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Locality effects on bifurcation paradigm of L-H transition in tokamak plasmas
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Abstract

The locality effects on bifurcation paradigm of L-H transition phenomenon in magnetic confinement plasmas are
investigated. One dimensional thermal transport equation with both neoclassical and anomalous transports effects included
is considered, where a flow shear due to pressure gradient component is included as a transport suppression mechanism.
Three different locally driven models for anomalous transport are considered, including a constant transport model, pressure
gradient driven transport model, and critical pressure gradient threshold transport model. Local stability analysis shows that
the transition occurs at a threshold flux with hysteresis nature only if ratio of anomalous strength over neoclassical transport
exceeds a critical value. The depth of the hysteresis loop depends on both neoclassical and anomalous transports, as well as
the suppression strength. The reduction of the heat flux required to maintain H-mode can be as low as a factor of two, which
is similar to experimental evidence.
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1. Introduction

Discovery of L-H transition is considered as one of the
milestone events in nuclear fusion research (ASDEX Team,
1989). The formation of an edge transport barrier (ETB) causes
a tokamak plasma to make an abrupt transition from low (L-
mode) to high (H-mode) confinement modes resulting in
improved performance, i.e. better energy confinement time
and high plasma temperature and density (Burrell, 1994).
This improvement is crucial for the success of future fusion
projects, like ITER (Aymar et al., 2002). It was experimentally
found that an ETB formation is possible when an injected
heat, regardless of heating scheme, exceeds a threshold.
Theoretically, understanding the physics of L-H transition
is not quite clear and still one of the open issues in fusion
research (Connor et al., 2000). Nevertheless, most descrip-
tions are based somewhat on the shear of radial electric field
at the onset of anomalous transport suppression and it is

believed to be a consequence of flow shear (Burrell, 1997).
It  is  generally  accepted  that  anomalous  transport  can  be
stabilized  by  the  flow  shear  because  of  the  breaking  or  a
distortion of a convection cell (Biglari et al., 1990). Experi-
mental results also support that the anomalous fluxes can be
reduced or quenched by a sheared flow near plasma edge
(Burrell, 1997; Connor et al., 2004), resulting in an L-H tran-
sition.

It is known that L-H transition phenomenon exhibits
a bifurcation nature of plasmas (Malkov et al., 2008). Other
quantities can also exhibit this behavior such as plasma tem-
peratures and densities, toroidal rotation and radial electric
field (Wagner, 2007). The noticeable results show gradients
of pressure or density profiles significantly increase at the
onset of the transition. This sudden jump of gradients occurs
at the plasma edge where ETB is formed. This procedure can
be  visually  captured  using  an  s-curve  bifurcation  diagram
like that in the work of Malkov et al. (2008) where a graph of
flux versus gradient has a non-monotonic behavior resulting
in bifurcation regime within a certain range of heating. Figure
1 shows similar curve with addition of neoclassical regime,
this will be explained in later section. In this figure, QLH and
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QHL represents heat flux at the onset of L--H transition and
H-L  back  transition,  respectively;  while  gLH  and  gHL
represent  their  respective  pressure  gradients.  The  figure
captures qualitatively possible regimes in the plasma. At low
heat flux, the plasma is in the ohmic phase, which is domi-
nated by the neoclassical transport, identified as a neoclassi-
cal  regime.  As  heat  flux  increases,  the  anomalous  effect
gradually dominates the transport and the plasma reaches
the L-mode regime. Once the heat flux surpasses a critical
threshold, the plasma makes a sudden transition from L-mode
to H-mode where anomalous transport is quenched in the
transport barrier region.  In the intermediate range, there exists
a bifurcation regime where three equilibriums are possible;
two  stable  and  one  unstable.  Previous  works  on  bistable
s-curve bifurcation models discussed on various characteris-
tics of the models, which result in better understanding of the
qualitative aspects as well as gaining considerable insight
into L-H transition physics (Chatthong et al., 2015; Hinton,
1991; Hinton et al., 1993; Jhang et al., 2012; Lebedev et al.,
1997; Malkov et al., 2008; Staebler et al., 1996; Weymiens
et al., 2012). The work of Lebedev et al. (1997) used a one-
field bifurcation model to study spatiotemporal behavior of
the plasma. Malkov and Diamond later applied this concept
to analyze the coupled heat and particle transport equations
simultaneously and showed that with inclusion of the hyper-
diffusion effect, the transition follows Maxwell’s rule (Malkov
et al., 2008). Recently, the bifurcation concept was used to
investigate toroidal effect on L-H transition (Chatthong et al.,
2015).

