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Abstract

Two time series models, Holt Winter and Autoregressive Integrated Moving Average (ARIMA), 
were adapted to predict the concentrations of daily air pollutants in Surabaya, Indonesia. Two 
scenarios were developed to assess model performance in predicting PM10, SO2, CO, NO2, and 
O3 concentrations. In the first scenario, we used measured data, and, in the second scenario, 
we tested model performance when the data contained many missing values. We varied the 
percentage of missing values for three different sets of trained data and filled them with 
interpolations. It was found that the Holt Winter model was best at predicting CO, NO2, and 
O3 concentrations using measured data, whereas the ARIMA model was better at predicting 
PM10 and SO2 concentrations. An assessment of model performance when there were missing 
values shows that the Holt Winter model was not affected by the number of missing values and 
missing data patterns in the prediction of CO and O3 concentrations, although it was affected in 
the prediction of NO2. On the other hand, the ARIMA model, which was used for the prediction 
of PM10 and SO2 concentrations, was not affected by the amount of missing data and missing 
data patterns. The Holt Winter model is recommended for the prediction of CO concentrations 
based on the following model goodness of fit criteria for three different experimental runs with 
various amounts of missing data:  the mean error, ME, (0.039; -0.878; -1106); root mean square 
error, RMSE, (0.315; 0.985; 1.175); coefficient of determination, R2, (0.516; 0.612; 0.785); and 
correlation (0.719; 0.782; 0.886). 
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1. Introduction

 Air pollution, especially in the world’s big 
cities, including the Indonesian cities of Jakarta, 
Surabaya, Semarang, Bandung, and Medan, has 
caused a decrease in air quality and an increase 
in health disorders (Arifin and Sukoco, 2009).  
Based on the Minister of Environment’s  
Regulation No. 12 of 2010 concerning the  
implementation of air pollution control in  
districts, the quality of ambient air has decreased 
due to the increase in air pollutant sources, 
leading to aggressive preventive and control 
actions. One step in air pollution management 
is the monitoring of ambient air quality status. 
A daily report on air quality can then be released 
so that citizens are aware of the level of and 
potential public health risks from air pollution 
(Afroz et al., 2003).

 Currently, there are three active monitoring  
stations in Surabaya, Indonesia recording  
particulate (PM10), carbon monoxide (CO), 
sulfur dioxide (SO2), nitrogen dioxide (NO2),  
and ozone (O3) levels (Sari, 2014). Accumulation  
of these pollutants, coming from a vast number 
of sources, causes negative impacts on public  
health. In order to avoid and reduce such  
impacts, citizens need to be aware of future air 
quality in advance. The accuracy of predictions 
helps end-users and stakeholders to develop 
appropriate plans to avoid being exposed to  
pollutants. Better predictions can increase profits, 
quality of life, and prevent deaths (Dahyot, 
2014).

 The predictions of air quality concentration  
can be done by using various statistical  
techniques, without consideration of physical 
and chemical processes, to analyze the existing 
historical data record (Kandya and Mohan, 

2009), especially when it comes to short-term 
predictions. Time series analysis is a good model 
with which to monitor and forecast air quality 
conditions (Wei, 2006; Lee et al., 2012). The 
data required in time series forecasting can be  
obtained from a wide variety of monitoring  
stations which record air quality in time  
sequence (Ip et al., 2010).

 The Autoregressive Integrated Moving 
Average (ARIMA) model is one of the statistical 
techniques used to predict urban air quality 
(Kandya and Mohan, 2009). This model has the 
capability of describing stationary data using 
the differencing method (Wei, 2006). ARIMA 
requires matched testing of each statistical 
modeling technique to obtain prediction values 
(Omane et al., 2013) which consider past and 
erroneous values in the data (Makridakis et al., 
1999). 

 To enhance performance, seasonal and 
trend data patterns are incorporated into the 
model. The Exponential Smoothing Holt Winter 
model integrates these two aspects (Kalekar, 
2004). The Holt Winter model has been applied  
to the prediction of electrical power requirements, 
which has daily data showing seasonal patterns 
and trends (Sudheer and Suseelatha, 2015). 
This model does not consider the stationarity 
of data, but, instead, uses repetitive steps and 
past weighting values to obtain new predictive 
values (Omane et al., 2013). Daily data for air 
pollutant concentrations show seasonal patterns 
and trends (Kandlikar, 2007). The similarity in 
the seasonal patterns and trends of electricity 
requirements and air pollutant concentrations 
data indicates that the Holt Winter model can 
be used to predict the concentrations of air 
pollutants.
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 Both the Holt Winter and ARIMA models 
require past values to obtain future values, but 
cannot proceed if there is missing data (Hanzak, 
2008; Terry et al., 1986). Therefore, missing 
value imputation must be done to fill in these 
gaps through, e.g., interpolation. However, 
this process will affect model performance. 
The present study thus determines the effect of 
the amount of and patterns in missing data on 
model prediction accuracy.

