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Abstract

 This work applied multiple linear regression to model day time ozone (O3day) and daily maximum ozone (O3max) 
during 7:00-18:00 h by using its lagged day time ozone (O3lagday) and lagged daily maximum ozone (O3lagmax) in two 
urban areas (Bangkok and Samutprakarn) having different ozone precursor sources and urban topography, and in two  
seasons (wet and dry) having different meteorological variation by using a SAS® 9.2 software to analyze 16-year  
(1997-2012) data including 14,247,085 actual hourly measurements of O3, CO, NO2, and SO2 and meteorological variables  
such as temperature (T), wind speed (WS), relative humidity (RH) and solar radiation (SR). The results showed that a daily 
O3 average in Samutprakarn was 19.77 ± 11.30 ppb, higher than that in Bangkok at an average of 14.06 ± 8.74 ppb. In dry 
season, a daily O3 average (17.71 ± 10.08 ppb) was higher and more fluctuating than that in wet season (10.84 ± 6.24 ppb). 
O3day and O3max metrics showed the strongest correlation with O3lagday (r at 0.77 and 0.68 respectively) and O3lagmax  
(r at 0.68 and 0.66 respectively) following by RH, SR, CO, and NO2. The models with log-transformed O3 outcomes  
(lnO3day and lnO3max) and a lnO3lagday predictor provided better model R2 values. The lnO3day model had R2 ranging  
from 0.644 - 0.692 and was commonly predicted by lnO3lagday, CO7-18 and RHmin7-18. The lnO3max model had R2 
ranging from 0.551 - 0.661 and was commonly predicted by lnO3lagday, COmin7-18 and RHmin7-18. The validation R2 
values between observed O3 and predicted O3 using testing data ranged from 0.370 to 0.659. The predicted values trended to  
follow lagged O3 that was a dominant predictor. Model fitting could be improved in future if total VOCs data were available.
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1. Introduction

 Ground-level ozone (O3) is the principal index  
substance of photochemical smog. It has been  
recognized as one of the principal pollutants that  
degrade air quality. It is therefore a strong oxidizing 
agent. High ozone level has a direct effect on human, 
vegetation and materials. Effects on human are  
headache, eyes irritation, upper respiratory system  
irritation and lung tissue damage as well as premature 
death (Wilson et al., 2017). Prediction and control 
of ozone concentrations can therefore manage and  
minimize effects of tropospheric ozone on human  
health and ecosystems (Nghiem and Oanh, 2004).
 Ozone is produced when primary pollutant oxide 
of nitrogen (NOX) and volatile organic compounds 
(VOCs) (often called non-methane hydrocarbons, 
NMHC) interact under the action of sunlight. NOX 
and VOCs are referred to as ozone precursors  
(Abdul-Wahab et al., 2005; Singla et al., 2012). Both 
NOX and VOCs are emitted from fuel combustion.  
As ozone is a secondary photochemical pollutant and  
it is not emitted directly into the air, this is the main 
reason why ozone is difficult to be controlled and  

modeled (Al-Alawi et al., 2008; Rajab et al., 2013; 
Sousa et al., 2007). Ozone formation is strongly  
related to meteorological parameters such as 
temperature, solar radiation, and wind speed  
(Barrero et al., 2006; Brönnimann and Neu, 1997;  
Rubio and Eduardo, 2014; Singla et al., 2012).  
Therefore, understanding how ozone variation can be 
predicted by its precursors and meteorological factors 
is helpful especially where urban source activities and 
season fluctuation are significantly different.
 In Thailand, it has been reported that ground-level 
ozone trends to exceed ozone standards of 1-hour and 
8-hour averages (100 ppb and 70 ppb respectively), 
especially in Samutprakarn following by Bangkok  
and its other vicinity provinces. In 2014, the highest 
1-hour and 8-hour averages in Samutprakarn were  
reported at 233 ppb and 173 ppb respectively. These  
areas have made the national highest 1-hour ozone  
average exceeding the standard for the past 2  
decades (Thai Pollution Control Department, 2015).  
In Thailand, Bangkok is the most populated urban  
area with the greatest economic growth having  
a lot of vehicles and traffic congestion with high 
ozone precursors of VOCs and NOX emission causing  
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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
by Micronucleus (MN) test in fish erythrocytes as a biomarker for marine environmental contamination. Micronucleus
frequency baseline in erythrocytes was evaluated in and genotoxic potential of a common chemical was determined
in fish experimentally exposed in aquarium under controlled conditions. Fish (Therapon jaruba) were exposed for 96
hrs to a single heavy metal (mercuric chloride). Chromosomal damage was determined as micronuclei frequency in
fish erythrocytes. Significant increase in MN frequency was observed in erythrocytes of fish exposed to mercuric
chloride. Concentration of 0.25 ppm induced the highest MN frequency (2.95 micronucleated cells/1000 cells compared
to 1 MNcell/1000 cells in control animals). The study revealed that micronucleus test, as an index of cumulative
exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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atmospheric smog for less sun light intensity while 
Samutprakarn, a suburban area with different city  
topography with less atmospheric smog episodes 
has less severe traffic problem but has many more  
industrial plants emitting different species of VOCs. 
These differences in the ozone-precursor source  
activities and the city topography in two areas can  
affect ozone variation in different ways.
 In order to model ozone levels, a multiple linear 
regression analysis (MLR) can be used to fit  
co-pollutants and meteorological predictors.  
However, the MLR approach can face a problem of 
mult icol l inear i ty  as  independent  var iables 
are well correlated to each other in a yielded  
regression equation. This can affect a variance of  
regression coefficients, if a modeler did not take 
this ambiguity into account. All of the above makes 
us interested in modeling day time ozone and daily 
maximum ozone in two specific areas (Bangkok 
and Samutprakarn) and in two seasons. We aimed to  
address correlation between ground-level ozone 
and its associated factors (ozone’s co-pollutants and  
meteorological variables) and to develop ozone  
regression models.

