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Abstract

Particle number count concentrations ([PNC]) is a new metric unit that can be used to quantify 
the characteristics of particles in the atmosphere. This study was conducted to explore the 
variability of [PNC] and the relationship between the factors that influenced this variation. The 
[PNC], gases (SO2 and NOx), and meteorological factors (wind speed, wind direction, humidity, 
pressure and temperature) data were gathered for a six months period from the Institute of Ocean 
and Earth Sciences (IOES) Station, Kelantan, Malaysia by using a particle counter (GRIMM, 
model EDM180), EcoTech EC9805T Series and EcoTech EC9841T Series for gases and Lasteem 
Model LSI for meteorological measurements. The [PNC] data were categorised into fine particle 
number count concentrations (FPNC0.25–0.99 and FPNC1.0 -2.49) with diameters of 0.25–0.99 µm, 
1.0 -2.49 µm  and coarse particles  number count concentrations (CPNC 2.5–10) with diameters of 
2.5–10 µm. The particle number concentration were measured and reported in number count/
particles at the entire size or number in every litre of air flow that pumped into the instruments 
(EDM180, GRIMM). The concentration of FPNC was found higher (maximum of 5,826,380 
counts/L) compared to CPNC (maximum of 818 counts/litre). An artificial intelligent technique 
(boosted regression trees (BRT) algorithm) was constructed from multiple regression models, 
and the best iteration of the BRT model was performed by optimising prediction performance. 
The analysis revealed that the significant variation in the FPNC was largely influenced by SO2 

(46.53%), Julian day (13.71%) and wind direction (10.50%). In contrast, the CPNC was 
primarily influenced by wind speed (22.33%), wind direction (18.89%), Julian day (18.17%) 
and pressure (11.38%).

Keywords: Particle number count concentrations; Fine particles; Coarse particles; Boosted 
regression trees; Coastal area
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1. INTRODUCTION

 Aerosol can be described physically by the 
mass, surface and concentration of its particles  
that come in a range of sizes. Aerosol has an  
impact on the environment and on human 
health especially, both over the short and the  
long term. According to Yahaya (2013), the  
particle number count concentrations ([PNC]) 
can be used to quantify the characteristics of the 
particles in the atmosphere. The Air Quality 
Expert Group (AQEG, 2005) categorises this 
particulate matter by size of particle into nano, 
ultrafine, fine, coarse, and over 10 µm. It has 
been reported by the World Health Organisation 
that more than two million premature deaths 
worldwide each year are attributed to urban 
outdoor and indoor air pollution that contains 
particulate matter (WHO, 2005). Particulate 
matter in air pollution causes health problems  
in humans, especially respiratory diseases,  
cardiovascular disease, damages internal organs 
such as lungs and heart, causes cancer, increases 
mortality and premature death (Kampa and 
Castanas, 2008; Shridhar et al., 2010; EPA, 2011; 
Janssen et al., 2013). Harrison et al., (1997) cited 
in Massey et al., (2012) state that there are three  
sources of particulate matter that have an  
impact on health: (i) primary fine particles from  
industrial and combustion sources, predominantly 
road traffic; (ii) secondary aerosol, mostly 
ammonium sulphate and ammonium nitrate 
formed through photochemical reactions; and 
(iii) wind-blown soil and re-suspended street  
dust present largely in coarse fractions (2.5-10 mm).

 A coastal environment is categorised by the 
distance from a certain point or location near 
the coast or shore. Hail (1970) defines a coastal 
zone as an area of variable width that extends 
seaward to the edge of the continental shelf, but 

which has no distinct landward demarcation.  
On the other hand, in a study based in Malaysia,  
a coastal zone is described as an area that 
extends inland by approximately 1 kilometre 
from the mean low tide level and seaward to the 
outermost limit of the state boundary (Mastura, 
1992).

