer to the normal distribution. Forty models from 8 examinations and 5sub-analysses were fit with lagged O<sub>3</sub> predictors (lnO<sub>3</sub>lagday or lnO<sub>3</sub>lagmax) and showed that the  $lnO_3 lagday$  predictor gave better model  $R^2$ than lnO<sub>3</sub>lagmax did. Therefore, only results of 10 final models predicting the natural logarithm transformed O<sub>3</sub>day and O<sub>3</sub>max outcomes using only the lnO<sub>3</sub>lagday predictor were discussed here. Their 10 results of model  $R^2$  and regression standardized coefficients ( $\beta$ ) of lnO<sub>3</sub>lagday and lnO<sub>3</sub>lagmax models were demonstrated in Tables 3 and 4 respectively. Other results of log-transformed O<sub>3</sub> outcomes but with a lnO<sub>3</sub>lagmax predictor and other results of non-transformed O<sub>3</sub> outcomes with a lnO<sub>3</sub>lagday or a lnO<sub>3</sub>lagmax predictor were not presented. To finalize a number of predictors in each model, we accounted for the multicollinearity problem by limiting a VIF value < 3 (Mustafa and Mohammed, 2012). We tested and learnt that if we choose a VIF value greater than 10, it will result in higher model  $R^2$  and will include more predictors but will likely be bias in a regression coefficient, while if we choose a VIF value < 1, it will show a lower model  $R^2$  but not much different from a  $R^2$  value when tested at VIF value < 3.

As can be seen in Table 3,  $\ln O_3$  day model  $R^2$  and β coefficients of ALL and BKK sub analyses were almost identical as most observations in ALL data set were from BKK data set. The  $lnO_3$ day model  $R^2$ ranged from 0.644-0.692 or about 64.40-69.20 % of daytime ozone was interpreted by its selected predictors. In forward stepwise method, the predictor of 5 sub analyses of the lnO<sub>3</sub>day model that usually was introduced in the first order was lnO<sub>3</sub>lagday ( $\beta$  ranging from 0.56-0.66) as to be the best predictor, which is similar to other studies (Barrero et al., 2006; Moustris et al., 2012; Pires and Martins, 2011). By only  $\ln O_3$ lagday alone, it can provide high model  $R^2$ ranging from 0.557 - 0.609 (not shown in the Table 3). The second predictor usually introduced was RHmin7-18. The others in subsequent orders were CO7-18 and SR7-12. Considering absolute values of  $\beta$ , in addition to lnO<sub>3</sub>lagday and RHmin7-18 as major predictors in all sub analyses already, we can say that CO7-18 also showed a strong ability to predict lnO<sub>3</sub>day in ALL, BKK, and WET. This was simply because CO and VOCs (O<sub>3</sub> precursors) were emitted simultaneously from same traffic sources. Other predictors with smaller  $\beta$  values found in some sub analyses were NO<sub>2</sub>max7-18 following by SR7-18. For SO<sub>2</sub>min7-18 and T7-12, they had tiny  $\beta$  values but were present in all sub analyses.

We saw that predictors included in the final  $InO_3$ day models for each sub analysis were different but found that they commonly included  $InO_3$ lagday, CO7-18 and RHmin7-18 likely associating with a day-to-day accumulation of  $O_3$ , a correlation between CO and VOC from incomplete traffic combustion and a wet deposition of  $O_3$  onto atmospheric water respectively (Singla *et al.*, 2012). Commonly chosen predictors in BKK and SPK were  $InO_3$ lagday and RHmin7-18, while uncommonly chosen predictors were CO7-18, COmin7-18, T7-12, WS7-18 and SR7-12. For WET and DRY, commonly chosen predictors were  $InO_3$ lagday, RHmin7-18 and  $NO_2$ min7-18, whereas uncommonly chosen predictors were CO7-18, NO<sub>2</sub>max7-18 and SR7-18. For  $\ln O_3$ max model  $R^2$  and  $\beta$  coefficients, they were shown in Table 4. The  $\ln O_3$ max model  $R^2$ ranged from 0.551-0.661 meaning that 55.10-66.10 % of ozone maximum was interpreted by the selected predictors listed. The predictor that usually was introduced in the first order was  $\ln O_3$ lagday ( $\beta$  ranging from 0.42-0.64) as to be the best predictor which is similar to  $\ln O_3$ day model and another study (Barrero *et al.*, 2006). Considering absolute values of  $\beta$ , we noticed that the strongest positive predictor of  $\ln O_3$ max model was  $\ln O_3$ lagday ( $\beta$  ranging from 0.42 to 0.64), following by COmin7-18 (not included in DRY) and RHmin7-18. The strength order of the last two predictors was different from  $\ln O_3$ day model. Other important predictors were also