2. Materials and Methods

2.1 Data acquisition

 Hourly average measurements of ambient air  
pollutants and meteorological parameters from 1997  
to 2012 were acquired from an 18-automatic  
monitoring station network operated by the Thai  
Pollution Control Department (PCD) in Bangkok 
city and Samutprakarn province. Locations of the  
monitoring station network are shown in Fig. 1. The 
monitoring network in Bangkok comprised of 13  
automatic stations located in 10 districts and the  
Samutprakarn monitoring network comprised of 5  
stations located in 3 districts. Data sets included 8  
parameters that were 4 gaseous pollutants (O3, CO,  
NO2, and SO2), and 4 meteorological parameters  
(temperature (T), wind speed (WS), relative (RH) and 
solar radiation (SR)). In urban city setting areas of 
Bangkok and Samutprakarn, wind may not dilute daily 
air pollutants well due to surface boundary obstacles  
or seasonal atmospheric condition factors such 
as low wind speed, termperature inversion, or no 
precipitaiton resulting in stagnant air. Thus,  
a generated independent variable, the previous day 
O3, i.e., lagged daytime ozone (O3lagday) or lagged  
daily O3 maximum (O3lagmax) is useful and can be  
applied for predicting its next day O3. The lagged ozone 
has also been showed as one of the helpful predictors 
in another study. (Barrero et al., 2006).

2.2 Data preparation

 For all 8 acquired parameters from 18 stations 
in 16 years, we obtained 14,247,085 actual hourly  
average measurements out of 20,196,864 possible 
measurements as some were missing measurements. 
We then arranged hourly average measurements using 
a criterion of having at least 18 hourly measurements 
a day and yielded 616,840 daily observations of the 8 
parameters. The yielded daily data were divided into  
2 data sets for 2 purposes: 1) for fitting regression  
models using data from years 1997 to 2008; and 2) 
for testing model data set using data from years 2009 
to 2012. Two O3 metrics were modeled in this study, 
daily daytime ozone (O3day) and daily maximum  
ozone (O3max), in 5 sub analyses: 1) ALL including 
data from all 18 stations; 2) BKK including data from 
13 stations in Bangkok; 3) SPK including 5 stations 
in Samutprakarn; 4) WET including data from all 18  
stations only recorded in wet season between  
mid-May and mid-October; and 5) DRY including  
data from 18 stations only recorded in dry season 
between mid-October and mid-May. For an amount 
of valid observations available for modeling 
O3day metric with its complete co-pollutant and  
meteorological predictors in ALL sub analysis, there 
were 27,453 station-day observations ready for  
model fitting, and 26,199 observations for BKK,  
1,254 observations for SPK, 11,951 observations for 
WET and 15,502 observations for DRY. For O3max 
metric analysis, there were 27,464 (ALL), 26,210 
(BKK), 1,254 (SPK), 11,953 (WET) and 15,511 (DRY) 
observations.

2.3 Correlation analysis 

 Correlation coefficient (r) was estimated as a 
measure of the strength and the direction of a linear 
relationship between two parameters, for example a 
pair of each O3 metric and its predictor or a pair of 
a predictor and other each predictor. The population  
value is given by p (rho) (Field, 2009; Kuzma and 
Bohnenblust, 2001; O'Rourke et al., 2005). The sample 
correlation coefficient between 2 variables is defined 
in equation (1)

          (1)

where  xi is the x value for observation i,
  x is the mean x value,
  yi is the y value for observation i, and
  y is the mean y value

   
 

 
 
Figure 1. Location of an automatic ambient air quality monitoring station network of PCD in Bangkok and 
Samutprakarn 
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2.4 Regression modeling analysis
 
 MLR analysis is one of the most widely used 
method to identify relationship between predictors and 
an outcome (Barrero et al., 2006). In this study, MLR 
was used to develop 10 prediction models to predict 2 
ozone metrics with co-pollutants and meteorological 
parameters in 5 sub analyses using a forward stepwise 
method for variable introduction by the SAS® statistical 
software version 9.2 to determine a model coefficient 
of determination (R2) and standardized regression  
coefficients (β) (O'Rourke et al., 2005). The regression 
model has a general form in equation (2)

          (2)

where  βi is a regression coefficient of a predictor  
  i (Xi), and
  Xi is an independent predictor i.