 The main objective of this study was to 
determine the relationship between the [PNC] 
and a number of meteorological conditions and 
gases that influence the [PNC] in a Malaysian 
coastal area by using the boosted regression 
trees (BRT) technique. The interaction between 
the variables was observed and explored with 
reference to the output from the BRT. Although 
there was a number of research performed a 
simultaneous measurement of [PNC], gases and  
meteorological variables however, due to  
limited technique and approach used most  
model developed only include limited  
measurements as a predictive variables in model 
prediction. Therefore, a new approach which is 
called the boosted regression trees techniques 
with an artificial intelligent approach was used  
in this study to achieve the objectives of this study.

 Boosting is a general method that can 
be used to ‘boost’ the model accuracy of any  
given learning algorithm, and was first developed  
by Friedman (2001), who then added a  
stochastic element to the boosting algorithm 
by taking a random sample from the training 
dataset without replacing it with observation 
data in the iteration (Friedman, 2002). The 
advantages of techniques based on the decision 
tree are explained in De’ath (2000) and can be 
summarised as follows: flexibility to handle a 
wide range of response types, rank statistics that 
result in invariance of the tree to any monotonic 
transformations of the explanatory variables, 
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ease and robustness of construction, ease of 
interpretation of complex results involving 
interactions, and the ability to handle missing 
values in both the response and explanatory 
variables. Furthermore, extreme outliers do 
not have an effect on the prediction results. 
Therefore, the BRT technique offers advantages 
over other methods such as linear regression 
and multiple regression in the context of air 
pollution modelling (Carslaw and Taylor, 2009). 
The most recent BRT technique developed 
by Friedman (2002) has been used in several 
proposed modelling and forecasting methods 
in the fields of ecology (Leathwick et al., 2006; 
De’ath, 2007; Elith et al., 2008) and atmospheric 
environment (Carslaw and Taylor, 2009; Yahaya, 
2013; Munir et al., 2014).

 In this study we focused on the most  
dominant particle number which are FPNC in 
range 0.25 – 1.0 µm hereafter call FPNC and 
CPNC with 2.5 – 10 µm hereafter call CPNC.

2. MATERIALS AND METHODS

 A 10-minutes data of the [PNC], SO2 

(ppb), NOX (ppb), and selected meteorological 
factors (humidity, temperature, pressure, wind 
speed and wind direction) for a 6-month period 
(6 January to 5 July 2015) were measured and 
gathered from the Institute of Ocean and Earth 
Sciences (IOES) Station Bachok, Malaysia. The 
IOES Station is located on the east coast of 
Peninsular Malaysia (N 6.0086; E 102.4259) and 
is shown in Figure 1. The location was chosen 
because the monitoring tower (approximate 
20 meters height) is mounted approximately 
100 metres from the water’s edge of the South 
China Sea. The distance of the IOES Station 
from Kota Bharu, the capital city of Kelantan, 
is approximately 30 kilometres and mounted 

at approximate 20 meters high monitoring 
tower. These IOES station is categorised as a  
rural area where agriculture is the main activity 
of the residents and fishing activities also 
take place along the coastal area. [PNC] were 
monitored using a particle counter (Model 
EDM180, GRIMM, Germany) which provided 
1-minute concentrations of 31 channels of the 
[PNC] (Particle Diameters = 0.265–34 µm) and 
reported in units of counts/litre. The EDM180 
uses a patented laser with a 90° scattering angle 
to detect the particles. It also has a measuring 
chamber that the sample of air enters from the  
top, which ensures that only one particle is  
measured at a time. The SO2 (ppb) and NOX 
(ppb) gases were measured by an EcoTech 
EC9805T Series and EcoTech EC9841T Series, 
Australia, respectively. The particles, gases and 
meteorological data were then collected in a 
paperless recorder (Brainchild Data Logger 
Model VR18). The weather stations Model LSI 
Lasteem from the United Kingdom were used 
to measure the humidity (%), temperature (oC), 
pressure (pascal), wind speed (m/s) and wind 
direction (degree from the North).