|                            | Regression coefficients (β) |          |        |        |        |  |  |
|----------------------------|-----------------------------|----------|--------|--------|--------|--|--|
| LnO <sub>3</sub> day model | ALL                         | BKK      | SPK    | WET    | DRY    |  |  |
| $R^2$ model                | 0.676                       | 0.676    | 0.692  | 0.644  | 0.657  |  |  |
| Predictors                 |                             |          |        |        |        |  |  |
| lnO <sub>3</sub> lagday    | 0.655                       | 0.653    | 0.562  | 0.597  | 0.625  |  |  |
| CO7-10                     | -                           | -        | -      | -      | -      |  |  |
| CO7-18                     | -0.180                      | -0.182 - |        | -0.239 | -0.033 |  |  |
| COmax7-18                  | -                           | -        | -0.100 | -      | -      |  |  |
| COmin7-18                  | -                           | -        | 0.131  | -      | -      |  |  |
| NO <sub>2</sub> 7-10       | -                           | -        | -      | -      | -      |  |  |
| NO <sub>2</sub> 7-18       | -                           | -        | -      | -      | -      |  |  |
| $NO_2max7-18$              | 0.090                       | 0.090    | -      | 0.213  | -      |  |  |
| NO <sub>2</sub> min7-18    | -                           | -        | -      | -0.139 | -0.130 |  |  |
| SO <sub>2</sub> 7-10       | -                           | -        | -      | -      | -      |  |  |
| SO <sub>2</sub> 7-18       | -                           | -        | -      | -      | -      |  |  |
| SO <sub>2</sub> max7-18    | -0.009                      | -0.009   | -      | -      | -0.020 |  |  |
| SO <sub>2</sub> min7-18    | 0.026                       | 0.025    | 0.053  | 0.061  | 0.030  |  |  |
| T7-12                      | -0.064                      | -0.062   | -0.132 | -0.046 | -0.068 |  |  |
| T7-18                      | -                           | -        | -      | -      | -      |  |  |
| Tmax7-18                   | -                           | -        | -      | -      | -      |  |  |
| WS7-12                     | -0.076                      | -0.084   | -      | -      | -0.087 |  |  |
| WS7-18                     | -                           | -        | -0.115 | -0.048 | -      |  |  |
| WSmax7-18                  | 0.054                       | 0.064    |        | -      | 0.057  |  |  |
| RH7-12                     | -                           | -        | -      | -      | -      |  |  |
| RH7-18                     | -                           | -        | -      | -      | -      |  |  |
| RHmin7-18                  | -0.172                      | -0.110   | -0.229 | -0.143 | -0.206 |  |  |
| SR7-12                     | 0.107                       | 0.171    | -      | -      | -      |  |  |
| SR7-18                     | -                           | -        | 0.081  | 0.150  | 0.090  |  |  |
| SRmax7-18                  | -                           | -        | -      | -      | -      |  |  |

Table 3. LnO<sub>3</sub>day model standardized coefficients predicted with lnO<sub>3</sub>lagday

different including WS7-18 and NO<sub>2</sub>max7-18 (not included in SPK and DRY). As a level of O<sub>3</sub> maximum can be more sensitive and fluctuating than daytime O<sub>3</sub>, from the mentioned predictors we noticed these predictors were in sensitive metrics as well, e.g. COmin7-18 and NO<sub>2</sub>max7-18. For WS7-18 with small  $\beta$  values, it was also introduced here as likely having an influence of diluting the O<sub>3</sub> maximum level because the wind speed can affect ozone peak by transport process.