 However, MLR has a restriction when the  
predictors are highly correlated with each other in a 
regression equation, which is called “multicollinearity”. 
Multicollinearity identifying that the predictors are 
highly intercorrelated so that little changes in the 
data values may cause large changes in the prediction 
model. In other words, a slight change in predictors  

results in a large change in regression coefficients 
(Field, 2009; Mustafa and Mohammed, 2012). 
Thus, it makes difficulty in identifying what major  
predictors are primary factors controlling ozone  
variation. However, we can detect how much the  
variance of each coefficient  is  inflated by  
multicollinearity with Variance Inflation Factors 
(VIF). VIF can be calculated to measure the variance 
magnitude of each coefficient that is inflated by  
multicollinearity. VIF values must be well below 10 to 
conclude that there is no collinearity within the model, 
i.e. VIF < 3 or VIF < 5 (Field, 2009). Thus, the VIF 
value was estimated for each model in this study.

3. Results and Discussion

3.1 Exploratory result

 Hourly measurements during 1997-2012 from 
18 monitoring stations of O3, co-pollutants and  
meteorological parameters were averaged at hours  
1-24 and their histograms were illustrated in Fig. 2. 
From the histograms, we noticed that the diurnal  
changes for these 8 parameters had 3 patterns. For  
pattern 1, it showed that O3, and T were at a maximum 
level per day at 14:00 h, an hour after SR level at  
13:00 h and WS was at a maximum level per day  
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at 15:00 h (see Fig. 2(a)-2(d)). For pattern 2, it showed 
that only RH came with a minimum level per day at 
14:00 h coinciding with a maximum level time of 
O3 (see Fig. 2(e)). For pattern 3, it was noticed for 
all co-pollutants, CO, NO2 and SO2 that they had 
two maximum levels a day, in the morning at 8:00 
h or 9:00 h before the O3 maximum level time and 
in the evening at 20:00 h, 21:00 h or 22:00 h and 
had a minimum level a day at 14:00 h matching the 
O3 maximum level time (see Fig. 2(f)-2(h)). These  
histograms implied a sort of positive or negative linear 
relationship between O3 and other variables during  
daytime. For a positive relationship example, O3 
increased and decreased when SR, T and WS did or 
O3 increase in the afternoon followed co-pollutants 
increase in the morning. For a negative relationship 
example, O3 increased when RH decreased or O3 was 
maximized when co-pollutants were minimized. These 
patterns were also reported in other O3 studies (Barrero 
et al., 2006; He and Lu, 2012; Nghiem and Oanh, 2004).  
From these exploratory results, we noticed and  
applied these relationships to build different metrics 
of O3 predictors of co-pollutants and meteorological 
variables. We formed their average, maximum or  
minimum metric during daytime (7:00-18:00 h) or in  
the morning before the O3 maximum level time  
regarding to histograms in Fig. 2 (7:00-10:00 h for 
co-pollutants and 7:00-12:00 h for meteorological 

variables). For example, NO2 had 4 metrics: NO2 
maximum during daytime (NO2max7-18); NO2  
minimum during daytime (NO2min7-18); NO2 average 
during daytime (NO27-18); and NO2 average in the 
morning (NO27-10). There were 26 metrics formed 
for 8 parameters.
 Mean and standard deviation of 16-year daily 
average of 8 parameters from all 18 stations by sub 
analyses were shown in Table 1. A daily O3 average 
in Samutprakarn was 19.77 ± 11.30 ppb which was  
higher than that in Bangkok at an average of 14.06 ± 
8.74 ppb. This has been also reported by PCD as more 
industrial VOC sources, emitting high concentration, 
present  in Samutprakarn.  Difference of O3  
concentration in the two areas may not depend only  
on emissions, but also as a role of atmospheric  
transport and diffusion of O3 precursors and O3 itself. 
In dry season, a daily O3 average (17.71 ± 10.08 
ppb) was higher and more fluctuated than that in wet 
season (10.84 ± 6.24 ppb). PCD has also reported the 
same result during October-April due to clearer sky 
with low RH, low wind speed, lack of precipitation 
and temperature inversion resulting in high NO2 and  
ozone (Thai Pollution Control Department, 2015). 
These atmospheric conditions well supported  
the photochemical ozone formation reaction and  
an accumulation of ozone precursors (Moustris et al., 
2012; Özbay et al., 2011; Singla et al., 2012). We  
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Department, 2015). These atmospheric conditions well supported the photochemical ozone formation 
reaction and an accumulation of ozone precursors (Moustris et al., 2012; Özbay et al., 2011; Singla et al., 
2012). We noticed that all meteorological parameters were not greatly different between wet and dry 
seasons except RH. For co-pollutants, we found NO2, CO and SO2 were greater in Bangkok, especially 
for NO2. In dry season, NO2 was noticeably higher than in wet season while CO and SO2 were slightly 
higher. NO2 was known to be more fluently emitted from vehicle sources when compared with CO and 
SO2 (Abdul-Wahab et al., 2005). SR intensity was lower in Bangkok than in Samutprakarn by the reason 
that Bangkok has significantly higher level of particulate matter and smog that can give some shade thus 
reducing ground SR intensity depending on monitoring station location and sun position. Furthermore, 
Bangkok’s topography and boundary surface may play an important role supporting more stagnant 
airflow or less mixing capacity, which inhibit ozone formation.  
 
