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Abstract

In this paper, we introduce the notions of Q-fuzzy UP-ideals and Q-fuzzy UP-subalgebras of UP-algebras, and their
properties are investigated. Relations between a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) and a level subsets of a Q-
fuzzy set are investigated, and conditions for a Q-fuzzy set to be a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) are provided.
Finally, prove that it is not true that if u-0 is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of AxB, then either p is a Q-

fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of A or ¢ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of B.
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1. Introduction and Preliminaries

The concept of a fuzzy subset of a set was first
considered by Zadeh (1965). The fuzzy set theories developed
by Zadeh and others have found many applications in the
domain of mathematics and elsewhere.

The concept of Q fuzzy sets is introduced by many
researchers and was extensively investigated in many
algebraic structures such as: Jun (2001) introduced the notion
of Q-fuzzy subalgebras of BCK/BCl-algebras. Roh et al.
(2006) studied intuitionistic Q-fuzzy subalgebras of
BCK/BCl-algebras. Muthuraj et al. (2010) introduced and
investigated anti Q-fuzzy BG-ideals of BG-algebras. Mostafa
et al. (2012) introduced the notions of Q-ideals and fuzzy Q-
ideals in Q-algebras. Sitharselvam et al. (2012), Sithar Selvam
et al. (2013) and Selvam et al. (2014) introduced and gave
some properties anti Q-fuzzy KU-ideals, anti Q-fuzzy KU-
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subalgebras and anti Q-fuzzy R-closed KU-ideals of KU-
algebras. The notion of anti Q-fuzzy R-closed PS-ideals of PS-
algebras is introduced, and related properties are investigated
Priya and Ramachandran (2014).

lampan (2014) introduced a new algebraic structure,
called a UP-algebra. In this paper, we introduce the notions of
Q-fuzzy UP-ideals and Q-fuzzy UP-subalgebras of UP-
algebras, and their properties are investigated. Relations
between a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra)
and a level subsets of a Q-fuzzy set are investigated, and
conditions for a Q-fuzzy set to be a Q-fuzzy UP-ideal (resp. Q
fuzzy UP-subalgebra) are provided. Finally, prove that it is
not true that if x-d is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-
subalgebra) of AxB, then either p is a Q-fuzzy UP-ideal (resp.
Q-fuzzy UP-subalgebra) of A or d is a Q-fuzzy UP-ideal (resp.
Q-fuzzy UP-subalgebra) of B. Before we begin our study, we
will introduce the definition of a UP-algebras.
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Definition 1.1. (Tampan, 2014) An algebra A = (A4;-,0) of type (2,0) is called a
UP-algebra if it satisfies the following axioms: for any =, y, > € A,

(UP-1) (y-2)-((z-y)-(z-2)) =0,
(UP-2) 0z =,

(UP-3) #-0 =0, and

(UP-4) 2y =1y -z =0 implies = = y.

In (Iampan, 2014) there is given an example of a UP-algebra.
In what follows, let A and B denote UP-algebras unless otherwise specified. The
following proposition is very important for the study of a UP-algebra.

Proposition 1.2. (Iampan, 2014) In a UP-algebra A, the following properties hold:
foranyx,y € A,

(1) &2 =0,
(2) x-y=0andy-z=01imply -2 =0,
(3) x-y=0 implies (z-x)-(z-y)=0,

(4) @y =0 implies (y-=)- (x-2) =0,

(5) & (y-x) =0,

(6) (y-x) x=0if and only if v =y -z, and
(7) x-(y-y)=0.

Definition 1.3. (Iampan, 2014) A nonempty subset I3 of A is called a UP-ideal of
A if it satisfies the following properties:

(1) the constant 0 of A is in B, and
(2) forany @, y,z € A,z-(y-z) € Band y € B imply = -z € .
Clearly, A and {0} are UP-ideals of A.

Theorem 1.4. (Iampan, 2014) Let A be a UP-algebra and {Bi}icr o family of
UP-ideals of A. Then ;.1 B; is a UP-ideal of A.