For  $O_3$ max, the predictors included in the final  $lnO_3$ max models were different from the final  $lnO_3$ day models but we saw that they commonly included  $lnO_3$ lagday, COmin7-18 and RHmin7-18. This finding can be explained similarly to those found in  $lnO_3$ day models as mentioned earlier. Common predictors found in BKK and SPK were  $lnO_3$ lagday, COmin7-18 and RHmin7-18, while others were COmax7-18,  $NO_2$ max7-18, T7-12, WS7-18 and SR7-12. For WET and DRY, similar predictors were  $lnO_3$ lagday, while others were COmin7-18,  $NO_2$ max7-18, NS7-12 and NS7-18.

# 3.4 Modeling validation result

First, for model validation we checked through the standardized residuals values of all 10 models. They all showed similar distribution, closely to normal distribution with a mean and a standard deviation values were 0.00 and 1.00 respectively. Fig. 3 showed an example plot of standardized residuals of predicted and observed values estimated from the lnO<sub>3</sub>day model of DRY sub analysis.

Second, the coefficient of determination  $(R^2)$  values between the observed O<sub>3</sub> and the predicted O<sub>3</sub> for the testing data set were estimated from 0.370 to 0.659. From 10 plots, lnO<sub>3</sub>day showed higher  $R^2$  values than lnO<sub>3</sub>max (averaged  $R^2$  at 0.599 and 0.435 respectively). The lnO<sub>3</sub>day model and lnO<sub>3</sub>max model from the SPK sub analysis gave the highest  $R^2$  at 0.659 and 0.480 respectively in 2 scatter plots as shown in Fig. 4(a)-4(b). In contrast, the lnO<sub>3</sub>day model and lnO<sub>3</sub>max model in WET sub analyses gave the lowest  $R^2$  at 0.509 and 0.370 respectively (scatter plots of other 8 models were not shown). This finding

| InO max model -         | Regression coefficients (β) |        |        |        |        |  |  |
|-------------------------|-----------------------------|--------|--------|--------|--------|--|--|
|                         | ALL                         | BKK    | SPK    | WET    | DRY    |  |  |
| $R^2$ model             | 0.595                       | 0.595  | 0.661  | 0.551  | 0.561  |  |  |
| Predictors              |                             |        |        |        |        |  |  |
| lnO <sub>3</sub> lagday | 0.639                       | 0.639  | 0.422  | 0.598  | 0.604  |  |  |
| CO7-10                  | -                           | -      | -      | -      | -      |  |  |
| CO7-18                  | -                           | -      | -      | -      | -0.033 |  |  |
| COmax7-18               | -                           | -      | -0.102 | -      | -      |  |  |
| COmin7-18               | -0.170                      | -0.176 | 0.130  | -0.248 | -      |  |  |
| NO <sub>2</sub> 7-10    | -                           | -      | 0.180  | -      | -      |  |  |
| NO <sub>2</sub> 7-18    | -                           | -      | -      | -      | -      |  |  |
| $NO_2max7-18$           | 0.156                       | 0.159  | -      | 0.173  | -      |  |  |
| NO <sub>2</sub> min7-18 | -                           | -      | -      | -      | -0.086 |  |  |
| SO <sub>2</sub> 7-10    | -0.022                      | -0.023 | -      | -      | -      |  |  |
| SO <sub>2</sub> 7-18    | -                           | -      | -      | 0.049  | -      |  |  |
| $SO_2max7-18$           | -                           | -      | -      | -      | -      |  |  |
| SO <sub>2</sub> min7-18 | 0.032                       | 0.034  | 0.033  | 0.039  | 0.026  |  |  |
| T7-12                   | -0.068                      | -0.062 | -0.104 | -      | -0.079 |  |  |
| T7-18                   | -                           | -      | -      | -      | -      |  |  |
| Tmax7-18                | -                           | -      | -      | 0.086  | -      |  |  |
| WS7-12                  | -                           | -      | -      | -0.174 | -      |  |  |
| WS7-18                  | -0.092                      | -0.086 | -0.250 | -      | -0.132 |  |  |
| WSmax7-18               | -                           | -      | -      | 0.096  | -      |  |  |
| RH7-12                  | -                           | -      | -      | -      | -      |  |  |
| RH7-18                  | -                           | -      | -      | -      | -      |  |  |
| RHmin7-18               | -0.127                      | -0.125 | -0.169 | -0.079 | -0.177 |  |  |
| SR7-12                  | 0.101                       | 0.102  | -      | 0.055  | 0.074  |  |  |
| SR7-18                  | -                           | -      | 0.083  | -      | -      |  |  |
| SRmax7-18               | -                           | -      | -      | -      | -      |  |  |

