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Abstract 
 
This paper presents the bandwidth selection methods for local polynomial regression with Normal, 
Epanechnikov, and Uniform kernel function. The bandwidth selection methods are proposed by 
Histogram Bin Width method, Bandwidth for Kernel Density Estimation method, and Bandwidth 
for Local Linear Regression method to estimate the local polynomial regression estimator. Using 
Monte Carlo simulations, we compare the Mean Square Error (MSE) of the bandwidth selection 
methods. For simulation results, it can be seen that the MSE of Bandwidth for Kernel Density 
Estimation method provides the smallest in all situations. The bandwidth selection methods are 
applied to the Stock Exchange of Thailand (SET) index. The results show that the MSE of Kernel 
Density Estimation method with Normal kernel function is the smallest as the simulation study. 
 
Keywords: Bandwidth, Epanechnikov kernel function, Local linear regression, Local polynomial 
regression 
 
 

1. Introduction 
 
A parametric regression model is known as the analyzing of the relationship between predictor 
variables and the response variable that required the assumption of the underlying regression such 
as linearity, stationary variance, and independence of explanatory variables. The restriction of 
parametric regression model is possible to produce misleading conclusions. This latter strategy 
leads to nonparametric regression model that relaxed the assumption of linearity. 
 Many nonparametric regression methods or called smoothing methods which produce a 
smoother exist. A smoother is a tool for summarizing the trend of a response variable as a function 
of one or more predictor variables. The single predictor case is called simple nonparametric model 
or scatterplot smoothing that can be used to enhance the visual appearance of the scatterplot of the 
response variable, to help our eyes pick out the trend in the plot [1]. 

The most popular nonparametric regression methods include kernel smoothing started by 
Nadaraya-Watson kernel estimator [2-3] and local polynomial regression. A vast literature on 
local polynomial regression are reported. Stone [4] examined the consistency properties of many 
nonparametric regression estimators in local polynomial. Cleveland [5] was a catalyst whose 
renewed interest in local polynomial, introducing LOWESS (locally weighted scatterplot 
smoothing) using a tricube kernel function with bandwidth based on neighbor distances. Müller 
[6] studied certain equivalences between local polynomial kernel estimators and kernel estimators. 
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The local polynomial regression is a method based on a class of kernel smoothing that 
can be used to estimate the regression function at a particular point by locally fitting a pth degree 
polynomial to the data via weighted least squares. This class includes the Nadaraya-Watson kernel 
estimator since it corresponds to fitting degree zero polynomials (i.e., constants). The importance 
and simplicity is the local polynomial kernel estimators corresponding to p = 1 or called the local 
linear regression. 

The Nadaraya-Watson kernel estimator depends on the smoothing parameter or called 
bandwith that controls the trade-off between the goodness-of-fit and model complexity. Allen [7] 
and Stone [8] proposed the cross-validation method to select the smoothing parameter by the 
cross-validation criterion. Wahba [9] and Craven and Wahba [10] suggested replacing the ordinary 
cross-validation to generalized cross-validation for choosing the smoothing parameter. 
 The aim of this article is to compare the bandwidth selection methods of bandwidth 
selection for the Nadaraya-Watson kernel estimator under Normal, Epanechnikov, and Uniform 
kernel function. We consider the local polynomial regression in Section 2 and kernel function in 
Section 3. The bandwidth selection methods are illustrated in Section 4 and these methods with 
simulation data and real data were used in Sections 5-6. Finally, the conclusions are presented in 
Section 7. 
 
 

2. The Local Polynomial Regression 
 
Consider the simple nonparametric regression functions as 
  ( ) , 1, 2, ,t t ty x t nμ ε= + = K                                                                    (1) 

where , 1,2, ,tx t n= K  are known the predictor variable, , 1, 2, ,ty t n= K  are known the 

response variable, ( )txμ  are the nonparametric regression function that we want to estimate, and  

, 1, 2, ,t t nε = K  denote the measurement errors. 
 The main concept of local polynomial regression estimator is to approximate parameter 
by a polynomial of some degree. The Taylor expansion can be approximated by a polynomial of 
degree p and assumed that ( )txμ , as 

2 (2) ( )
(1) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

2! !

p p
t t

t t t
x x x x x xx x x x x

p
μ μμ μ μ − −

≈ + − + + +K                   (2) 

 The local polynomial regression estimator is minimizer of; 

{ }2

0 1 0 1
1

ˆ ˆ ˆ( , , , ) arg min ( ) ( )
n

p t
p t t p t

t

x xy x x x x Kβ β β β β β
λ=

−⎛ ⎞= − − − − − − ⎜ ⎟
⎝ ⎠

∑K K   (3) 

where (.)K  is a kernel function, 0λ > is called the bandwidth and β
%

 denotes the vector of 

coefficient 0 1( , , , )T
pβ β βK  evaluated at x . 