2. Material and Method

2.1 Data Collection

 Data used in this study are air quality data 
from the Environmental Agency in Surabaya  
taken from air quality monitoring stations  
located in Kebonsari, Surabaya (SUF-6).  
Air quality parameters are particulate (PM10), 
carbon monoxide (CO), sulfur dioxide (SO2),  
nitrogen dioxide (NO2), and ozone (O3)  
concentrations. Observations on air quality 
were taken hourly each day for 15 days in 2014. 
Data were collected for 14 days in-sample (336 

observations on each air quality parameter) 
and one day out-of-sample (24 observations) 
to determine the goodness of fit of the models. 
Total data used were 360 observations on each 
air quality parameter.

 The analyses in this research were done by 
iterating the Holt Winter and ARIMA models 
until the best model parameters were found 
using the open-source platform R. Prediction of 
air pollutant concentrations was done one day 
ahead, and the prediction results were checked 
using observed data. The data on each parameter 
of air pollutant concentrations represents the 
dry season, January - February.

2.2 Scenario of Experiments

 There were two experiments conducted, 
each with three test data sets. Both experiments  
were intended to test the consistency of the  
model under study in air pollutant concentrations 
prediction. The data used are shown in Tables 
1 and 2. 

Table 1. Test Data for Experiment I

Parameter
I II III

PM10 4-18/2/2014 11-24/2/2014 24/1-7/2/2014
CO 4-18/1/2014 9-23/1/2014 7-21/2/2014
SO2 2-16/1/2014 8-22/1/2014 6-20/2/2014
NO2 4-18/1/2014 24/1-7/2/2014 29/1-12/2/2014
O3 1-15/1/2014 7-21/1/2014 5-19/2/2014

Note: date format is dd/mm/yy; thus, 18/2/2014 refers to 18th February 2014. This format is used 
for the dates in all of the tables

In - Out Sample

Table 1. Test Data for Experiment I

Parameter
I II III

PM10 4-18/2/2014 11-24/2/2014 24/1-7/2/2014
CO 4-18/1/2014 9-23/1/2014 7-21/2/2014
SO2 2-16/1/2014 8-22/1/2014 6-20/2/2014
NO2 4-18/1/2014 24/1-7/2/2014 29/1-12/2/2014
O3 1-15/1/2014 7-21/1/2014 5-19/2/2014

Note: date format is dd/mm/yy; thus, 18/2/2014 refers to 18th February 2014. This format is used 
for the dates in all of the tables
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Data in-out sample

Table 2. Test Data for Experiment II

% Missing
Data PM10 CO SO2 NO2 O3

12.5
37.5 24/1-7/2/2014 4-18/1/2014 2-16/1/2014 4-18/1/2014 4-18/1/2014
50

 Table 2 shows data collection dates for 
Experiment II, in which the data set has been 
manipulated by varying the amount of missing 
data. We randomly deleted 12.5%, 37.5%, and 
50% of the data using with both regular and 
random patterns. Regular missing values means 
that we deleted several data in sequence, whereas 
random missing values means that we deleted  
data completely randomly, not in sequence.  
The manipulated data is then used to check 
consistency of the model when the missing data 
are filled in by interpolation.

2.3 Model Performance Measurements

 Model verification is used to determine 
the best model. The accuracy level refers to 
the goodness of fit of a prediction model. The 
verification method used is as follows:

 1. Mean Error (ME). If  there are  
  observation values and predictions for  
  n time periods, then there will be n  
  false and standard statistical measures.  
  The ME is defined in equation (1).

  ME = Σn
t=1 e1/n               (1)

 2. Root Mean Square Error (RMSE) is  
  statistical parameter that shows the  
  actual error size of the model. RMSE is  
  used to compare prediction performance  
  with the prediction model (Omane  
  et al., 2013). The formula for RMSE is  
  shown in equation (2).

  RMSE = 1
n Σn

t=1 e1               (2)

 3. Coefficient of Determination. R2  

  represents the proportion of the  
  variance (fluctuations) in the predicted  
  variable that can be explained by the  
  independent variables. It is used as a  
  gauge of how well a model explains  
  and predicts future outcomes (Berk,  
  2008). R2 is thus used to check the  
  goodness of fit of the model. R2 can be  
  computed as seen in equation (3).

