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Abstract

True triaxial creep tests are performed to determine the effects of the intermediate principal stress on the time-
dependent behavior of the Maha Sarakham salt. The applied octahedral shear stresses vary from 5 to 14 MPa while the mean
stress is maintained constant at 15 MPa. The loading conditions include conventional triaxial compression, polyaxial and
triaxial extension testing. Regression analyses of the results based on the Burgers model indicate that the instantaneous
deformation  tends  to  be  independent  of  2.  The  visco-elastic  and  visco-plastic  parameters  notably  increase  with  2.
To calculate the 2 effect on the long-term closure of salt storage caverns the Burgers parameters are defined as a function of
the Lode parameter. The results indicate that the conventional creep test results may overestimate the actual closure of
cylindrical and spherical caverns by as much as 15% and 35%, respectively.
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1. Introduction

The effects of confining pressures on the mechanical
properties of rocks are commonly simulated in a laboratory
by performing triaxial compression testing of cylindrical rock
core specimens. A significant limitation of these conventional
methods  is  that  the  intermediate  and  minimum  principal
stresses are equal during the test while the actual in-situ rock
is normally subjected to an orthotropic stress state where the
maximum, intermediate and minimum principal stresses are
different (1>2>3>0). It has been found that compressive
strengths obtained from conventional triaxial testing cannot
represent  the  actual  in-situ  strength  where  the  rock  is
subjected  to  an  anisotropic  stress  state  (Haimson,  2006;
Haimson & Chang, 2000; Hunsche, 1984; Tiwari & Rao, 2004,
2006; Yang, Zou, & Sui 2007).

From the experimental results on brittle rocks obtained
by Haimson (2006) and Colmenares & Zoback (2002) it can
be generally concluded that in a 1–2 diagram, for a given 3,
1 at failure initially increases with 2 to a certain magnitude,
and then it gradually decreases as s2 increases. The effect of
2 is larger under higher 3. Cai (2008) offers an explanation of
how the intermediate principal stress affects the rock strength
based on the results from numerical simulations on fracture
initiation and propagation. He states that the intermediate
principal stress confines the rock in such a way that fractures
can only be initiated and propagated in the direction parallel
to 1 and 2. The effect of 2 is related to the stress-induced
anisotropic properties and behavior of the rock and to the
end effect at the interface between the rock surface and load-
ing platen in the direction of the 2 application. The effect
should be smaller in homogeneous and fine-grained rocks
than in coarse-grained rocks where pre-existing micro-cracks
are not uniformly distributed.

Phueakphum, Fuenkajorn, and Walsri (2013) study
the effect of intermediate principal stress on tensile strength
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of sandstone. The results indicate that the compressive and
tensile  strengths  and  cohesion  obtained  from  the  triaxial
extension  tests  (1 = 2)  are  greater  than  from  the  triaxial
compression tests (2 = 3).

Several failure criteria have been developed to describe
the rock strength under true triaxial stress states. Comprehen-
sive reviews of these criteria have been given recently by
Haimson (2006), Colmenares and Zoback (2002), Cai (2008),
Al-Ajmi and Zimmerman (2005), Benz and Schwab (2008),
and You (2009). Among several other criteria, the Mogi (You,
2009)  and  modified  Wiebols  and  Cook  (Colmenares  &
Zoback, 2002; Zhou, 1994) criteria are perhaps the most widely
used to describe the rock compressive strengths under true
triaxial stresses.

Even through the effect of 2 on rock strengths has
long been recognized and studied as mentioned above, the
2 effect on time-dependent deformation of rocks has rarely
been  addressed.  The  experimental  investigation  on  their
issue is very limited. Mellegard, DeVries, and Callahan (2007)
describe the steady-state creep rate of salt by considering the
intermediate principal stress. From limited experiment data it
has been concluded that the Lode angle does not affect the
steady-state strain rate of salt. The transient strain rate might
be slightly higher in triaxial extension than triaxial compres-
sion. The knowledge and understanding of the 2 effect on
salt  creep  are  however  important  for  the  determination  or
prediction of the long-term closure of compressed-air energy
and gas storage caverns in salt. Such closure will dictate the
efficiency and capacity of the storage operation.