 
 The explicit expression in (3) can be made via matrix notation as 
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We get the weight least squares estimator as 
                                    1ˆ( ) ( )T Tx X W X X W Yβ −=                                                                  (4) 
 
For p=0, the  local constant estimator is Nadaraya-Watson kernel estimator written as 
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or   
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t t
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∑
, λ  is known the bandwidth, and (.)K  is a kernel function. 

 
 
 
 
 
 
 
 
 



KMITL Sci. Tech. J. Vol. 11 No. 2 Jul. - Dec. 2011 

67 
 
 

3. Kernel Function 
 
The kernel function is a weighting function used in the local polynomial kernel estimator in 
nonparametric regression function. It gives the weight of the nearby data points in making the 
estimators. Given these characteristics, the specific choice of a kernel function is not critical that 
calculated weight by 

( ) t
t

x xK x K
λ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 Three popular choices of kernel functions, illustrated in Figure 1 are the Gaussian or 
Normal kernel function, Epanechnikov kernel function, and Uniform kernel function. 

 
The Normal kernel function is simply the standard normal density function 

[ ]21/2 /2( ) (2 ) , ,uK u e uπ − −= ∈ −∞ ∞  
 

The Epanechnikov kernel function is optimal in minimum variance sense [11] 

   ( ) [ ]23( ) 1 , 1,1
2

K u u u= − ∈ −
 

 
The Uniform kernel function 

   [ ]1( ) , 1,1
2

K u u= ∈ −  
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Figure 1 Gaussian or Normal kernel function (a), Epanechnikov kernel function (b), and Uniform 
kernel function (c). 
 
 

4. Bandwidth Selection Methods 
 
A bandwidth or a smoothing parameter ( )λ  is considered to be good if it produces a small 
prediction error, usually measured by Mean Square Error (MSE).  
 There are several methods to estimate bandwidth, so in this case we use the three good 
performance methods as follows: 
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4.1 A Histogram Bin Width [12] 
This method uses direct plug-in methodology to select the bin width of a histogram denoted 
“dpih” that extended the bin width rules of Scott [13] to estimate bandwidth by  
     1/3ˆ ˆ3.49 nλ σ −=              (6) 
where σ̂  is an estimate of standard deviation, and n  is a number observation. 
 Wand [12] studied the number stages l  of functional estimation before a rough estimate 
is used is another variable that needs to be specified. This means that he actually has a family of 

plug-in rules indexed by l . Let l̂λ  denote the l -stage plug-in rule with initial estimates found 

using a normal scale rule. Examples of l̂λ  are : 

The zero-stage rule of 0̂λ  

            
1/3 1/31/2

1/3
0

2

6 24ˆ ˆ ˆ3.49
ˆ NS n

n n
πλ σ σ

ω
−⎛ ⎞ ⎛ ⎞

= = ≈⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
            (7) 

Note that 0̂λ  is simply the normal scale bin width selection rule of Scott [13]. 

The one-stage rule of 1̂λ  

            
1/3

1
2 11

6ˆ
ˆ ( )g n

λ
ω

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

    where  
1/5(2)

11
2 4

2 (0)
ˆ( ) NS
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= ⎢ ⎥
⎣ ⎦

            (8) 

 

The two-stage rule of 2̂λ  
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⎣ ⎦
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                             , 
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, and ( ) ( )k
k L u L u duμ = ∫  

 
An estimate of rω is called a normal scale estimator, and  denoted  this by ˆ NS

rω . A 
useful result is  
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4.2 A Bandwidth for Kernel Density Estimation [14] 
This method uses plug-in methodology to select the bandwidth of a kernel density estimation 
denoted “dpik” that was studied from the concept of Park and Marron [15]. The Park and 
Marron’s λ selector based on the choosing λ to minimize a kernel-based estimate of Mean 
Integrated Squared Error (MISE) via the first two terms of its usual asymptotic expansion 
(AMISE) valids as n →∞ and ( ) 0nλ λ= → : 

           1 4 41( ) ( ) ( ) ( '')
4 KAMISE n R K R fλ λ λ σ−= +                                                       (11) 

Here, the notation follows the convention 2 2 2( ) ( ) , ( )gR g g x dx x g x dxσ= =∫ ∫  for 

appropriate function g. Each objective function is thus of the form 

                                 1 4 41 ˆ( ) ( ) ( ) ( )
4 Kn R K Sψ λ λ λ σ α−= +                                                    (12) 

where ˆ( )S α is a kernel-based estimate of ( '')R f , using some appropriate bandwidth α . Note 
that if  α  did not depend on λ , the minimization of ψ  could be performed analytically to give  

                                              

1/5

1/5
4

( )
ˆ( )K

R K n
S

λ
σ α

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

%                                                                 (13) 

and equation (14) was improved from equation (13) by Jones and Sheather [14], i.e.  