This work attempts to extend the previous study on
the fundamentals of L-H transition as well as H-L back transi-
tion  in  the  bifurcation  context.  Heat  transport  equation
including both neoclassical and anomalous effects is used.
Three different assumptions for anomalous transport coeffi-
cients are considered for comparison and discussions. Note
that this in-depth analysis for L-H-L transitions based on
bifurcation concept has never been intensively studied, espe-
cially the effect of locality. The new models for anomalous
transport are locally proportional to the pressure gradient
which  is  more  realistic  than  the  previous  assumptions  of
having constant value throughout the plasma. In addition, it

is assumed that the anomalous transport is stabilized by the
flow shear which is driven by the pressure gradient.

This paper is organized as follows: brief descriptions
of bifurcation and fixed points concepts are presented in
Section 2; locality effects and the resulting hysteresis are
described in Section 3; and the conclusion is given in Section
4.

2. Bifurcation Concepts and Transition Points

Bifurcation concept approach for explaining an L-H
transition in tokamak plasma is based on the concept that
plasma can be intrinsically bistable. In other word, the plasma
mode can bifurcate from one regime to the other once certain
criteria are satisfied. Previously, Hinton et al. (1993) used the
Fourier transformation to identify the stability of each branch
in bifurcation diagram. However, the mechanism during tran-
sition  was  not  quite  clearly  explained.  The  attempt  in  this
section takes different point of view, in which can be easily
understood. In fact, not only the existence of three equili-
brium  branches  within  bifurcation  regime  is  thoroughly
illustrated,  but  the  location  of  transitions  and  dynamics
during transitions are also explained. This section shows
that stability analysis of local plasma point can be used to
describe how the plasma bifurcate to H-mode and back to
L-mode in different scenarios.

This particular work focuses on a one-field transport
equation,  which  assumes  that  heat  and  particle  transport
equations are completely independent from each other. This
approach has shown that many important qualitative features
of the L-H transition can be analyzed like those discussed in
the work of Lebedev et al. (1997). A version of heat transport
equation, in slab geometry, representing the conservation of
energy is of the form:
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where p is the plasma pressure, neo and ano represent the
neoclassical and anomalous transports, respectively, a is a
positive constant representing the strength of the suppres-
sion,  is the mode of the suppression relating to how the
turbulent convective cells are distorted by the flow shear Ev ,
which is assumed to be the main mechanism for anomalous
transport  suppression,  and  H(x)  is  the  heat  source  of  the
system. This form of transport equation is improved from that
discussed in the work of Malkov et al. (2008). It was found
that the confinement improvement of H-mode is a result of
transport  reduction  in  the  anomalous  channel,  reducing
transport to a neoclassical level (Wagner, 2007). The time
variation of the pressure can be written as:
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where xg p   and the flow shear is assumed to be driven
by the pressure gradient. Equation 2 can be integrated with

Figure 1. Basic S-curve bifurcation diagram is described for
tokamak plasmas.
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respect to x as follows:
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with

w pdx  , (4)

which is equal to the energy flow per surface area. Thus,
tw w   represents the energy density flow of plasma within

the flux surface. As a result, Equation 3 can be written as:
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where Q is the heat flux given to the plasma. This is a first-
order nonlinear differential equation of the thermal transport
equation. Evidently, this equation shows that only the heat
flux, which is the sum of heat source function, plays a role in
determining L-H transition.

Physically, Equation 5 can be treated as the time varia-
tion  of  the  energy  density,  which  is  a  function  of  both
pressure gradient and heat flux. It is plotted in Figure 2 with
each panel representing a graph of w  versus g at different
values of Q. Note that the constants are arbitrarily chosen in
this figure as well as in later figures. As a result, only the
qualitative  results  should  be  considered.  Treating  a  local
point  along  the  graph  as  an  initial  point,  as  time  goes  on,
three different scenarios can happen. If the point lies within
regions where 0w   then the plasma energy increases with
time resulting in an increase of the pressure gradient (arrow to
the right). On the other hand, if the point lies within regions
where 0w  , then the pressure gradient decreases because
the plasma energy decreases with time (arrow to the left).
Lastly,  when  the  point  lies  where 0w  ,  the  pressure
gradient does not change because the point is in equilibrium;
such points are called fixed points. At a low value of Q (panel
a), there exists only one stable fixed point. If Q reaches a first
critical value Q1

st
crit (panel b), an additional half-stable fixed

point is created. At higher Q (panel c), there are three fixed
points: two stable and one unstable fixed points. If Q equals
a second critical value Q2

nd
crit (panel d), the two fixed points

on  the  left  are  combined  and  become  a  single  half-stable
point. If Q exceeds Q2

nd
crit (panel e), the half-stable point is

destroyed and there remains one stable point at a relatively
high pressure gradient.