Table 4. LnO<sub>3</sub>max model standardized coefficients predicted with lnO<sub>3</sub>lagday

was associated with their lowest model  $R^2$  for WET sub analysis as it was difficult to predict O<sub>3</sub> due to its fluctuation by strong moonsoon wind, precipitation, and atmospheric turbulance. Our WET validation results under an influence of high humidity were not found in other cold, dry area investigations (Barrero *et al.*, 2006; Moustris *et al.*, 2012; Pires and Martins, 2011).

Third, Fig. 5 showed an example of the predicted and observed  $O_3$  values from  $lnO_3$ day model of the ALL sub analysis during a testing period in years 2009-2012 (Fig. 5(a)) and in September-December 2012 (Fig. 5(b)). Both observed and predicted dotted lines seemed to fit together fairly well except at extreme values. The model had some difficulties in predicting high ozone concentrations because they were dramatically fluctuating while the lower observed ozone levels were more possible to predict and were resembled clearly with predicted values. In addition, these predicted values were not lower or higher than a range of the observed values. Effected by an influence of lagged  $O_3$ , the most predicted values likely moved slightly to a right side of the observed values (see Fig. 5(b)) as the predicted ones trended to follow lagged  $O_3$  that was a dominant predictor (Barrero *et al.*, 2006). These three validations were fairly in agreement so we can generally accept the performance of the models.

However our obtained model  $R^2$  values of both models (roughly 0.6-0.7) were lower than other studies (roughly 0.7-0.8) conducted in cold cities (Barrero et al., 2006; Moustris et al., 2012; Pires and Martins, 2011). This may be due to unlike meteorlogy condition of cold-dry vs. hot-humid atmosphere making dissimilarly fluctuating O<sub>3</sub> levels and due to different predictors used in those studies. In addition, some models may have less accuracy probably due to some parameters in the model having no linear relationship with ozone or not including important variables that effected O<sub>3</sub> concentrations such as total VOCs, a boundary layer, wind direction, natural O<sub>3</sub> precursor sources, etc. Model fitting could be improved in future study if other such important predictors that relating to O<sub>3</sub> formation were introduced to the models. Unfortunately, total VOCs has not been monitored comprehensively in Bangkok and Samutprakarn.



Figure 3. Distribution of standardized residuals of Daytime O<sub>3</sub> (DRY)



(a) Daytime O<sub>3</sub> (SPK)



(b) Daily maximum O<sub>3</sub> (SPK)





Raddad tast

(a) Observed vs. predicted  $O_3$  (2009-2012)



(b) Observed vs predicted O<sub>3</sub> (Sep-Dec 2012)

Figure 5. Daytime O<sub>3</sub> (ALL) comparison of observed vs. predicted O<sub>3</sub>

# 4. Conclusions

This study presented the multiple linear regression method to forecast  $O_3$ day and  $O_3$ max. The highest daily ozone averages were found in Samutprakarn and in dry season.  $O_3$ day and  $O_3$ max were strongly correlated with daytime lagged  $O_3$  (positive) following by RH (negative) and SR (positive). By applying natural logarithm transformation of  $O_3$  outcomes along with a lnO<sub>3</sub>lagday predictor, it showed model  $R^2$ improvement. The lnO<sub>3</sub>day models gave better  $R^2$  than  $lnO_3max$  models in all sub analyses. In both  $lnO_3day$  and  $lnO_3max$  models,  $lnO_3lagday$  was the strongest positive predictor and RHmin7-18 was the strongest negative predictor. SPK sub analysis showed highest  $R^2$  in  $lnO_3day$  model and in  $lnO_3max$  model, 0.6916 and 0.6612 respectively. An application of the obtained models can be used to predict tomorrow  $O_3$  levels for comunity health alert or future  $O_3$  variability regarding to meterological variable fluctuation due to climate change.