Table 1. Daily average of O3 and their predictors from 18 stations (1997-2012) 
 

Sub analyses O3 
(ppb) 

NO2 
(ppb) 

SO2 
(ppb) 

CO 
(ppm) 

T 
(°C) 

RH 
(%) 

SR 
(W/m2) 

WS 
(m/s) 

ALL 
n 64100 87169 89053 73956 85058 84019 50405 83080 
mean 14.781 23.243 5.206 0.882 28.758 73.567 146.390 1.750 
SD 9.293 13.309 4.938 0.698 3.536 12.231 59.902 3.166 

BKK 
n 56029 60797 62444 62432 65946 64968 43879 65891 
mean 14.062 25.307 5.270 0.956 28.736 73.071 140.450 1.732 
SD 8.736 13.633 4.195 0.717 3.881 12.429 57.338 3.502 

SPK 
n 8071 26372 26609 11524 19112 19051 6526 17189 
mean 19.771 18.484 5.056 0.477 28.833 75.258 186.332 1.818 
SD 11.295 11.158 6.347 0.382 1.909 11.367 61.460 1.186 

WET 
n 27345 37398 38084 31173 35880 35430 21414 35257 
mean 10.845 18.455 5.081 0.784 29.017 77.177 147.077 1.731 
SD 6.243 9.448 4.237 0.638 3.248 10.741 55.389 3.049 

DRY 
n 36755 49771 50969 42783 49178 48589 28991 47823 
mean 17.709 26.840 5.300 0.953 28.569 70.934 145.883 1.764 
SD 10.075 14.594 5.402 0.730 3.720 12.574 63.024 3.249 

 
3.2 Correlation result 
 

Pearson correlation r metrics of ozone and each predictor were presented in Table 2. Most 
correlation coefficients were statistically significant (p<0.05) except those marked with star symbol. This 
finding indicates a positive or a negative relationship between O3 metrics and their predictors. 
Considering absolute value of r, we observed that O3day and O3max metrics showed the strongest 
correlation with O3lagday (r at 0.77 and 0.68 respectively) and O3lagmax (r at 0.68 and 0.66 respectively) 
following by RH, SR, CO, and NO2. Previous day O3 has showed a good correlation with current day O3 
due to an O3 accumulation in the urban setting atmosphere. All RH metrics showed a negative correlation 
(r ranging from -0.24 to -0.42) as it can decrease O3 level by wet deposition (Abdul-Wahab et al., 2005; 
Al-Alawi et al., 2008; Goswami and Midya, 2016; Özbay et al., 2011). Ozone levels may be decreased by 
water as it can absorb ozone which is water-soluble. Because this significant effect of water on ozone 
formation, many studies show the effect of water in the form of humidity and rainfall (Goswami and 
Midya, 2016; Özbay et al., 2011; Rajab et al., 2013). Relative humidity can affect ozone in wet and dry 
season differently regarding other meteorological factors. In dry season, there are lower relative humidity, 
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noticed that all meteorological parameters were not 
greatly different between wet and dry seasons except 
RH. For co-pollutants, we found NO2, CO and SO2  
were greater in Bangkok, especially for NO2. In 
dry season, NO2 was noticeably higher than in wet  
season while CO and SO2 were slightly higher.  
NO2 was known to be more fluently emitted from  
vehicle sources when compared with CO and SO2 
(Abdul-Wahab et al., 2005). SR intensity was lower 
in Bangkok than in Samutprakarn by the reason that 
Bangkok has significantly higher level of particulate 
matter and smog that can give some shade thus reducing 
ground SR intensity depending on monitoring station 
location and sun position. Furthermore, Bangkok’s  
topography and boundary surface may play  
an important role supporting more stagnant airflow or 
less mixing capacity, which inhibit ozone formation.

3.2 Correlation result

 Pearson correlation r metrics of ozone and each 
predictor were presented in Table 2. Most correlation 
coefficients were statistically significant (p<0.05)  
except those marked with an asterisk symbol. This  
finding indicates a positive or a negative relationship  
between O3 metrics and their predictors. Considering 
absolute value of r, we observed that O3day and  
O3max metrics showed the strongest correlation with  
O3lagday (r at 0.77 and 0.68 respectively) and  
O3lagmax (r at 0.68 and 0.66 respectively) following 
by RH, SR, CO, and NO2. Previous day O3 has 
showed a good correlation with current day O3 due to 
an O3 accumulation in the urban setting atmosphere. 
All RH metrics showed a negative correlation  
(r ranging from -0.24 to -0.42) as it can decrease O3  
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higher temperature, stronger sunlight and less cloud whereas in wet season there are higher relative 
humidity, lower temperature, weaker sun light and cloudier sky (Moustris et al., 2012; Özbay et al., 2011; 
Rubio and Eduardo, 2014). 
 