Definition 1.5. (Tampan, 2014) A subset S of A is called a UP-subalgebra of A if
the constant 0 of A is in 5, and (5;-,0) itself forms a UP-algebra. Clearly, A and
{0} are UP-subalgebras of A.

Proposition 1.6. (Tempan, 2014) A nonempty subset S of a UP-algebra A =
(A;-,0) is a UP-subalgebra of A if and only if S is closed under the - multiplica-
tion on A.

Theorem 1.7. (ITampan, 2014) Let A be a UP-algebra and {DB;};c; a family of
UP-subalgebras of A. Then [,z Bi is @ UP-subalgebra of A.

Lemma 1.8. (Somjanta et al., 2015) Let f be a fuzzy set in A. Then the following
statements hold: for any r,y € A,

(1) 1 - max(f(2). f(4)} = minfl — f(2),1 - [()}, and
(2) 1—min{f(x). f(5)} = max{1 — f(x).1~ f(5)}.
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Definition 1.9. (Kim, 2006) A Q-fuzzy set in a nonempty set X (or a Q-fuzzy
subset of X') is an arbitrary function f: X x ) — [0,1] where @ is a nonempty set
and [0,1] is the unit segment of the real line.

Definition 1.10. A Q-fuzzy set f in A is called a g-fuzzy UP-ideal of A if it satisfies
the following properties: for any =, y,z € A,

(1) £(0,9) = f(x,q), and
(2) fr-2q) = min{f(z-(y-2).q), f(y, 9}

A Q-tuzzy set f in A is called a QQ-fuzzy UP-ideal of A if it is a g-tuzzy UP-ideal of
Afor all g € Q.

Example 1.11. Let A = {0,1} be a set with a binary operation - defined by the
following Cayley table:

<101
00 1
110 0
Then (A4;-,0) is a UP-algebra. Let Q = {a,b}. We define a Q-fuzzy set f in A as
follows:

Using this data, we can show that f is a ()-fuzzy UP-ideal of A.

Example 1.12. Let A = {0,1} be a set with a binary operation - defined by the
following Cayley table:

|0
00
10

{

o>~ D ==

Then (A;-,0) is a UP-algebra. Let @ = {a,
follows:

}- We define a ()-fuzzy set f in A as

By Example 1.11, we have f is an a-fuzzy UP-ideal of A. Since f(0,b) = 0.1 < 0.2 =
f(1,b), we have Definition 1.10 (1) is false. Therefore, f is not a b-fuzzy UP-ideal
of A. Hence, [ is not a Q-fuzzy UP-ideal of A.
Definition 1.13. A ()-tuzzy set f in A is called a g-fuzzy UP-subalgebra of A if for
any r,y € A,

Sy q) = min{f(x,q). f(y,q9)}.
A Q-tuzzy set f in A is called a )-fuzzy UP-subalgebra of A if it is a g-tuzzy UP-
subalgebra of A for all g € Q.

Example 1.14. Let A = {0,1,2} be a set with a binary operation - defined by the
following Cayley table:

Then (A;-,0) is a UP-algebra. Let Q = {a,b}. We defined a Q-fuzzy set f in A as
follows:

11
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Using this data, we can show that f is a Q-fuzzy UP-subalgebra of A.

Example 1.15. Let A ={0,1,2} be a set with a binary operation - defined by the
following Cayley table:

|01 2
0|0 1 2
110 0 1
2(0 0 0
Then (A4;-,0) is a UP-algebra. Let @ = {a,b}. We defined a @Q-fuzzy set f in A as
follows:
fl a b
0[04 0.1
1102 05
2103 0.7

By Example 1.14, we have f is an a-fuzzy UP-subalgebra of A. Since f(1-1,b) =
0.1 < 0.5 = min{f(1,b), f(1,b)}. we have Definition 1.13 is false. Therefore, f is
not a b-fuzzy UP-subalgebra of A. Hence, f is not a Q-fuzzy UP-subalgebra of A.