# Acknowledgements

The authors would like to thank the Thai Pollution Control Department for providing air pollutant and meteorological data. This work was partially supported by the Sci Super III Fund (Ratchadapiseksomphot Endowment Fund), Chulalongkorn University.

# References

- Abdul-Wahab SA, Bakheit CS, Al-Alawi SM. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software 2005; 20(10): 1263-71.
- Al-Alawi SM, Abdul-Wahab SA, Bakheit CS. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environmental Modelling and Software 2008; 23(4): 396-403.
- Barrero MA, Grimalt JO, Cantón L. Prediction of daily ozone concentration maxima in the urban atmosphere. Chemometrics and Intelligent Laboratory Systems 2006; 80(1): 67-76.
- Brönnimann S, Neu U. Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmospheric Environment 1997; 31(8): 1127-35.
- Field AP. Discovering statistics using SPSS: (and sex and drugs and rock 'n' roll) SAGE Publications: Thousand Oaks, Calif.; London. 2009; 135-39.
- Goswami S, Midya SK. Seasonal variation of daily total column ozone (TCO), its depletion and formation role on surface temperature and rainfall over Chennai, India. Journal of Indian Geophysical Union 2016; 20(1): 101-11.
- He Hd, Lu WZ. Decomposition of pollution contributors to urban ozone levels concerning regional and local scales. Building and Environment 2012; 49: 97-103.
- Kuzma JW, Bohnenblust SE. Correlation and linear regression. Mayfield Publishing Company: Singapore. 2001; 13.
- Moustris KP, Nastos PT, Larissi IK, Paliatsos AG. Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece. Advances in Meteorology 2012; 2012: 1-8.
- Mustafa YA, Mohammed SJ. Measurement of ground level ozone at different locations. American Journal of Environmental Sciences 2012; 8(3): 311-21.
- Nghiem LH, Oanh NTK. Prediction of maximum daily ozone levels using neural network model in Bangkok, Asian Institute of Technology. 2004.
- O'Rourke N, Hatcher L, Stepanski EJ, Hatcher L. A step-by-step approach to using SAS for univariate & multivariate statistics. Wiley-Interscience, New York. 2005; 277-85.
- Özbay B, Keskin GA, Doğruparmak ŞÇ, Ayberk S. Multivariate methods for ground-level ozone modeling. Atmospheric Research 2011; 102(1-2): 57-65.

- Pires JCM, Martins FG. Correction methods for statistical models in tropospheric ozone forecasting. Atmospheric Environment 2011; 45(14): 2413-17.
- Rajab JM, MatJafri MZ, Lim HS. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia. Atmospheric Environment 2013; 71: 36-43.
- Rubio MA, Eduardo LG. Temperature as thumb rule predictor of ozone levels in Santiago De Chile ground air. Journal of the Chilean Chemical Society 2014; 59(2): 2427-31.
- Singla V, Pachauri T, Satsangi A, Kumari KM, Lakhani A. Surface ozone concentrations in Agra: links with the prevailing meteorological parameters. Theoretical and Applied Climatology 2012; 110(3): 409-21.
- Sousa SIV, Martins FG, Alvim-Ferraz MCM, Pereira MC. Multiple linear regression and artificial neural net works based on principal components to predict ozone concentrations. Environmental Modelling and Software 2007; 22(1): 97-103.
- Thai Pollution Control Department. Thailand state of pollution report 2014 text and journal publication. Bangkok, Thailnd. 2015; 13-14.
- Wilson A, Reich BJ, Nolte CG, Spero TL, Hubbell B, Rappold AG. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces. Journal of Exposure Science and Environmental Epidemiology 2017; 27(1): 118-24.

Received 4 April 2017 Accepted 24 May 2017

# **Correspondence** to

Dr. Sitthichok Puangthongthub Department of Environmental Science, Faculty of Science Chulalongkorn University, Bangkok 10330 Thailand Tel/Fax: +662 218-5198 E-mail: Sitthichok.p@chula.ac.th