The objective of this study is to experimentally deter-
mine the effects of the intermediate principal stress on the
instantaneous and time-dependent deformation of rock salt
obtained from the Maha Sarakham formation. True triaxial
creep testing has been performed on rectangular salt speci-
mens with loading conditions varying from triaxial compres-
sion (1>2=3), polyaxial (1>2>3), to triaxial extension

(1=2>3). The Burgers model is used to describe the elastic,
visco-elastic  and  visco-plastic  deformations  of  the  salt
specimen tested under various stress states. Radial closure of
spherical and cylindrical gas storage caverns in the Maha
Sarakham salt is calculated to compare the results obtained
from testing under different loading conditions.

2. Salt Specimens

The tested specimens have been prepared from 60 mm
salt cores drilled from the depths ranging between 160 m and
270 m by Pimai Salt Co. in the northeast of Thailand. The salt
cores belong to the Middle salt member of the Maha Sarakham
formation  in  the  Khorat  basin.  This  salt  formation  hosts
several solution-mined caverns in the basin. It is also being
considered as a host rock for compressed-air energy storage
caverns by the Thai Department of Energy, and for chemical
waste disposal by the Office of Atomic Energy for Peace.
Warren (1999) describes the origin and geological structures
of  the  Maha  Sarakham  salt.  The  salt  cores  used  here  are
virtually pure halite with average grain (crystal) sizes of 5×5×5
mm. The salt cores have been dry-cut to obtain rectangular
blocks with nominal dimensions of 54×54×108 mm. No bed-
ding is observed in the specimens.

3. Test Method

The tests are categorized into three series based on
the loading conditions: triaxial compression (1>2=3),
polyaxial  (1>2>3),  and  triaxial  extension  (1=2>3).
The applied constant octahedral shear stresses range from 5,
8, 11 to 14 MPa which are used, as much as practical, for all
stress conditions. All specimens are tested under the same
mean stress of 15 MPa, primarily to isolate the effect of con-
finement from the test results. Table 1 shows the magnitudes
of  the  applied  principal  stresses  and  their  corresponding

Table 1. Loading conditions used for true triaxial creep testing.

Specimen Depth Loading Density Constant Principal Stresses oct
No. (m) Conditions (g/cm3) (MPa)

1 (MPa)  2 (MPa) 3 (MPa)

TC-2 209.68-209.80 12=3 2.18 34.8 5.1 5.1 14.0
TC-11 255.67-256.02 2.18 30.6 7.2 7.2 11.0
TC-13 238.22-238.28 2.15 26.3 9.4 9.4 8.0
TC-16 162.82-162.88 2.17 22.1 11.5 11.5 5.0

TC-20 204.10-204.15 123 2.14 34.6 7.2 3.2 14.0
TC-19 204.02-204.06 2.14 30.6 8.2 6.2 11.1
TC-14 268.32-268.38 2.17 26.3 10.3 8.3 8.1
TC-17 162.74-162.80 2.21 21.5 14.3 9.3 5.0

TC-4 253.64-253.75 1=23 2.09 21.0 21.0 3.0 8.5
TC-8 208.30-208.40 2.15 20.0 20.0 5.0 7.1
TC-18 202.14-202.26 2.17 18.6 18.6 7.9 5.0
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octahedral shear stress for each specimen.
A polyaxial load frame (Fuenkajorn, Sriapai, & Samsri,

2012) has been used to apply constant axial stress (1) and
lateral stresses (2 and 3) to the salt specimens. After install-
ing  into  the  center  of  the  load  frame,  the  salt  specimen  is
secured  by  six  loading  platens  arranged  in  three  mutually
perpendicular directions. The loading areas of the platens
are slightly smaller than the specimen dimensions. The top
and bottom platens have the loading area of 5252 mm2.
The four lateral platens have loading area of 52106 mm. This
allows axial and lateral deformations of the specimens during
testing. Neoprene sheets are placed at the interfaces between
the platens and specimen surfaces. The pre-calculated dead
weights  are  placed  on  the  two  lower  beams  to  obtain  the
lateral stress of 15 MPa along the two mutually perpendi-
cular directions. Simultaneously the axial (vertical) stress is
increased to 15 MPa. This uniform stress is maintained for
a  minimum  of  one  hour  primarily  to  ensure  that  the  salt
specimen is under isostatic condition. The applied stresses
are then adjusted to obtain the pre-defined octahedral shear
stresses (oct) while the mean stresses are maintained at 15
MPa. They are calculated from the three principal stresses as
(Jaeger, Cook, & Zimmerman, 2007):

oct = 1/3{(1-2)
2+(2-3)