 From the previous research on the aerosol 
studies, besides the natural and anthropogenic 
sources, the meteorological factors also give 
effects to the size distribution of the particles. 
These factors also important in the new particle 
formation events, suggested that there are natu-
ral processes leading to significant production 
of particles. (Vakeva et al., 2000)

 Total of ten-minute 25,958 data ([PNC],  
SO2, NOX and selected meteorological  
conditions) were compiled in a Microsoft Excel 
spreadsheet in .csv format.   The R programming  
language, which was developed by the Develop-
ment Core Group R (2008), was used to analyse 
the data statistical and graphically. R is ‘GNU S’. 
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R software provides a wide variety of statistical 
and graphical techniques including linear and 
nonlinear modelling, statistical tests, time 
series analysis, classification, and clustering 
among others (Hornik, 2014). In this study, 
the “openair” packages (Carslaw 2013) and the 
generalised boosting machine (gbm) package 
(Ridgeway, 2010) and its packages were used to 
analyse the data and develop the BRT algorithm.

3. RESULT AND DISCUSSION

3.1 Statistical Analysis Results

 The statistical analyses were performed 
on the 10-minute average values of the [PNC], 
SO2 and NOX and the meteorological factors, as 
summarised in Table 2. In this study we focused 
on the most dominant particle number which 
are FPNC in range and CPNC. The results show 
that higher level of FPNC mean concentration 
of 281,513 counts/litre (maximum: 5,826,380 
± 420,666 counts/L) and the mean of 37.46 
counts/L (maximum: 818 ± 50 counts/L) 

were recorded for CPNC were recorded. This 
phenomena may link to sea spray that emitted 
fine particles due to coagulation and chemical 
reaction which is not included in this study. 
Statistically, the mean of both FPNC and CPNC 
was higher compared to the median, which 
indicates that possible extreme events occurred 
over the period under study which in this case 
maybe from the monsoon and season variability 
factors.  

3.2 Model Development Process

 The BRT technique was applied in this 
study to analyse the relationship between fine 
and course particles, meteorological factors 
and the gases. The models were fitted in R 3.0.2 
software by using the gbm package, version 
1.6-3.1 (R Development Core Team, 2008; 
Ridgeway, 2010). Three methods can be used 
to estimate the optimal number of iterations 
through the fitted gbm: the independent test 
set (test) method, out-of-bag estimation (OOB), 
and cross-validation (cv) (Yahaya et al., 2011; 

Figure 1. IOES monitoring station at Bachok, Kelantan, Malaysia
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Yahaya, 2013; Yahaya et al., 2016). There are 
three important parameter settings for the BRT 
algorithm: number of trees (nt), learning rate 
(lr) and interaction depth or tree complexity 
(tc). A boosting algorithm sample for a [PNC]  
BRT model with a nt value of 10,000 was  
simulated for the total [PNC] sample. The error 
distribution for this study assumed a Gaussian 
error distribution with similar assumptions to 
those applied in Carslaw and Taylor (2009). 
A set of data that uses training datasets were 
computed to determine the best iteration and 
the minimum error by using the optimum BRT 
parameters with stochastic approaches. 

 Ridgeway (2010) determines the optimal 
number of iterations required by using the 
independent test set method that involves the 
use of a single holdout base dataset. A boosting 
algorithm sample for the particle model with nt 
= 10,000 was simulated for the datasets obtained 
from Bachok, Kelantan with lr = 0.01, tc = 5, and 
cv.fold = 10, which are the values suggested by 
Ridgeway (2010), Carslaw and Taylor (2009) 
and Yahaya (2013) for analysing an air pollution  
dataset. A 10-fold cv was used in the gbm in  
order to obtain an estimate of the optimal 
number of boosting iterations and plotting 
performance measures (Ridgeway, 2010).  

3.3 Model Performance

 The model was developed by using the  
training dataset and the model fitting  
performance was then evaluated by using the 
error bias analyses. The model performance 
was then evaluated by using the testing datasets. 
First, the randomness of the model was set by 
using the set.seed function. The dataset was split 
into 70% for training and 30% for testing by 
using train.fraction function.  The best combi-
nation will give the lowest value in the root mean 
square error (RMSE). The model evaluation stat 

factor of two (FAC2), correlation coefficient (R), 
and index of agreement (IOA) – were computed 
to compare the predictive performance of the 
models.