Definition 1.16. (Kim, 2006) Let f be a Q-fuzzy set in A. The Q-fuzzy set f
defined by f(z,q) =1 — f(z,q) for all z € A and g € Q is called the complement of
Jin A.

Remark 1.17. For all Q-fuzzy set [ in A, we have [ = ?

Definition 1.18. Let f be a Q-fuzzy set in A. For any t € [0, 1], the sets
U(fit)={zx € A| f(z.q) = tfor all g € Q}

and
Ut(fit)y={ze A| f(z,q) >t forall g € Q}

are called an upper t-level subset and an upper t-strong level subset of f, respectively.
The sets

L(f;ty={ze A| flz,q) <tforall qe @}
and
L=(f:t)={z e A| f(z.q) <t forall ¢ € Q}

are called a lower t-level subset and a lower t-strong level subset of [, respectively.
For any ¢ € @, the sets

U(fit,g) ={z € A| f(z,q) = t}
and
Ur(fit,q) ={z € Al f(z.q) >t}

are called a g-upper t-level subset and a g-upper t-strong level subset of f, respec-
tively. The sets

L(fit.q) ={z € A| f(z,q) <t}
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and
L=(fit,q) ={w < A f(z,q) <t}
are called a g-lower t-level subset and a g-lower t-strong level subset of f, respectively.
We can easily prove the following two remarks.

Remark 1.19. Let f be a Q-fuzzy set in A and for any t1,t; € [0,1] with t; < to.
Then the following properties hold:

(1) L(fst1) C L(f312),

(2) U(fit2) CU(fit1),

(3) L= (f:t1) € L=(fita), and
(4) Ut(f3t2) S UT(fit).

Remark 1.20. Let f be a Q-fuzzy set in A and for any #1,t2 € [0,1] with #; < t»
and ¢ € . Then the following properties hold:

(1) L(f;t1,q) © L[5 12, ),

(2) U(fita.q) CU(fit1,9),

(3) L™(f:t1.q) € L™(f:t2,q), and

(4) UF(fit2.q) CUT(f3t1.9).
Definition 1.21. (Tampan, 2014) Let (A;-,0) and (A";/,0') be UP-algebras. A
mapping f from A to A’ is called a UP-homomorphism if

flz-y)= f(z)' f(y) for all z,y € A.
A UP-homomorphism f: A — A’ is called a

1) UP-endomorphism of A if A’ = A,

2) UP-epimorphism if f is surjective,

3) UP-monomorphism if f is injective, and

(1)
(2)
(3)
(4) UP-isomorphism if [ is bijective. Moreover, we say A is UP-isomorphic to A',

symbolically, A = A’ if there is a UP-isomorphism from A4 to A’.

Proposition 1.22. (Iampan, 2014) Let (A;-,04) and (B;+,0g) be UP-algebras and
let f: A— B be a UP-homomorphism. Then f(04) = 0p.

Definition 1.23. (Sithar Selvam et al., 2013) Let f: A — B be a function and g
be a (-fuzzy set in B. We define a new Q-fuzzy set in A by pf as

pr(x,q) =p(f(x),q) forall z € A and q £ Q.

Definition 1.24. (Sithar Selvam et al., 2013) Let f: A — B be a bijection and puy
be a Q-fuzzy set in A. We define a new (Q-fuzzy set in B by pt as

w(y,q) = py(z, q) where f(z) =y forall y € B and q € Q.

Definition 1.25. (Sithar Selvam et al.; 2013) Let g be a Q-fuzzy set in A and 4 be
a @Q-fuzzy set in B. The Cartesian product jpx d: (A x 3) x Q — [0,1] is defined by

(1< 0)((x,y),q) = max{p(z,q),0(y,q)} forall z € A,y € B and q € Q.

13
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The dot product p - 6: (A x B) x @ — [0,1] is defined by

(- 0)((z,y),q) = min{u(z.q),6(y,q)} forallz € A,y € Band g € Q.