2+(3-1)
2}1/2 (1)

m = (1+2+3)
 / 3 (2)

Each specimen is tested up to 21 days. The deforma-
tions along the principal axes are monitored using displace-
ment digital gages. The readings are made every one minute
for the first three hours. The reading intervals are gradually
increased to every hour after five days of testing. All tests
are  conducted  under  ambient  temperature  (25-28  degree
Celsius).

4. Test Results

Figure  1  shows  the  principal  strains  (1, 2, 3)  and
volumetric  strains  (v)  as  a  function  of  time  for  all  tested
specimens.  The  curves  show  the  instantaneous,  transient
and steady-state creep phases of the salt. For all loading con-
ditions the axial strains increase with oct. Under the triaxial
compression loading (1>2=3) the intermediate and minor
principal  strain  curves  are  virtually  identical.  Under  the
triaxial extension loading (1=2>3) the major and intermedi-
ate  principal  strain  curves  are  comparable.  These  suggest
that  the  test  procedure  and  measurement  techniques  are
sufficiently  reliable.  The  octahedral  shear  strains  (oct)  are
plotted  as  a  function  of  time  in  Figure  2,  where  they  are
calculated by (Jaeger et al., 2007):

oct = 1/3{(1-2)
2+(2-3)

2+(3-1)
2}1/2 (3)

The results suggest that under the same magnitude of
oct the specimens under triaxial compression (1>2=3) show

larger creep strains than those under polyaxial (1>2>3) and
triaxial extension (1=2>3) conditions.

5. Burgers Model

The Burgers model is used to describe the test results
primarily because it is simple and capable of describing the
elastic, visco-elastic and visco-plastic phases of the salt creep
under isothermal condition. It is recognized that numerous
creep models or constitutive equations have been developed
to represent the time-dependent behavior of rock salt. They
are however complex and cannot isolate each phase of salt
creep.  Figure 3 shows the physical components arranged in
the Burgers model. Assuming that the salt is isotropic and
linearly elastic a relation between octahedral shear strain and
stress can be written as (Jaeger et al., 2007):

oct = oct / 2G (4)

where G is the shear modulus of the salt. Using the Laplace
transformation a linear visco-elastic relation can be derived
from  the  above  equation  by  using  time  operator  of  the
Burgers model, and hence the octahedral shear strain can be
presented as a function of time (Richards, 1993):

oct (t) = oct [(t / 1) + (1 / E1) + (1 / E2)(1 – exp(E2×t / 2))] (5)

where oct is the applied constant octahedral shear stresses
(MPa), t is the testing time (day), E1 is the elastic modulus
(GPa), E2 is the spring constant in visco-elastic phase (GPa),
1 is the viscosity coefficient in steady-state phase (GPa.
Day), and 2 is the viscosity coefficient in transient phase
(GPa.Day).  Regression  analyses  on  the  octahedral  shear
strain-time  curves  based  on  Equation  (5)  using  the  SPSS
statistical software (Wendai, 2000) are performed to deter-
mine the Burgers parameters for each salt specimen. Table 2
summarizes the calibration results.

The Lode parameter () (Hunsche & Albrecht, 1990;
Mellegard et al., 2007; Zhang, Bai, & Francois, 2001) is used
here to address the 2 effect on salt creep in three dimensions.
It is calculated by:

 = -(22 - 3 - 1)/(1 - 3) (6)

The Lode parameter is equal to -1 for the triaxial exten-
sion testing, and equal to 1 for the triaxial compression test-
ing. Figure 4 shows the Burgers parameters as a function of
the Lode parameter (). The parameters 1, E2 and h2 tend to
decrease  with  increasing  the  Lode  parameter.  The  spring
constant, E1 corresponding to the instantaneous deformation
of salt, tend to be independent of the Lode parameter.