  R2 = SSE
SST  = Σ(y1- y 1)2

Σ(y1-y1)2               (3)

 4. Correlation Coefficient. Correlation  
  is a statistical method used to  
  determine the strength or degree of the  
  linear relationship between the predicted  
  and independent variables (Bamston,  
  1992). Correlation is denoted by r, -1≤  
  r ≤ 1. If r = -1, this means a perfect  
  negative (inverse) relationship; r = 0  
  means no relationship; and r = 1 means  
  a perfect positive (direct) relationship  
  (Muinah, 2011). The equation for r can  
  be seen in equation (4).

  r = R2                 (4)  

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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3. Results and Discussion

3.1 PM10 Modeling 

 The first step in PM10 concentration 
modeling is done by separating the data into 
two parts; namely, in sample (336 observations) 
and out of sample (24 observations). The data 
pattern in the PM10 air pollutant concentration 
will provide a description of the data and a visual 
stationarity and can be determined by a time 
series plot, as shown in Figure 1.

 Based on the verification results in Table 
3, the ARIMA model has better capability and 
consistency in PM10 air pollutant concentration 
prediction. Overall, statistical measures show 
consistent support for the ARIMA model. The 
forecasted values obtained from the ARIMA 
model align nicely with the observed data, as 
shown in Figure 2.

Figure 1. Time Series Plot of PM10 – time plot III (24/1-7/2/2014)

Verification Results

Table 3. Model Performance for PM10 Data

Model
ME RMSE R2 Corr

HW I 34.858 56.335 0.527 -0.726
ARIMA I -9.638 17.515 0.305 0.552
HW II 18.037 23.117 0.017 -0.132
ARIMA II 5.607 13.376 0.017 0.131
HW III -125.72 143.893 0.677 -0.823
ARIMA III 2.443 5.123 0.823 0.907

Figure 2. Graph of PM10 Prediction - time plot III (24/1-7/2/2014)

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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3.2 CO Modeling 

 A representation of the data pattern 
of CO concentration is shown in Figure 3  
(7-21/2/2014). It exhibits a bimodal shape,  
representing two peak sessions every day.

 Table 4 shows the results of the statistical 
measures for both models when predicting the 

concentration of the pollutant gas CO. The Holt 
Winter model is superior to the ARIMA model 
in this case. Figure 4 shows that the Holt Winter 
prediction pattern is similar to the observed 
data, and the correlation coefficients are fairly 
strong. However, the R2 ranges from 0.5 to 0.8, 
which means that the performance relies on data 
training and is, therefore, likely to fluctuate in 
the near future. 

Figure 3. Time Series Plot of CO – time plot III (7-21/2/2014)

Table 4. Model Performance for CO Data

Model
ME RMSE R2 Corr

HW I 0.04 0.315 0.513 0.716
ARIMA I -0.432 0.415 0.357 0.517
HW II -0.878 0.985 0.612 0.782
ARIMA II -0.014 0.595 0.305 0.552
HW III -1.106 1.175 0.785 0.886
ARIMA III 0.288 0.885 0.046 0.215

Verification Results

Figure 4. Graph of CO Prediction – time plot III (7-21/2/2014)

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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Figure 5. Time Series Plot of SO2 – time plot II (8-22/1/2014)

3.3 SO2 Modeling

 A representation of the data pattern for 
SO2 concentration can be shown by the time 
series plot in Figure 5. The pattern shows several 
spikes, or high concentrations, due to manufac-
turing activities in several time slots.

 Based on the verification results in Table 
5, the ARIMA model has better capability and 
consistency in SO2 pollutant concentration 

prediction. However, we note that, for this 
gas, the performance is not as good as those of 
the models used to predict CO and PM10. CO 
concentration is very low in ambient air, and its 
fluctuations may occur over a very long period 
of time. This may cause the concentration data to 
not follow any clear pattern. Figure 6 shows that 
both models fail to produce accurate predicted 
concentrations.

Table 5. Model Performance for SO2 Data

Model
 ME  RMSE  R2  Corr

HW I 1.99 2.431 0.023 -0.152
ARIMA I -0.362 1.198 0.035 0.187
HW II 1.132 1.193 0.050 0.223
ARIMA II -0.131 0.256 0.261 0.511
HW III 0.412 1.117 0.002 -0.043
ARIMA III 0.376 1.091 0.029 0.171

Verification Results

Figure 6. Graph of SO2 Prediction - time plot II (8-22/1/2014)

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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Figure 7. Time Series Plot of NO2 – time plot II (24/1-7/2/2014)

Table 6. Model Performance for NO2 Data

Model
ME RMSE R2 Corr

HW -9.954 12.721 0.427 0.654
ARIMA -15.766 16.126 0.072 0.269
HW -9.805 11.270 0.516 0.718
ARIMA -0.172 6.041 0.133 0.365
HW 4.693 8.192 0.644 0.802
ARIMA 0.281 10.332 0.123 0.350

Verification Results

3.4 NO2 Modeling

 NO2 concentration is shown in Figure 7. 
NO2 is emitted largely through a combustion 
process, mainly from vehicles, with a smaller 
portion coming from industry. The pattern in 
NO2 concentrations shows a bimodal shape, 
which occurs in the morning and afternoon 
each day. 