The graphical interpretation can be used to describe
the dynamics of a local pressure gradient. The foundation of
L-H and H-L transitions can be understood using a stability
analysis approach from time evolution of the plasma profiles.
One can imagine the heat flux Q as an independent variable
which can be increased or decreased. Accordingly, the quali-
tative  structure  of  the  plasma  system  can  potentially  be
changed as Q is varied. In particular, the fixed points can be
destroyed or created, or their stability can also change. The
critical assumption used throughout this work is emphasized
here that the plasma relaxation time is sufficiently small so

that the plasma has enough time to adapt to the change of Q.
Figure 3 illustrates the dynamics near bifurcation regime and
identifies the transition points. In this figure, the equilibrium
fixed points (both stable and unstable) as a function of heat
flux  are  showed.  This  is  a  traditional  bifurcation  diagram.
Essentially, what is implied here is that the pressure gradient
depends non-monotonically on the heat flux. The two stable
branches of the s-curve stand for low (L-branch) and high
(H-branch)  pressure  gradients,  while  the  other  branch  is
physically irrelevant because it would correspond to unstable
equilibrium. Based on the fixed points analysis described
above, as Q is increased from zero, the plasma remains on
L-branch in the bifurcation regime and jumps to H-branch
when Q is greater than the second critical flux. On the other

Figure 2. Fixed points for each value of heat flux and their stabili-
ties: solid dot for stable, open dot for unstable and semi-
open dot for half-stable fixed points.

Figure 3. Bifurcation diagram constructed from fixed points illus-
trating 2 stable branches and 1 unstable branch with L-H
and H-L transitions.
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hand,  when  Q  is  decreased  from  high  value,  the  plasma
remains on H-branch in the bifurcation regime until Q is
below the first critical flux. In fact, Q2

nd
crit = QLH and Q1

st
crit =

QHL. In addition, the heat flux at H-L transition is found to
be lower than that of L-H transition, implying hysteresis
phenomenon.

3. Locality Effects on L-H Transition and Hysteresis

This part emphasizes on the locality effects on this
bifurcation description of L-H transition. In the previous
works on bifurcation model (Malkov et al., 2008), the neo-
classical  and  anomalous  transports  are  assumed  to  be
constant. Those assumptions made the simplification suit-
able for analytical study but the shortcoming was that the
constant transport coefficients are not physically representa-
tive. In this section, localities of plasma transports are imple-
mented into this bifurcation picture of L-H transition. The
changes and improvements are discussed.

3.1 Transition criteria

The bifurcation diagram shown in Figure 1 can be
used  to  explain  L-H  transition  only  with  non-monotonic
behavior  of  the  flux  versus  gradient  curve.  Namely,  it  is
required that local maximum and minimum must exist to
represent  bifurcation  regime.  This  requirement  leads  to  a
criterion  that  the  ratio  of  anomalous  over  neoclassical
transport coefficients has to be greater than a certain value.
The criterion for constant transport coefficients was discussed
in the work of Malkov et al. (2008) to be either 8 or 16/9
depending on the strength of shear suppression. This is a
mathematical  implication  of  the  model,  however  it  has  a
physical  agreement  where  it  is  known  that  anomalous
transport is one (for ion) or two (for electron) order of magni-
tude higher than neoclassical transport. Thus, the discussion
on this paper is based on the plasma that behaves accord-
ingly. In other words, L-H transition is always possible for
the plasma with relatively high anomalous transport. There-
fore, if a sufficient heat flux is provided to the system, the
plasma will bifurcate to H-mode. The ratio lower than the
criterion implies that the stabilization is insufficient for such
a transition, which means that the plasma remains in L-mode
because of no discontinuity of the gradient profile. Experi-
mentally, if this kind of low anomalous transport can be
achieved then the suppression is not even necessary and the
plasma can reach high performance L-mode.

This section shows that the similar but more compli-
cated criteria for the transition retain with more realistic
models of anomalous transport used. Three different models
for describing anomalous transport ano, which is the domi-
nant term in fusion plasma as oppose to the neoclassical term
neo,  are  considered.  Being  much  less  dominative,  neo  is
assumed  to  be  just  a  constant.  For  the  first  model,  the
anomalous transport is assumed to be just constant, which is
similar to those previous works of Hinton et al. (1993) and

Malkov et al. (2008):

1ano c  . (6)
For the second model, the anomalous transport is assumed
to be driven by the local pressure gradient:

2
m

ano c g  , (7)
similar to what explored in the work of Hinton (1991) with
additional parameter m representing the mode of the drive.
The third model is a critical gradient model in which there
exists a critical point which turns on the anomalous transport
(Dimits et al., 2000; Garbet et al., 2004):

   3 θano c cc g g g g    , (8)
where gc is a critical gradient point,  represents a Heaviside
step function and ci represent proportional constants. Based
on these three models, the generalized form of heat transport
equation at steady state is as follows:
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A plot of Q versus g from this equation is illustrated
in Figure 1, the neoclassical regime represent the range where
anomalous transport is minuscule. First of all, Equation 9
implies that 1m    in order for the plot to be non-mono-
tonic. This algebraic constraint is a limitation in which this
model is applicable. Physically, this means the mode of the
suppression has to be greater than the mode of anomalous
transport. Algebraically, for cg g , the locations ( *g )
of the local maximum and minimum exist where 0gQ  ,
giving relation:

     2
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where neoc  . This can be rewritten to the form:
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(11)
This function  *g has a notable feature in which,

for g*>0, there exist a single local minimum value. This
minimum value can be calculated simply from 0g  . For
existence of non-monotonic curve in Q versus g space, it is
required that has to be greater than this minimum value.
The first model with m = 0 and gc = 0 yields that:

 1 2
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

 


, (12)

which agrees with what found in the work of Malkov et al.
(2008) with   equals to 2 and 4. The second model with gc = 0
yields that:
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where
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It is analytically not possible to find the criteria for
the third model (m = 1) because of the odd terms in Equation
11 but graphical method can be applied to show that there
indeed exists a critical value like the previous two models.
Before showing the graphical results, it is worth noting here
that Equation 11 with m = 1 can be rewritten as:
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Apparently, the graph of gc versus g* has a local maximum
within  the  applicable  region.  This  limitation  is  shown  as
example in Figure 4 where the non-monotonic behavior of
the bifurcation diagram vanishes if gc reaches its threshold
value  gc,th.  Physically,  gc  represents  critical  gradient  value
where the anomalous transport is turned on. Therefore, if this
critical gradient is too high, then the anomalous transport
will be too small relative to the neoclassical transport. Conse-
quently, the system enters the ineffective stabilization regime
or the high performance L-mode with no possibility of L-H
transition. Figure 5 (top panels) also shows that as the critical
gradient value is higher, the heat flux required for the transi-
tion  is  reduced  but  the  gradient  value  at  the  transition  is
increased. This makes sense because, when the anomalous
transport is reduced, it should be easier to reach the heat flux
requirement (QLH). Furthermore, the bottom panels of this
figure shows that the threshold of critical pressure gradient
gc,th is increased if either the anomalous transport is increased
or the neoclassical transport is decreased. In summary, this
analysis shows the existence of a critical ratio of anomalous
to neoclassical transport coefficients above which the L to
H  transition  becomes  a  bifurcation.  This  critical  ratio  is
dependent on variables m, , the suppression constant , as
well as the critical gradient gc.

3.2 Backward transition and hysteresis properties

It was found that H-mode plasmas can be retained
even  if  heating  power  is  reduced  below  L-H  transition
threshold. This hysteresis characteristic in fusion plasma has
been  found  in  various  experiments  and  the  reduction  of
heating power was found to be even as high as a factor of

two  (Snipes  et  al.,  2000;  Wagner,  2007).  The  bifurcation
diagram, Figure 1, also captures this hysteresis loop behavior.
The question of which mode the plasma resides, depends on
the direction of heat ramping. If it is ramped up, the plasma
makes an abrupt jump to H-mode as heat flux exceeds QLH.
From H-mode plasma, if the heat flux is reduced below QHL,
it transits back to L-mode. In this section, analytical study
on hysteresis depth is discussed based on this bifurcation
picture. Definition is given here for hysteresis depth study
which consists of the heat fluxes and pressure gradients at
L-H transition (QLH , gLH) and back H-L transition (QHL ,
gHL) as well as their differences (Q, g), respectively. This

Figure 4.  Bifurcation diagram at different values of critical gradient.

Figure 5. Effects  of  critical  pressure  gradient  on  the  pressure
gradient (top left) and threshold flux (top right) at L-H
transition  and  effects  of  anomalous  (bottom  left)  and
neoclassical (bottom right) transport coefficients on the
threshold limit of the critical pressure gradient.

Figure 6.  Hysteresis depth as a function of neoclassical transport.
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part  analyzes  the  effects  of  neoclassical  and  anomalous
transports and parameter m on the hysteresis depth. This
study can be used to further optimize plasma performance
versus heating with respect to H-mode sustainment.