Table 2. Pearson correlation coefficients (r) between O3 metrics and their predictors 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Most values were statistically significant α = 0.05. 
* Not statistically significant at α = 0.05 
 
 
 
 
 
 

Parameters O3day O3max 
O3lagmax 0.677 0.660 
O3lagday 0.768 0.683 
CO7-10 -0.139 -0.069 
CO7-18 -0.196 -0.120 
COmax7-18 -0.171 -0.092 
COmin7-18 -0.164 -0.119 
NO27-10 0.109 0.193 
NO27-18 -0.066 0.064 
NO2max7-18 0.049 0.175 
NO2min7-18 -0.158 -0.055 
SO27-10 -0.050 -0.001* 
SO27-18 -0.062 0.009 
SO2max7-18 -0.069 0.002 
SO2min7-18 -0.014 0.022 
T7-12 -0.084 -0.080 
T7-18 -0.004* -0.005* 
Tmax7-18 0.051 0.065 
WS7-12 -0.016 -0.047 
WS7-18 -0.016 -0.047 
WSmax7-18 -0.006* -0.034 
RH7-12 -0.315 -0.239 
RH7-18 -0.396 -0.317 
RHmin7-18 -0.423 -0.375 
SR7-12 0.185 0.120 
SR7-18 0.235 0.146 
SRmax7-18 0.233 0.162 
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Figure 2. O3, SR, T, WS, RH, CO, NO2 and SO2 hourly average from 18 stations (1997-2012) 
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level by wet deposition (Abdul-Wahab et al., 2005;  
Al-Alawi et al., 2008; Goswami and Midya, 2016; 
Özbay et al., 2011). Ozone levels may be decreased 
by water  as  i t  can absorb ozone which is  
water-soluble. Because this significant effect of water 
on ozone formation, many studies showed the effect  
of water in the form of humidity and rainfall  
(Goswami and Midya, 2016; Özbay et al., 2011; Rajab  
et al., 2013). Relative humidity can affect ozone 
in wet and dry season differently regarding other  
meteorological factors. In dry season, there are lower  
relative humidity, higher temperature, stronger   
sunlight and less cloud whereas in wet season there are 
higher relative humidity, lower temperature, weaker  
sun light and cloudier sky (Moustris et al., 2012;  
Özbay et al., 2011; Rubio and Eduardo, 2014).
 All SR metrics were slightly positive correlated 
with 2 O3 metrics (r ranging from 0.12 to 0.24) as they 
promoted the photochemical formation of  O3 (Moustris 
et al., 2012; Pires and Martins, 2011). There were weak 
correlations for CO and NO2. All CO metrics were  
negatively correlated. CO as a product from an  
incomplete combustion can be implied as having 
a positive correlation to VOCs, an O3 precursor, 
released from incomplete combustion of vehicle 
engines as well, thus CO could be declined when 
O3 was increased (Singla et al., 2012). O3 was 
noticed for positive correlations with NO27-10 
and NO2max7-18 as they were O3 precursors and  
recorded in the morning before the level O3 maximum 
period at 14:00 h while NO2min7-18 showed  
a negative correlation as observed in the afternoon and 
already dissociated to form O3 (He and Lu, 2012). For 
other parameters, SO2, T and WS, they showed very 
weak or no correlation as their metrics had r values  
close to 0. For T, only Tmax7-18 showed small 
positive r values as it was read at 14:00 h right just at 
the level O3 time. In contrast, T7-12 and T7-18  
showed small negative r values (not statistically  
significant for T7-18) as they were averaged over 
long continuous hours which may not capture O3  
fluctuation well.

3.3 Regression modeling result

 We analyzed ozone data by 2 approaches (log-
transformed O3 and non log-transformed O3 models) 
for 2 O3 outcome metrics (O3day and O3max) using 
2 log-transformed lagged O3 predictors (lnO3lagday 
and lnlagO3lagmax) leading to 23 or 8 examinations. 
However, the obtained results showed higher model 
R2 only when using log-transformed O3 outcomes and 
predictors because the MLR method predicts better 

with variables having normal distribution. The natural 
logarithm can transform O3 and adjust its distribution 
closer to the normal distribution. Forty models from 8 
examinations and 5sub-analysses were fit with lagged 
O3 predictors (lnO3lagday or lnO3lagmax) and showed 
that the lnO3lagday predictor gave better model R2  
than lnO3lagmax did. Therefore, only results of 10  
final models predicting the natural logarithm  
transformed O3day and O3max outcomes using only 
the lnO3lagday predictor were discussed here. Their  
10 results of model R2 and regression standardized  
coefficients (β) of lnO3lagday and lnO3lagmax models  
were demonstrated in Tables 3 and 4 respectively. 
Other results of log-transformed O3 outcomes but 
with a lnO3lagmax predictor and other results of  
non-transformed O3 outcomes with a lnO3lagday or a 
lnO3lagmax predictor were not presented. To finalize 
a number of predictors in each model, we accounted 
for the multicollinearity problem by limiting a VIF 
value < 3 (Mustafa and Mohammed, 2012). We tested 
and learnt that if we choose a VIF value greater than 
10, it will result in higher model R2 and will include 
more predictors but will likely be bias in a regression 
coefficient, while if we choose a VIF value < 1, it will 
show a lower model R2 but not much different from a 
R2 value when tested at VIF value < 3.
 As can be seen in Table 3, lnO3day model R2 and 
β coefficients of ALL and BKK sub analyses were 
almost identical as most observations in ALL data 
set were from BKK data set. The lnO3day model R2  