 The performance of the Holt Winter model 
in forecasting the next day’s pollutant levels is  
superior to that of the ARIMA model, as  
indicated by all statistical measures. The  
correlations are relatively strong, and the  
forecasted values match up well with the  
observed data (Figure 8). 

Figure 8. Graph of NO2 Prediction – time plot II (24/1-7/2/2014)

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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3.5 O3 Modeling

 Ozone (O3) is formed in the tropospheric 
layer by photochemical reactions involving the 
presence of NO, NO2, and UV light. Therefore, 
O3 is a secondary pollutant. High concentrations 
of O3 may lead to skin irritation. The ozone 
concentration pattern follows a one-peak-a-day 
pattern, peaking each day at noon (high point 
in UV radiation), as seen in Figure 9. However, 
on days when the cloud cover is high, lower O3 

peak concentrations are found.

 The Holt Winters model once again  
outperforms the ARIMA model when used 
to forecast O3 concentrations for all three 
sets of data. The results follow the pattern 
of the observed data (Figure 6). On the 
other hand, the smoother results from the 
ARIMA model fail to accurately reflect the 
observed data. Statistical measures from all 
three sets (Table 7) consistently show the 
superiority of the Holt Winters model over  
the ARIMA model. The flexibility of Holt  
Winters is apparent when predicting pollutants 
with a clear seasonal pattern.

Figure 9. Time Series Plot of O3 – time plot I (1-15/1/2014)

Verification Results

Table 7. Model Performance for O3 Data

Model
ME RMSE R2 Corr

HW I -6.403 15.747 0.616 0.785
ARIMA I -0.156 10.482 0.007 0.084
HW II -4.486 10.911 0.465 0.682
ARIMA II 6.04 8.776 0.282 0.531
HW III -20.237 24.488 0.165 0.406
ARIMA III -15.575 18.683 0.019 0.139

Figure 10. Graph of O3 Prediction – time plot I (1-15/1/2014)

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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3.6 Model Consistency When Considering  
 the Amount of Missing Data

 Missing data causes prediction to become 
difficult in time series models because continuity  
should be maintained in order to obtain  
coefficients for the models. A wide range of 
statistical methods, especially interpolation, 
are available to fill in the missing data (Honaker 
et al., 2010). Missing data are filled with new 
values, and, once the trained data is complete, 
prediction simulations using the Holt Winter 
and ARIMA models can be performed.

 The generation of missing data, at 12.5%, 
37.5%, and 50% of data, shows that Holt Winter 
is able to consistently produce better predictions  
when missing values are filled in with interpola-
tion, as shown in Table 8. Whether the missing  
pattern is random or regular does not affect  
significantly model performance (Table 9), 
except in the case of NO2, for which the Holt 
Winters model performance was better when 

the missing values were in sequence. The Holt 
Winter model failed to produce an accurate 
forecast when the missing values occurred 
randomly.

 The results also show that there is  
consistency between the scenarios developed in 
this study. The performance of both models with 
missing values which were interpolated was the  
same as their performance with no missing  
values. This result indicates that missing values  
will not cause a deterioration in model  
performance. However, there is a slight effect 
on prediction from how missing values are 
generated.

 The ARIMA model is not affected by the 
distribution pattern in the air of a pollutant’s 
concentration when it is used to predict PM10 

and SO2 concentrations. The Holt Winter model 
is not affected by missing value patterns when  
predicting CO and O3 concentrations; however, 
its performance was slightly affected when 
predicting NO2 concentrations.

Table 8. The Best Model Based on the Percentage of Missing Data

Missing Data PM10 CO SO2 NO2 O3

12.5%
37.5% ARIMA Holt Winter ARIMA Holt Winter Holt Winter
50%

Table 9. Distribution Pattern of the Best Data

Missing Data PM10 CO SO2 NO2 O3

12.5% Regular Random Random Regular Regular
37.5% Random Random Regular Regular Regular
50% Random Regular Regular Regular Random

A. D. Syafei et al. / EnvironmentAsia 11(3) (2018) 251-162
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4. Conclusion

 The use of a time series model is important 
for air quality management, especially when 
used to forecast short-term concentrations of 
pollutants. However, selecting an appropriate 
model is essential. In this study, we assess 
successfully the performance of ARIMA and 
Holt Winter models in predicting pollutants. 
It is observed that, for pollutants with seasonal 
variations in concentration, such as CO, NO2 

and O3, the Holt Winter model outperforms the 
ARIMA model. ARIMA was better at predicting 
PM10 and SO2 concentrations, both of which 
had little seasonal variation. This result is not 
affected by the number of missing values filled 
in by interpolated data contained in the data 
training. The present study shows the promising 
use of the Holt Winter model when forecasting 
air pollutant concentrations compared with 
ARIMA.
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