The parameters 1, E2 and 2 obtained from the triaxial
extension (1=2>3) are about 1-1.5 times greater than those
obtained from the polyaxial loading conditions (1>2>3).
The triaxial compression condition yields in the lowest mag-
nitudes of the three parameters. Linear equations are used
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Figure 1. Strain-time curves obtained from triaxial compression (a), polyaxial compression (b) and triaxial extension
(c). Numbers in bracket indicate [1, 2, 3].

Figure 2. Octahedral shear strains (oct) as a function of time obtained from triaxial compression (a), polyaxial compression
(b) and triaxial extension (c).
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1 {} = -1× + 2 (7)

E2 {} = -1× + 2 (8)

2 {} = -1× + 2 (9)

where 1, 1 and 1 are empirical constants equal to 8.935
GPaday, 0.397 GPa and 0.516 GPaday for the Maha Sarakham
salt, and the constants 2, 2 and 2 equal to 38.48 GPaday,
2.89 GPa and 3.98 GPaday. By substituting Equations (7)
through (9) into Equation (5) the octahedral shear strain can
be defined as a function of Lode parameter in the form of the

Figure 3.  Modular components of the Burgers model.

Table 2. Burgers parameters calibrated from each salt specimen.

             Burgers Parameters

  Loading conditions  oct (MPa) E1 E2 1 2
(GPa) (GPa) (GPa.day) (GPa.day)

Triaxial Compression 1.00 14.0 1.15 2.80 32 4.0
(12=3) 1.00 11.0 1.20 2.60 26 3.8

1.00 8.0 1.03 2.10 23 3.5
1.00 5.0 0.91 1.80 27 2.8

Polyaxial Compression 0.75 14.0 1.20 2.70 32 3.0
(123) 0.84 11.1 1.12 2.80 32 3.5

0.78 8.1 0.98 2.90 31 3.9
0.18 5.0 1.00 2.90 42 4.0

Triaxial Extension -1.00 8.5 1.20 3.55 53 4.0
(1=23) -1.00 7.1 1.05 2.30 48 4.5

-1.00 5.0 1.15 2.90 44 5.0

Figure 4.  Burgers parameters as a function of Lode parameter ().

to  describe  the  variation  of  1,  E2  and  2  with  the  Lode
parameter, as follows:
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Burgers model. It can be used to calculate the time-dependent
deformation of rock salt while considering the effect of 2.

6. Creep Closure of  Storage Caverns

Sets  of  analytical  solutions  are  derived  to  calculate
radial displacements around cylindrical and spherical storage
gas or compressed-air caverns in an infinite salt mass. These
two cases are used here because their geometries impose the
stress states that are different from that obtained from the
conventional laboratory creep testing (1>2=3). The salt is
assumed to be time-independent under hydrostatic stress
(i.e., linear visco-elastic material). It is recognized that the
Burgers  model  is  based  on  the  linear  visco-elastic  theory.
It may not truly represent the non-linear creep deformation of
the in-situ salt around the cavern. The model is used here to
demonstrate the effect of 2 obtained from the experimental
result  on  the  salt  creep.  The  radial  displacements  (ur)  of
cylindrical cavern are obtained from the Laplace transforma-
tion using time operator of the Burgers model which can be
expressed as:

ur = Po[(A + B / 9K) + (  ((2A – B) / 3))] – Pi r  (10)

A = [((1 + k) / 2) × (r + (a2 / r))] + [((1 – k) / 2) × (r – (a4 / r3)
+ (4a2 / r))] cos2 (11)

B = [((1 + k) / 2) × (r – (a2 / r))] – [((1 – k) / 2) × (r – (a4 / r3))]
cos2 (12)

 = (t / 1) + (1 / E1) + (1 / E2) × (1 – exp (E2×t / 2)) (13)

where Pi and Po are an internal and external pressures, A and
B  are  time-independent  functions  of  position,  K  is  bulk
modulus, k is stress ratio,  is time-dependent function,  is
tangential coordinate, r is radius and a is inner boundary.
Derivation of the  function is given in the Appendix section.
For a spherical cavern under hydrostatic stresses the radial

displacement (ur) can be obtained from the following equa-
tions (Pariseau, 2012):

ur = Po [(1/18K) + (/3)]  (a3/r2) + Po [-(1/18K) + (/6)] 
(a3/r2)  – [(Pi/2) × (a3/r2)  ] (14)

a = (t / 1) + (1 / E1) + [(1 / E2)  (1 – exp (E2×t / 2))] (15)