ranged from 0.644-0.692 or about 64.40-69.20 % 
of daytime ozone was interpreted by its selected  
predictors. In forward stepwise method, the predictor 
of 5 sub analyses of the lnO3day model that usually  
was introduced in the first order was lnO3lagday  
(β ranging from 0.56-0.66) as to be the best predictor, 
which is similar to other studies (Barrero et al., 2006; 
Moustris et al., 2012; Pires and Martins, 2011). By 
only lnO3lagday alone, it can provide high model R2  
ranging from 0.557 - 0.609 (not shown in the Table 3). 
The second predictor usually introduced was  
RHmin7-18. The others in subsequent orders were 
CO7-18 and SR7-12. Considering absolute values of 
β, in addition to lnO3lagday and RHmin7-18 as major 
predictors in all sub analyses already, we can say 
that CO7-18 also showed a strong ability to predict  
lnO3day in ALL, BKK, and WET. This was simply 
because CO and VOCs (O3 precursors) were emitted 
simultaneously from same traffic sources. Other 
predictors with smaller β values found in some sub 
analyses were NO2max7-18 following by SR7-18.  
For SO2min7-18 and T7-12, they had tiny β values 
but were present in all sub analyses.
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 We saw that predictors included in the final  
lnO3day models for each sub analysis were different  
but found that they commonly included lnO3lagday,  
CO7-18 and RHmin7-18 likely associating with  
a day-to-day accumulation of O3, a correlation between 
CO and VOC from incomplete traffic combustion 
and a wet deposition of O3 onto atmospheric water 
respectively (Singla et al., 2012). Commonly chosen 
predictors in BKK and SPK were lnO3lagday and  
RHmin7-18, while uncommonly chosen predictors  
were CO7-18, COmin7-18, T7-12, WS7-18 and  
SR7-12. For WET and DRY, commonly chosen  
predictors were lnO3lagday, RHmin7-18 and  
NO2min7-18,  whereas uncommonly chosen  
predictors were CO7-18, NO2max7-18 and SR7-18.

 For lnO3max model R2 and β coefficients, they 
were shown in Table 4. The lnO3max model R2 
ranged from 0.551-0.661 meaning that 55.10-66.10 
% of ozone maximum was interpreted by the selected  
predictors listed. The predictor that usually was  
introduced in the first order was lnO3lagday (β ranging  
from 0.42-0.64) as to be the best predictor which is  
similar to lnO3day model and another study (Barrero 
et al., 2006). Considering absolute values of β, 
we noticed that the strongest positive predictor 
of lnO3max model was lnO3lagday (β ranging 
from 0.42 to 0.64), following by COmin7-18 (not  
included in DRY) and RHmin7-18. The strength 
order of the last two predictors was different from  
lnO3day model. Other important predictors were also 
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and a wet deposition of O3 onto atmospheric water respectively (Singla et al., 2012). Commonly chosen 
predictors in BKK and SPK are lnO3lagday and RHmin7-18, while uncommonly chosen predictors are 
CO7-18, COmin7-18, T7-12, WS7-18 and SR7-12. For WET and DRY, commonly chosen predictors are 
lnO3lagday, RHmin7-18 and NO2min7-18, whereas uncommonly chosen predictors are CO7-18, 
NO2max7-18 and SR7-18. 
 
Table 3. LnO3day model standardized coefficients predicted with lnO3lagday 
 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 For lnO3max model R2
 and β coefficients, they were shown in Table 4. The lnO3max model R2 

ranged from 0.551-0.661 meaning that 55.10-66.10 % of ozone maximum was interpreted by the selected 
predictors listed. The predictor that usually was introduced in the first order was lnO3lagday (β ranging 
from 0.42-0.64) as to be the best predictor which is similar to lnO3day model and another study (Barrero 
et al., 2006). Considering absolute values of β, we noticed that the strongest positive predictor of lnO3max 
model was lnO3lagday (β ranging from 0.42 to 0.64), following by COmin7-18 (not included in DRY) 
and RHmin7-18. The strength order of the last two predictors was different from lnO3day model. Other 
important predictors were also different including WS7-18 and NO2max7-18 (not included in SPK and 
DRY). As a level of O3 maximum can be more sensitive and fluctuating than daytime O3, from the 
mentioned predictors we noticed these predictors were in sensitive metrics as well, e.g. COmin7-18 and 

LnO3day model 
Regression coefficients (β) 