        

1/5

1/5
4

2

( )
ˆ( ( ))K

R K n
S

λ
σ α λ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

%                                                    (14) 

where 5/7
2 1̂( ) cα λ λ= , noting that  1̂c  estimates 1c to use a scale model.  

 
4.3 A Bandwidth for Local Linear Regression [16] 
This method uses plug-in methodology to select the bandwidth of local linear Gaussian kernel 
regression denoted “dpill”. The direct plug-in approach, where unknown functions that appear in 
expressions for the asymptotically optimal bandwidths are replaced by kernel estimates, is used. 
The kernel is the standard normal density. Least squares quartic fits over blocks of data are used to 
obtain an initial estimate. Mallow’s pC  is used to select the number of blocks. 
 For the local linear kernel estimator, the MISE-optimal bandwidth is asymptotic to 

   
1/52

1
22

( )( )AMISE
b aC K

n
σλ
θ

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
           (15) 

where 2 1/5
1 2( ) [ ( ) / ( ) ]C K R K Kμ= , whereas the MSE-optimal bandwidth for estimation of  

           

1/7
2

2
24

( )( )AMSE
b ag C K

n
σ
θ

⎡ ⎤−
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⎣ ⎦
            (16) 

where 2 ( )b aσ −  is replaced by ( )
b

a

v x dx∫ . 
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5. Simulation Study 
 

The simulation study is to estimate the performance of bandwidth selection methods, dpih, dpik, 
and dpill, via kernel function of local polynomial regression method. Data are generated from an 
AutoRegressive (AR) in order 1 given by 
   1 , 1,2, ,t t ty y t nρ ε−= + = K  

where tε  ~ N(0,1) ; the coefficient of AR(1) is  ρ  = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1; 
sample sizes  n = 25, 50, 100 and 250. 
 The R Statistical Software was used to simulate data at 500 replications until the results 
are stable in all cases. The efficiency of bandwidth selection method, dpih, dpik, and dpill is 
estimated using Mean Square Error (MSE) as follows: 

   

2

1

ˆ( )
n

t t
t

y y
MSE

n
=

−
=
∑

 

 Table1 shows the estimated MSEs of kernel function, Normal kernel function, 
Epanechnikov kernel function, and Uniform kernel function, under bandwidth selection methods. 
The MSEs of Normal kernel function, Epanechnikov kernel function, and Uniform kernel 
function, of all sample sizes are also presented in Figures 2-4.   

The estimated MSEs dpik are  the smallest especially when n is small, but the MSEs of 
dpill are larger than the MSEs of the other methods except when  ρ =1 at the sample sizes n = 25, 
50, and 100. When n is large (n=250) , the MSEs of dpih and dpik are the same at Epanechnikov 
kernel function, and Uniform kernel function for ρ  = 0.1-0.7 . 
 In this case, the estimated MSEs are too small that the horizontal axis of kernel function 
was divided into sub-intervals which covers the range of data. 
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Table 1 The estimated Mean Square Error (MSE) of bandwidth selection methods, dpih, dpik, and 
dpill, via Normal kernel function, Epanechnikov kernel function and Uniform kernel function. 

 
 

n ρ Normal Epanechnikov Uniform 
dpih dpik dpill dpih dpik dpill dpih dpik dpill 

25  0.1 
 0.2 
 0.3 
 0.4 
 0.5 
 0.6 
 0.7 
 0.8 
 0.9 
 1 

0.0007 
0.0006 
0.0008 
0.0007 
0.0008 
0.0009 
0.0011 
0.0012 
0.0024 
0.0049 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0003 

0.0012  
0.0011 
0.0012 
0.0011 
0.0012 
0.0011 
0.0012 
0.0011 
0.0014 
0.0017 

 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0003 
 0.0005 

 9.1e-35 
 1.0e-34 
 1.1e-34 
 1.3e-08 
 5.9e-07 
 1.3e-06 
 1.0e-06 
 9.1e-06 
 1.3e-05 
 5.4e-05 