The creep parameters (Table 2) calibrated from the
three loading conditions is used to determine the effect of
intermediate principal stress on time-dependent closure of a
salt cavern. In general, the salt around a cylindrical cavern is
under polyaxial stresses state (>z>r). For the spherical
cavern the surrounding salt is under triaxial extension stresses
(=z>r). For this demonstration, the cylindrical cavern
is taken as an upright cylinder with a diameter of 50 m. The
spherical cavern also has a diameter of 50 m. The external
pressure  is  calculated  from  the  in-situ  stress  of  10.9  MPa
which is equivalent to the depth of about 500 m. The storage
cavern  model  is  assumed  to  be  subjected  to  the  internal
pressures of 2.2 MPa or about 20% of the in-situ stress at the
cavern shoe, representing the minimum storage pressure of
salt cavern. This is mainly to demonstrate the effect of 2 on
the  creep  closure.  The  internal  pressure  is  assumed  to  be
uniform on the cavern boundaries.

Figure 5 compares the radial closure of the cylindrical
and spherical caverns calculated by Equations (10) and (14)
for 90 days. The radial closure obtained from the conven-
tional compression creep test results is greater than that from
the polyaxial compression and triaxial extension (1=2>3)
creep test results. The figure suggests that the conventional
creep  test  results  overestimate  the  actual  closure  of  cylin-
drical and spherical caverns by as much as 15% and 35%,
respectively. It should be noted that the calculation of cavern
closure as demonstrated here is made under extreme loading
condition, i.e., the internal pressure is left constant for long
period (90 days). This is primarily to reveal the 2 effect on
the creep closure of the storage caverns. In reality however

Figure 5.  Closure of cavern wall as a function of time for cylindrical and spherical cavern shapes.
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the storage caverns may not be allowed to subject to the low
minimum storage pressure to longer than few days.

7. Discussions and Conclusions

The true triaxial creep test results indicate that the
elastic deformation of salt, E1, is not affected by the inter-
mediate principal stress, 2. This agrees with the experimental
results obtained by Sriapai and Fuenkajorn (2013) that the
salt elastic deformation tends to be independent of 2. The
intermediate principal stress affects both transient and steady-
state creep phases of the Maha Sarakham salt. The creep
strains decrease when 2 increases from 3 (triaxial compres-
sion) to 1 (triaxial extension). The visco-plastic coefficient
1 and visco-elastic parameters (E2 and 2) tend to decrease
with increasing the Lode parameter.

Under  the  simplified  test  conditions  used  here  (i.e.
constant  mean  stress  and  temperature)  the  Burgers  model
reveal the effect of 2 on the time-dependent deformation of
the salt. The conventional creep test results may overestimate
the  actual  closure  of  cylindrical  and  spherical  caverns  by
about 15% and 35%, respectively. The findings imply that
laboratory test results obtained from the conventional and
commonly-used uniaxial and triaxial creep testing methods
(e.g. ASTM D7070-08 standard practices) may over predict
the  time-dependent  deformation  of  the  actual  in-situ  salt
under the true triaxial stress conditions.

It  is  recognized  here  that  prediction  of  in-situ  salt
creep under true triaxial stresses using laboratory test data is
difficult. Attempts have been made notably by Morgan and
Wawersik (1989) who point out the discrepancies between
the in-situ measurements at WIPP site and the creep model
calibrated from the results of the thick-wall hollow cylinder
under  homogeneous  and  inhomogeneous  loadings.  The
closure calculations presented in this paper is only to de-
monstrate the effect of 2 on the salt creep under simplified
loading  condition.  The  actual  creep  behavior  of  the  salt
around storage cavern would involve several factors that are
not included in this study.
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Appendix A
Derivation of solutions for cylindrical and spherical cavern closure

The purpose of this appendix is to develop analytical solutions to calculate radial displacements around cylindrical
and spherical cavities in an infinite plate of linear viscoelastic material subjected to a uniform stress field. The analysis is
performed in plane strain. The material behavior is assumed to follow the Burgers model.