 When the BRT algorithm was set using 
parameters lr = 0.005, 0.05, tc = 5, 5, nt = 9,999, 
9,997, and number of data (n) = 23,597, 23,597 
for FPNC and CPNC, respectively, it achieved 
the minimum predictive error and this iteration 
of the algorithm was found to best fit the data. 
These settings were selected based on the lowest 
RMSE value of 192,920.3 and 17.73, respectively. 

Table 1. Summary of Statistical Data for Variables Measured at IOES Station 

Variables Mean Median Maximum SD
FPNC (count/litre) 281,513 141,361 5,826,380 420,666
CPNC (count/litre) 37.46 21 818 50
SO2 (ppb) 11.06 0.72 215.94 35.22
NOX (ppb) 1.46 1.1 7.16 1.03
Humidity (%) 73.89 77.27 100 27.38
Temperature (˚C) 26.54 26.25 32.87 2.22
Pressure (hPa) 1008 1008 1016 2.47
Wind speed (m/s) 3.164 2.44 12.23 2.08

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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 Pearson’s correlation coefficient, the R 
value and the coefficient of determination (R2)  
between the observed and modelled data  
indicated that the performance of the model was  
good. A correlation coefficient value approaching  
1 shows a perfect model between the two  
variables. The FPNC and CPNC R (R2) values 
were 0.90 (0.81) and 0.94 (0.87), respectively, 
which indicates that both the observed and 
modelled number counts for both the fine and 
coarse particles were in good correlation with 
each other. This result implies that more than 
90% of the variations in both of these two types 
of [PNC] were explained by the explanatory 
variables. The FAC2 values for both FPNC and 
CPNC were 0.85 and 0.81, respectively, which 
are in the recommended range of 0.5 to 2. Thus, 
the fraction of predictions within a factor of 
two of the observed values is the ratio between 
model-predicted and observed variables. Hence, 
the developed models produced results that were 
within the acceptable value range, meaning that 
it is suitable for use as a predictive model.

 Conditional quantiles are a very useful way  
of considering model performance against  
observations for continuous measurements 
(Wilks, 2005). The conditional quantile plot 
splits the data into evenly spaced bins. For each 
predicted value bin, the corresponding values  
of the observations are identified and the  
median, 25/75th and 10/90 percentile (quantile) 
are calculated for that bin. Next, the data are 
plotted to show how these values vary across all 
bins. Figure 2(a) and (b) show the conditional 
quantile plot for the model and observations 
for the FPNC and CPNC, respectively. The 
blue diagonal line indicates the result required 
for a perfect model, while the red line shows 
the median value for the predictions. From the 

figure, the plot for the CPNC has an almost a 
perfect median line (red line) compared to that 
for the FPNC. The shading in the plot shows the 
predicted quantile interval. There is still some 
spread, especially for the FPNC, because even 
for a perfect model a specific quantile interval 
will contain a range of values. However, for the 
number of bins used in this plot the spread is 
very narrow. The histogram shows the counts 
of predicted values for both types of [PNC] had 
been forecast to be more frequent, especially 
on the right tail of the histogram. Hence, both 
developed models gave an acceptable range of 
values for the dataset. The scatter plots in Figures 
2(c) and (d) illustrate the differences between 
the observed and modelled data for the FPNC 
and CPNC, respectively. The 1:1 diagonal is 
solid and the 1:0.5 and 1:2 lines are dashed, 
which indicates how close the datasets are to 
1:1 relationships and the points that are within 
FAC2, as stated by Carslaw (2013).

3.4 Boosted Regression Trees Result

 There are three main outputs that can be 
obtained from the BRT analysis output which 
are the partial dependence plot, the relative 
influences of the variables, and the interactions 
between the variables (Yahaya, 2013). The BRT 
modelling process can be used to examine the 
relationships between the independent variables 
(gases and meteorological variables) and the 
dependent variable (PNC). Visualisation of the 
fitted functions in a BRT model is achieved by 
using partial dependence functions and is an 
effective way to show the response after account-
ing for the effects of all the other variables in the 
model (Friedman, 2001). In this case, models 
were pulled from the gbm best iteration output 
and then plotted using partial dependence plots.