0.0005 
0.0006 
0.0005 
0.0004 
0.0003 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 

0.0007 
0.0005 
0.0005 
0.0005 
0.0004 
0.0004 
0.0004 
0.0004 
0.0007 
0.0012 

1.0e-34 
1.0e-34 
1.1e-34 
1.4e-06 
1.4e-34 
4.5e-06 
1.2e-05 
1.2e-05 
5.9e-05 
0.0001 

0.0011 
0.0009 
0.0008 
0.0007 
0.0006 
0.0006 
0.0006 
0.0004 
0.0004 
0.0005 

50  0.1 
 0.2 
 0.3 
 0.4 
 0.5 
 0.6 
 0.7 
 0.8 
 0.9 
 1 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0003 
0.0010 

1.7e-05 
1.8e-05 
1.7e-05 
2.1e-05 
1.5e-05 
2.5e-05 
2.7e-05 
3.3e-05 
5.0e-05 
0.0001 

 0.0004 
 0.0005 
 0.0005 
 0.0006 
 0.0006 
 0.0005 
 0.0004 
 0.0004 
 0.0005 
 0.0006 

 1.0e-05 
 9.6e-06 
 1.7e-05 
 1.2e-05 
 1.6e-05 
 2.8e-05 
 3.2e-05 
 4.4e-05 
 5.5e-05 
  0.0001 

 4.8e-35 
 5.0e-35 
 4.7e-35 
 5.8e-35 
 6.7e-35 
 7.6e-35 
 1.2e-09 
 2.1e-07 
 3.5e-06 
 1.3e-05 

0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
8.7e-05 
9.2e-05 

6.4e-05 
7.9e-05 
6.4e-05 
7.3e-05 
8.1e-05 
8.3e-05 
8.6e-05 
9.4e-05 
0.0001 
0.0003 

5.8e-35 
5.9e-35 
5.3e-35 
6.9e-35 
6.2e-35 
8.2e-35 
2.8e-07 
2.5e-06 
1.3e-05 
4.2e-05 

0.0004 
0.0004 
0.0004 
0.0004 
0.0003 
0.0003 
0.0002 
0.0001 
0.0001 
0.0001 

100  0.1 
 0.2 
 0.3 
 0.4 
 0.5 
 0.6 
 0.7 
 0.8 
 0.9 
 1 

2.3e-05 
2.2e-05 
2.1e-05 
2.0e-05 
1.9e-05 
2.5e-05 
2.4e-05 
3.3e-05 
5.4e-05 
0.0002 

1.6e-06 
1.5e-06 
1.5e-06 
1.9e-06 
2.4e-06 
3.7e-06 
4.6e-06 
6.5e-06 
1.2e-05 
5.1e-05 

 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0002 
 0.0001 
 0.0001 
 0.0001 
 0.0001 
 0.0002 

 2.3e-35 
 2.6e-35 
 4.4e-09 
 2.8e-09 
 1.9e-07 
 9.4e-07 
 2.7e-06 
 5.7e-06 
 1.0e-05 
 3.6e-05 

2.3e-35 
  2.6e-35 
  2.8e-35 
  3.0e-35 
  3.2e-35 
  3.4e-35 
  5.1e-35 
  6.9 e-35 
  1.8e-07 
  5.3e-06 

0.0001 
0.0001 
0.0001 
0.0001 
7.4e-05 
4.7e-05 
3.4e-05 
2.8e-05 
2.6e-05 
2.8e-05 

2.7e-35 
2.6e-35 
9.1e-09 
3.6e-07 
1.0e-06 
8.0e-06 
1.2e-05 
2.0e-05 
2.5e-05 
6.8e-05 

2.7e-35 
2.6e-35 
2.5e-35 
3.2e-35 
3.4e-35 
4.2e-35 
5.0e-35 
1.1e-07 
2.5e-06 
1.4e-05 

0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
7.1e-05 
6.2e-05 
5.7e-05 
5.7e-05 

250  0.1 
 0.2 
 0.3 
 0.4 
 0.5 
 0.6 
 0.7 
 0.8 
 0.9 
 1 

1.6e-06 
1.5e-06 
1.7e-06 
1.6e-06 
1.6e-06 
2.0e-06 
1.9e-06 
2.7e-06 
4.6e-06 
3.5e-05 

3.5e-08 
3.3e-08 
5.0e-08 
6.0e-08 
9.4e-08 
1.7e-07 
3.1e-07 
7.5e-07 
1.4e-06 
8.3e-06 