A-1  Cylindrical cavity in an infinite plate
The radial displacement around the cylindrical hole obtained from the elastic solution (Obert & Duvall, 1967) can be

expressed as:
ur  =  (1 / E) [((x + y) / 2)  (r + (a2/r)) + ((x – y) / 2)  (r – (a4 / r3) + (4a2 / r))  cos2]

   – ( / E) [(x – y) / 2  (r – (a2/r)) – ((x – y) / 2)  (r – (a4 / r3))  cos2] (A-1)

where x, y = lateral stresses, a = hole radius, E = Young’s modulus,  = Poisson’s ratio,  tangential coordinate. Let x = P
and y = kP, where P is a time-independent applied stress. Equation (A-1) becomes:

u = P/E (A) – P/E (B) (A-2)
where A and B are time-independent functions of position:

A  =  [((1 + k) / 2)  (r + (a2 / r))] + [((1 – k) / 2)  (r – (a4 / r3) + (4a2 / r))]  cos2 (A-3)

B  =  [((1 + k) / 2)  (r – (a2 / r))] – [((1 – k) / 2)  (r – (a4 / r3))]  cos2 (A-4)

where k = stress ratio (y/x). For the internal pressure term we can use a superposition law. Equation (A-2) becomes:

u  =  P/E (A) – P/E (B) – Pir/2G (A-5)
where G is shear modulus

By taking Laplace transformations of Equation (A-2), they can be expressed in terms of transform variable “s” as
follows:


u(s) = [


P(s) / 


E (s)] (A) – [


P(s) × 


 (s) / 


E (s)] (B) – 


P i(s) × 


r (s)/2


G(s) (A-6)

where 

u(s), 


P(s), 


E (s), 


 (s), 


P i(s), 


r (s) and 


G(s) are the transformed operators.

Substituting 

P(s) by P/s, 


r (s) by r/s, 


E (s) by (9K


Q 1/(


Q 1 + 6K


P1), and 


 (s) by (3K


P1 – 


Q 1)/(


Q 1+ 6K


P1) and

Equation (A-6) becomes:

u(s) = {Po/s (A) [(


Q 1 + 6K


P1)/9K


Q 1]} – {Po/s (B) [(3K


P1 – 


Q 1)/ 9K


Q 1]} – [(Pir/s) (


P1/


Q 1)] (A-7)

where time operator of the Burgers model, 

P1 = 1 + (1/E1 + 1/E2 + 2/E2)  s + ( 12 /E1E2)  s

2 and 

Q 1 = 2s + (12/E2)  s

2

and performing inverse Laplace transformations, the radial displacements (u) around a circular hole in linear viscoelastic
media can be expressed as:

u(t) = Po{[(1/9K) + (2/3)](A) – [–(1/9K) + (1/3)](B) – Pi r } (A-8)
By rearranging terms of Equation (A-8), they can be expressed in a simple form as:
ur = Po[(A + B / 9K) + (  ((2A – B) / 3))] – Pi r  (A-9)

 = (t/1) + (1/E1) + (1/E2)  (1 – exp (E2  t/2)) (A-10)

A-2  Spherical cavity
For a spherical cavern under hydrostatic stress the radial displacement can be calculated as (Pariseau, 2012):
ur = [(1 + ) / 2E] (a3/r2) (P) (A-11)
To incorporate an internal pressure we can use superposition law, and hence Equation (A-11) becomes:
ur = [(1 + ) a3 / 2Er2] (Po – Pi ) (A-12)
By taking Laplace transformations of Equation (A-2), it can be expressed in terms of transform variable “s” as follows:

u(s) = [(


Po(s) / 2


E (s)) + ((


Po(s)  


 (s)) / 2


E (s))] (C) – [


P i(s) / (4G)] (C) (A-13)

where C is time-independent function of position (C = a3/r2). Using the time operator of the Burgers model and performing
inverse Laplace transformation, the radial displacement (ur) around a spherical cavity in linear viscoelastic media can be
expressed as:

ur = Po[(1/18K) + (/3)]  C + Po[-(1/18K) + (/6)]  C – (Pi/2  C  ) (A-14)