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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3.5 Partial Dependence Plot

 The partial dependence plot for the gases 
and meteorological variables demonstrates the 
relationships between these variables and the 
fitted model of the [PNC] for the IOES Station, 
and these relationships were also examined 
and compared between variables. Figure 3 and 
Figure 4 show partial dependence plots derived 
from gbm output for the FPNC and CPNC at 
the IOES Station, respectively. 

 From the BRT partial dependence plot 
analysis, each variables namely time of the day, 

wind speed and temperature have a negative 
relationship with the FPNC level, which shows 
that an increment in the wind speed has  led to 
decrease  the number count of these particles. 
This finding is in agreement with Yahaya (2013), 
who conducted a [PNC] study in the city of 
Leeds, UK. However, the concentrations of 
SO2 and NOX showed different trends, where 
the FPNC increased with the increment in 
each gases, especially during night-time (land 
breeze). In the area under study, these gases are 
normally produced by either diesel or petrol 
engines or industrial or construction activities. 

Figure 2. (a) conditional quantile plot for FPNC; (b) conditional quantile plot for CPNC; (c) scatter 
plot for FPNC;(d) scatter plot for CPNC for IOES Station datasets

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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The inconsistent fitted partial dependence plot 
were obtained for the time system (Julian day) 
and humidity factors. This indicated that these 
factors are not that important for forecasting the 
particle number in this case. These fluctuating 
results also indicate that there are probably 
other factors at play that were not identified or 
addressed by this study. The fitted model also 
showed that t FPNC increased dramatically to 
the maximum concentration (approximately 
25,958 particles/litre) and then remained stable 
when the wind blew from 180˚ to 260˚ (from the 
mainland). However, the FPNC concentration 
decreased when the wind blew from 260˚ to 
320˚, that is, from the sea transition edge. Thus 
it can be concluded that most of the fine particles  
were carried by the wind from the land,  
probably directly from the agricultural and 
fishing activities nearby. 

 It was found that, the relationships  
between the CPNC and the temperature,  
pressure and SO2 variables were all positive. In 
other words, the CPNC increased steadily with 
the increase in these two meteorological factors 
and with increased SO2. Thus a similar pattern 
was indicated for both fine and coarse particles 
in relation to SO2. However, in contrast to the  
result for FPNC, CPNC decreased with  
decreasing wind speed and time of the day. The 
Julian day showed a fluctuating relationship 
with the CPNC, while there was an inconsistent 
relationship between NOX and the CPNC.

 The fitted model also showed that the 
particle concentrations increased when the wind 
blew from approximate 75˚ to 100˚ (from the 
sea) and that the CPNC increased dramatically 
and then remained stable when the wind blew 
from 100˚ to 150˚ (sea transition edge) at a high  

concentration (70 particles/litre). Then the 
concentration decreased when the wind blew 
from 150˚ to 200˚ (from the land). This indicates 
that most of the coarse particles were carried by 
the wind from the ‘sea’, probably directly from 
the crystallisation processes acting on the sea 
salt spray.

3.6 Relative Influence Variables

 The variable influence or relative importance 
of the decision tree ensembles was based on 
the decision tree influences as described by 
Breiman et al. (1983) and was then proposed by 
Freidman (2001). The decision tree influences 
was then implemented in the gbm package. The 
relative influence represents to what extent the 
response (dependent) variable is influenced by  
the predictor (independent) variables. The  
relative influence of each variable obtained from 
a BRT analysis is scaled such that the total is 
expressed as a percentage. Figure 3 shows the 
plots and values of the variables that influenced 
the [PNC]s obtained from this analysis. Figure 
3(a) shows that SO2 influenced almost half 
(46.53%) of the FPNC value, with the Julian 
day having the second highest influence of, 
13.71% followed by the wind direction at 10.5%. 
The other parameters, namely, pressure, NOX, 
temperature, humidity, time (hour) and wind 
speed, accounted for percentage values of less 
than 10% each, and therefore exhibited much 
lower influence on the FPNC. As for the CPNC 
value, Figure 3(b) shows that wind speed, wind 
direction and Julian day influenced this type 
of particle the most, at 22.33%, 18.89% and 
18.17%, respectively. The other variables, SO2, 
temperature, humidity, NOX, and time (hour) 
had less than a 10% influence each on the CPNC.