Hysteresis  depth  as  a  function  of  neoclassical
transport is illustrated in Figure 6. First of all, the heat flux
reduction  ratio  (QLH/ QHL)  is  ranged  from  around  4  to  1
depending on the values of neo. As neo is increased, both
heat  flux  thresholds  are  increased  because  more  heat  is
needed to compensate the increment of the transport. The
interesting part here is that the rate of thresholds increase is
not the same. Consequently, it causes Q to reduce non-
linearly  to  zero  or  the  reduction  ratio  becomes  unity  as
neoclassical effect is higher. This is where the plasma reaches
ineffective stabilization regime. Similarly, the difference in
pressure gradient g is also reduced with higher neoclassical
effect.  It  can  be  seen  that  gLH  is  increased  while  gHL  is
decreased.

Figure 7  shows  hysteresis  depth  as  a  function  of
anomalous transport. The heat flux reduction ratio is ranged
from  around  1  to  2  as  c  is  higher.  As  anomalous  effect  is
increased, QLH is increased almost linearly whereas QHL is
also increased but at lower rate. Both heat flux thresholds
are increased because more heat is needed to compensate the
increment of the transport. As a result, Q is enlarged at a
non-linear rate as the plasma moves away from the ineffective
stabilization regime. This result tells us that at higher value
of anomalous transport the hysteresis in heating becomes
more prominent. Similarly, the difference in pressure gradient
g is also increased with higher anomalous effect. It can be
seen that gLH is decreased while gHL is increased.

Figure 8 shows hysteresis depth as a function of the
mode m of pressure gradient driven anomalous transport for
= 4. The heat flux reduction ratio is ranged from around 2 to
1 as m is higher. As m is increased, both QLH and QHL are
increased, the same trend as effects of c as expected. Both
heat  flux  thresholds  are  increased  because  more  heat  is
needed to compensate the increment of the transport. Q is
initially increased but its increasing rate is reduced, as the
limit m =+1 is reached, and is eventually decreased. This is
because  starts to take over at the limit. The behavior is the
same in g and gHL while gLH keeps increasing with m.

3.3 Stability diagram

Figure 9 summarizes the discussions in this work with
stability diagram. It shows the plot of ratio of anomalous
over neoclassical effect with the heat flux Q representing
different regimes in the plasma. When the ratio of anomalous
over neoclassical transport is below the critical value (Equa-
tion 12 and 13), L-H transition is not possible and the plasma
remains  in  the  ineffective  stabilization  regime  (L-mode).
Above the horizontal line in the regime where the transition
is possible, the mode of the plasma is determined by the heat
flux. So the plasma regimes are separated into four regions:
neoclassical, L-mode, H-mode and the bifurcation regime

where the plasma can either be in L-mode or H-mode. How-
ever, the plasma can only exist in one equilibrium state which
is determined from the dynamics of the heat flux variation.
If the heat flux is increased from lower value, then the plasma
stays in L-mode in this coexistence regime. Whereas, if the
heat flux is decreased from higher value, the plasma remains
in H-mode until it enters the L-mode regime. At low heat flux,
the anomalous transport becomes intrinsically stabilized so
the plasma is in neoclassical regime. Moreover, it can be seen
that as the ratio is increased the region of bifurcation regime
is also enlarged. It appears that the enlargement is nonlinear
which will have significant implication on the sustainment of
H-mode plasma in the high heating regime.

Figure 7.  Hysteresis depth as a function of anomalous transport.

Figure 8.  Hysteresis depth as a function of m.

Figure 9. Stability diagram illustrating possible regimes in the plasma.
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4. Conclusions

An analytical study based on bifurcation and stability
of fixed points shows that at low value of heat flux the plasma
is governed by neoclassical regime and at higher heat flux
the anomalous transport dominates with a bifurcation nature.
As a result, a sudden increase of local pressure gradient can
be achieved, which exhibits the L-H transition. This transi-
tion is found to depend on the direction of heat ramping,
where a backward H-L transition can occur at lower heating
power than that for a forward L-H transition during ramping
down phase, implying hysteresis phenomena. An analytical
study of bifurcation shows that two conditions are necessary
for plasma to make an L-H transition. Firstly, the ratio between
anomalous  and  neoclassical  transport  coefficients  must
reach a critical value which is found to be a function of flow
suppression and anomalous forms, in which locality effects
on anomalous transport appear to stringent the requirement.
This criterion persists even with more realistic choices of
anomalous transport models. Secondly, the source heat flux
injected into the system must be higher than a threshold. The
hysteresis depth is found to be proportional to anomalous
transports  and  inversely  proportional  to  neoclassical
transport  and  suppression  strength  except  near  marginal
point.
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