 8.2e-05 
 9.0e-05 
 8.0e-05 
 7.3e-05 
 7.6e-05 
 8.3e-05 
 7.8e-05 
7.5e-05 
7.6e-05 
9.6e-05 

 9.4e-36 
 8.9e-36 
 1.0e-35 
 1.1e-35 
 1.1e-35 
 1.6e-35 
 1.8e-35 
 6.6e-08 
 9.2e-07 
 5.9e-06 

9.4e-36 
8.9e-36 
1.0e-35 
1.1e-35 
1.1e-35 
1.6e-35 
1.8e-35 

 2.8 e-35 
3.1e-09 
1.4e-06 

4.4e-05 
5.5e-05 
5.2e-05 
4.5e-05 
3.1e-05 
3.3e-05 
2.3e-05 
1.6e-05 
1.2e-05 
1.4e-05 

1.0e-35 
1.0e-35 
1.0e-35 
1.2e-35 
1.3e-35 
1.7e-35 
2.0e-35 
8.1e-07 
3.3e-06 
1.1e-05 

1.0e-35 
1.0e-35 
1.0e-35 
1.2e-35 
1.3e-35 
1.7e-35 
2.0e-35 
3.3e-35 
1.7e-07 
3.0e-06 

7.5e-05 
7.6e-05 
8.5e-05 
8.6e-05 
6.4e-05 
5.0e-05 
4.6e-05 
4.0e-05 
3.0e-05 
2.4e-05 
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Figure 2 The estimated Mean Square Error (MSE) of bandwidth selection methods, dpih, dpik, 
and dpill, with Normal kernel function. 
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Figure 3 The estimated Mean Square Error (MSE) of bandwidth selection methods, dpih, dpik, 
and dpill, with Epanechnikov kernel function. 
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Figure 4 The estimated Mean Square Error (MSE) of bandwidth selection methods, dpih, dpik, 
and dpill, with Uniform kernel function. 
 
 

6. Application in Real Data 
 

In this section, we applied the bandwidth selection methods to an economic time series data. A 
real data is the monthly Stock Exchange of Thailand (SET) index that starting trading on April 30, 
1975. These data were collected from 1976 to 2011 giving a total of 430 observations. 
 The MSEs obtained from bandwidth selection methods of kernel functions are shown in 
Table 2. In comparison for the kernel functions, we also proposed the observed values and fitted 
values of bandwidth selection methods in Figures 5-7. 
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Table 2 The estimated Mean Square Error (MSE) of bandwidth selection methods, dpih, dpik, and 
dpill, via Normal kernel function, Epanechnikov kernel function, and Uniform kernel function for 
SET index. 
 

 
 

Normal Epanechnikov Uniform 

dpih dpik dpill dpih dpik dpill dpih dpik dpill 

MSE 28.815 0.0002 263.48 10.115 0.0318 21.615 13.049 0.0451 62.758 
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Figure 5 The scatterplot of SET index data, and local polynomial regression estimates of 
bandwidth selection methods, dpih, dpik, and dpill, with Normal kernel function. 
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Figure 6 The scatterplot of SET index data, and local polynomial regression estimates of 
bandwidth selection methods, dpih, dpik, and dpill, with Epanechnikov kernel function. 
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Figure 7 The scatterplot of SET index data, and local polynomial regression estimates of 
bandwidth selection methods, dpih, dpik, and dpill, with Uniform kernel function. 
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As presented in Table 2, the proposed bandwidth selection methods, dpik provides the 
MSEs less than those of the dpih, dpill in all kernel functions. It is easy to see the scatterplot of 
SET index data and different fitting of dpih, dpik, and dpill from Figures 5-7. The local 
polynomial regression estimates of dpik is closed to the observations of SET index. 
 
 

7. Conclusions 
 

We have compared a bandwidth selection methods of kernel function for the local polynomial 
estimator. Through a Monte Carlo simulation study, the selection of bandwidth for Kernel Density 
Estimation method (dpik) worked reasonably well for simulated data in all cases. One reason 
behind this method is choosing the bandwidth to minimize good quality estimates of the mean 
integrated squared error.  
 For application in real data, we are also interested in comparing the power of bandwidth 
selection method by considering Mean Square Error (MSE). The MSE of the selected bandwidth 
for Kernel Density Estimation method (dpik) with normal kernel function is shown the minimum. 
Therefore, the proposed bandwidth selection method is a good estimator based on the sample sizes 
and kernel function. 
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