ALL BKK SPK WET DRY 
R2 model 0.676 0.676 0.692 0.644 0.657 
Predictors       

lnO3lagday 0.655 0.653 0.562 0.597 0.625 
CO7-10 - - - - - 
CO7-18 -0.180 -0.182 - -0.239 -0.033 
COmax7-18 - - -0.100 - - 
COmin7-18 - - 0.131 - - 
NO27-10 - - - - - 
NO27-18 - - - - - 
NO2max7-18 0.090 0.090 - 0.213 - 
NO2min7-18 - - - -0.139 -0.130 
SO27-10 - - - - - 
SO27-18 - - - - - 
SO2max7-18 -0.009 -0.009 - - -0.020 
SO2min7-18 0.026 0.025 0.053 0.061 0.030 
T7-12 -0.064 -0.062 -0.132 -0.046 -0.068 
T7-18 - - - - - 
Tmax7-18 - - - - - 
WS7-12 -0.076 -0.084 - - -0.087 
WS7-18 - - -0.115 -0.048 - 
WSmax7-18 0.054 0.064  - 0.057 
RH7-12 - - - - - 
RH7-18 - - - - - 
RHmin7-18 -0.172 -0.110 -0.229 -0.143 -0.206 
SR7-12 0.107 0.171 - - - 
SR7-18 - - 0.081 0.150 0.090 
SRmax7-18 - - - - - 
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different including WS7-18 and NO2max7-18 (not  
included in SPK and DRY). As a level of O3  
maximum can be more sensitive and fluctuating than 
daytime O3, from the mentioned predictors we noticed 
these predictors were in sensitive metrics as well, 
e.g. COmin7-18 and NO2max7-18. For WS7-18 with  
small β values, it was also introduced here as likely 
having an influence of diluting the O3 maximum 
level because the wind speed can affect ozone peak  
by transport process.
 For O3max, the predictors included in the final 
lnO3max models were different from the final 
lnO3day models but we saw that they commonly 
included lnO3lagday, COmin7-18 and RHmin7-18. 
This finding can be explained similarly to those 
found in lnO3day models as mentioned earlier. 
Common predictors found in BKK and SPK were 
lnO3lagday, COmin7-18 and RHmin7-18, while 
others were COmax7-18, NO2max7-18, T7-12, 
WS7-18 and SR7-12. For WET and DRY, similar  
predictors were lnO3lagday, while others were  
COmin7-18, NO2max7-18, WS7-12 and WS7-18.

3.4 Modeling validation result

 First, for model validation we checked through 
the standardized residuals values of all 10 models. 
They all showed similar distribution, closely to normal  
distribution with a mean and a standard deviation  
values were 0.00 and 1.00 respectively. Fig. 3 showed 
an example plot of standardized residuals of predicted 
and observed values estimated from the lnO3day  
model of DRY sub analysis.
 Second, the coefficient of determination (R2) 
values between the observed O3 and the predicted 
O3 for the testing data set were estimated from 0.370 
to 0.659. From 10 plots, lnO3day showed higher R2 
values than lnO3max (averaged R2 at 0.599 and 0.435  
respectively). The lnO3day model and lnO3max  
model from the SPK sub analysis gave the highest  
R2 at 0.659 and 0.480 respectively in 2 scatter plots 
as shown in Fig. 4(a)-4(b). In contrast, the lnO3day 
model and lnO3max model in WET sub analyses gave 
the lowest R2 at 0.509 and 0.370 respectively (scatter 
plots of other 8 models were not shown). This finding 
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NO2max7-18. For WS7-18 with small β values, it was also introduced here as likely having an influence 
of diluting the O3 maximum level because the wind speed can affect ozone peak by transport process.  
 For O3max, the predictors included in the final lnO3max models were different from the final 
lnO3day models but we saw that they commonly included lnO3lagday, COmin7-18 and RHmin7-18. This 
finding can be explained similarly to those found in lnO3day models as mentioned earlier. Common 
predictors found in BKK and SPK were lnO3lagday, COmin7-18 and RHmin7-18, while others were 
COmax7-18, NO2max7-18, T7-12, WS7-18 and SR7-12. For WET and DRY, similar predictors were 
lnO3lagday, while others were COmin7-18, NO2max7-18, WS7-12 and WS7-18. 
 
Table 4. LnO3max model standardized coefficients predicted with lnO3lagday 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.4 Modeling validation result 
   

First, for model validation we checked through the standardized residuals values of all 10 models. 
They all showed similar distribution, closely to normal distribution with a mean and a standard deviation 
values were 0.00 and 1.00 respectively. Fig. 3 showed an example plot of standardized residuals of 
predicted and observed values estimated from the lnO3day model of DRY sub analysis. 
 Second, the coefficient of determination (R2) values between the observed O3 and the predicted 
O3 for the testing data set were estimated from 0.370 to 0.659. From 10 plots, lnO3day showed higher R2 
values than lnO3max (averaged R2 at 0.599 and 0.435 respectively). The lnO3day model and lnO3max 
model from the SPK sub analysis gave the highest R2 at 0.659 and 0.480 respectively in 2 scatter plots as 
shown in Fig. 4(a)-4(b). In contrast, the lnO3day model and lnO3max model in WET sub analyses gave 
the lowest R2 at 0.509 and 0.370 respectively (scatter plots of other 8 models were not shown). This 