 

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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Figure 3. Partial dependence plot for FPNC and dependent variables

Figure 4. Partial dependence plot for CPNC

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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Figure 5. (a) relative variable influence for FPNC; (b) relative variable influence for CPNC

3.7 Interaction between Variables

 The BRT technique can also identify the 
interactions between the variables and these 
can be represented graphically by considering 
all possible pair-wise variable combinations in 
turn by using the plot.gbm command in the 
gbm package. For the purpose of this study, 
the interactions between the most important 
variables, namely, SO2 and Julian day for the 

FPNC, and wind speed and wind direction for 
the CPNC were examined. The fitted predictor 
data were pulled from the particle boosting 
model further investigated by plotting contour 
lines by using the Akima and plotrix package. 
Akima 2D interactions illustrate the interaction 
between two selected parameters. In this case, 
the top two variables that influenced the two 
types of [PNC] were selected for further analysis. 

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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 The relative strength interaction effect 
index (H-Index) illustrates the degree to which 
the predictors interact in determining the 
response of the variables. This can be done 
by computing the strength of the interactions 
between two selected variables by applying the 
Friedman’s H statistics method using a nonlinear 
model (Friedman and Popescu, 2008). The 
H-values range from 0 to 1. The value of zero 

means that there are no interactions between the 
variables, while the closer the value is to 1, the 
stronger the interaction between the variables.

 Figure 6(a) shows the Akima 2D interactions 
for FPNC. The two variables that had the most 
influence on the FPNC, SO2 and Julian day, show 
a good relation with the H-Index value 0.337 
along with the FPNC. The high FPNC indicated 
by the red colour shows that the value of SO2 

Figure 6. (a) Akima 2D interaction between variables for FPNC (SO2 and Julian Day); (b) Akima 
2D interaction between variables for CPNC (wind speed and wind direction)

N. Z. Yahaya et al. / EnvironmentAsia 11(3) (2018) 221-234
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exceeded 200 ppb during the early hours of the 
Julian day. In contrast, where the H-Index for 
the wind speed and wind direction was found of 
0.238 in value as shown in Figure 6(b). From the 
plot, the high CPNC was brought about by the 
slow speed of the wind (between 0 and 2 m/s) 
which came in from the ocean to the west. 

CONCLUSION

 This paper presented the results of an 
analysis of the use of the boosted regression tree 
model as a statistical tool to predict the number 
count of fine and coarse particles (FPNC and 
CPNC) in a coastal area on the east coast of 
Malaysia during the period of 5 January to 6 July 
2015. The used of BRT as a tools for forecasting 
particles is an advance approach in which the 
model development processes promised the 
best model fitting that can suit most data type.  
Moving from traditional way to an artificial  
intelligent approach provides an advance 
analysis and gives a better way to understand 
the pattern, model fitting and interactions 
between variables. The understanding of these 
fundamental sciences of particles especially at 
the coastal environment is important that can 
be used for prediction purposes. The aim of the 
study was to investigate the influence of two 
gases and selected meteorological variables on 
these two types of [PNC] by using the boosting 
technique. Based on the result of the evaluation 
of the performance of the predictive models 
developed for FPNC and CPNC, both of the 
models achieved a good fit between the observed 
and predicted values, where more than 90% of 
the variation in these two types of [PNC] was 
explained by the explanatory variables. Further 
work can be done by including another station 
at different location in Peninsular Malaysia 

such as at the West Coast, South Malaysia and 
also at the mid land of Malaysia.  Comparison 
between different types of artificial intelligent 
analysis may also interesting to give a better 
understanding and explore more options to 
analyse big data which currently adopted in 
current world.
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