LnO3max model Regression coefficients (β) 
ALL BKK SPK WET DRY 

R2 model 0.595 0.595 0.661 0.551 0.561 
Predictors       

lnO3lagday 0.639 0.639 0.422 0.598 0.604 
CO7-10 - - - - - 
CO7-18 - - - - -0.033 
COmax7-18 - - -0.102 - - 
COmin7-18 -0.170 -0.176 0.130 -0.248 - 
NO27-10 - - 0.180 - - 
NO27-18 - - - - - 
NO2max7-18 0.156 0.159 - 0.173 - 
NO2min7-18 - - - - -0.086 
SO27-10 -0.022 -0.023 - - - 
SO27-18 - - - 0.049 - 
SO2max7-18 - - - - - 
SO2min7-18 0.032 0.034 0.033 0.039 0.026 
T7-12 -0.068 -0.062 -0.104 - -0.079 
T7-18 - - - - - 
Tmax7-18 - - - 0.086 - 
WS7-12 - - - -0.174 - 
WS7-18 -0.092 -0.086 -0.250 - -0.132 
WSmax7-18 - - - 0.096 - 
RH7-12 - - - - - 
RH7-18 - - - - - 
RHmin7-18 -0.127 -0.125 -0.169 -0.079 -0.177 
SR7-12 0.101 0.102 - 0.055 0.074 
SR7-18 - - 0.083 - - 
SRmax7-18 - - - - - 
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was associated with their lowest model R2 for WET 
sub analysis as it was difficult to predict O3 due to its 
fluctuation by strong moonsoon wind, precipitation,  
and atmospheric turbulance. Our WET validation  
results under an influence of high humidity were not  
found in other cold, dry area investigations (Barrero 
et al., 2006; Moustris et al., 2012; Pires and Martins, 
2011).
 Third, Fig. 5 showed an example of the predicted 
and observed O3 values from lnO3day model of the 
ALL sub analysis during a testing period in years  
2009-2012 (Fig. 5(a)) and in September-December  
2012 (Fig. 5(b)). Both observed and predicted  
dotted lines seemed to fit together fairly well except at  
extreme values. The model had some difficulties in 
predicting high ozone concentrations because they  
were dramatically fluctuating while the lower  
observed ozone levels were more possible to predict 
and were resembled clearly with predicted values.  
In addition, these predicted values were not lower or 
higher than a range of the observed values. Effected  
by an influence of lagged O3, the most predicted  
values likely moved slightly to a right side of  

the observed values (see Fig. 5(b)) as the predicted  
ones trended to follow lagged O3 that was a dominant 
predictor (Barrero et al., 2006). These three validations 
were fairly in agreement so we can generally accept  
the performance of the models.
 However our obtained model R2 values of both 
models (roughly 0.6-0.7) were lower than other  
studies (roughly 0.7-0.8) conducted in cold cities 
(Barrero et al., 2006; Moustris et al., 2012; Pires and 
Martins, 2011). This may be due to unlike meteorlogy 
condition of cold-dry vs. hot-humid atmosphere  
making dissimilarly fluctuating O3 levels and due to  
different predictors used in those studies. In addition, 
some models may have less accuracy probably due 
to some parameters in the model having no linear  
relationship with ozone or not including important 
variables that effected O3 concentrations such as total 
VOCs, a boundary layer, wind direction, natural O3 
precursor sources, etc. Model fitting could be improved 
in future study if other such important predictors that 
relating to O3 formation were introduced to the models. 
Unfortunately, total VOCs has not been monitored 
comprehensively in Bangkok and Samutprakarn.
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finding was associated with their lowest model R2 for WET sub analysis as it was difficult to predict O3 
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Figure 3. Distribution of standardized residuals of Daytime O3 (DRY) 
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Figure 4. Scatter plots of observed and predicted O3 
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4. Conclusions

 This study presented the multiple linear regression 
method to forecast O3day and O3max. The highest  
daily ozone averages were found in Samutprakarn 
and in dry season. O3day and O3max were strongly  
correlated with daytime lagged O3 (positive) following 
by RH (negative) and SR (positive). By applying  
natural logarithm transformation of O3 outcomes 
along with a lnO3lagday predictor, it showed model R2  
improvement. The lnO3day models gave better R2 

   
 

 

 
 

 
Figure 5. Daytime O3 (ALL) comparison of observed vs. predicted O3 

 

 
 
 

(a) Observed vs. predicted O3 (2009-2012) 

 

        (b) Observed vs predicted O3 (Sep-Dec 2012) 

 

 than lnO3max models in all sub analyses. In both  
lnO3day and lnO3max models, lnO3lagday was the 
strongest positive predictor and RHmin7-18 was 
the strongest negative predictor. SPK sub analysis  
showed highest R2 in lnO3day model and in lnO3max 
model, 0.6916 and 0.6612 respectively. An application 
of the obtained models can be used to predict  
tomorrow O3 levels for comunity health alert or  
future O3 variability regarding to meterological variable  
fluctuation due to climate change.
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