2 Main Results

In this section, we study Q-fuzzy UP-ideals and Q-fuzzy UP-subalgebras of UP-
algebras, and their properties are investigated. Relations between a Q-fuzzy UP-
ideal (resp. Q-fuzzy UP-subalgebra) and a level subsets of a Q-fuzzy set are inves-
tigated, and conditions for a Q-fuzzy set to be a Q-fuzzy UP-ideal (resp. Q-fuzzy
UP-subalgebra) are provided. Finally, prove that it is not true that if - 4J is a
Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of A x B, then either p is a Q-
fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of A or § is a Q-fuzzy UP-ideal (resp.
Q-fuzzy UP-subalgebra) of B.

Theorem 2.1. Every q-fuzzy UP-ideal of A is a q-fuzzy UP-subalgebra of A.
Proof. Let f be a g-fuzzy UP-ideal of A. Let x,y € A. Then

flz-y,q) =z min{ f(z - (y-y), ), f(y,9)} (Definition 1.10 (2))
=min{f(z-0,q), f(y,q)} (Proposition 1.2 (1))
= min{/(0,q), f(y,9)} (UP-3)
= fly,q) (Definition 1.10 (1))

z min{/(z,q), f(y,9)}-
Hence, [ is a g-fuzzy UP-subalgebra of A.
With Definition 1.10 and Theorem 2.1, we obtain the corollary.
Corollary 2.2. Fvery Q-fuzzy UP-ideal of A is a Q-fuzzy UP-subalgebra of A.

Theorem 2.3. If f is a q-fuzzy UP-subalgebra of A, then f(0,q) = f(x,q) for all
re A

Proof. Assume that f is a ¢-fuzzy UP-subalgebra of A. By Proposition 1.2 (1), we
have f(O Q) = f(.’E ‘TQ) = Hliﬂ{f(l:, Q)f(r Q)} = f(l‘ Q) for all z € A.

With Definition 1.13 and Theorem 2.3, we obtain the corollary.

Corollary 2.4. If f is a Q-fuzzy UP-subalgebra of A, then f(0,q) = f(x,q) for all
reAandge@.

We can easily prove the following three lemmas.

Lemma 2.5. Let f be a Q-fuzzy set in A and for any t € [0,1]. Then the following
properties hold:

(1) L(f;t) =U(f;1 1),
(2) L=(f;t) =UT(fi1-1),
(3) U(f;t) = L(f;1—1t), and

(4) Ut(f;) =L (F;1-1).
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Lemma 2.6. Let [ be a Q-fuzzy set in A and for any t € [0,1] and g € Q). Then
the following properties hold:

(1) L(fit,q) =U([:1 —L.q),

(2) L~(fit,q9) = UT(fi1 - t,q),
(3) U(f;t,q) = L(f;1 —t,q), and
(4) Ut(fit,q) =L~ (F;1-t,q).

Lemma 2.7. Let [ be a Q-fuzzy set in A and for any t € [0,1] and g € Q). Then
the following properties hold:

(1) L(fit) = Nyeq L(f:1,9),

(2) L™(f;t) = Nyeq L™ (fit,q),
(3) U(fit) = Nyeo U(fit,q), and
(4) UT(fi1) = Nge UT (£, 9)-

Lemma 2.8. (Malik and Arora, 2014) For any a,b € R such that a < b, a < H’Ta <
b.

Theorem 2.9. Let f be a Q-fuzzy set in A. Then the following statements hold:

(1) T is a Q-fuzzy UP-ideal of A if and only if the following condition (x) holds:
forany t €]0,1] and g € Q, L(f:t,q) is either empty or a UP-ideal of A,

(2) f is a Q-fuzzy UP-ideal of A if and only if the following condition (x) holds:
foranyt €]0,1] and q € Q, L~(f;t,q) is either empty or a UP-ideal of A,

(3) f is a Q-fuzzy UP-ideal of A if and only if the following condition (%) holds:
foranyt €[0,1] and g € Q, U(f;t,q) is either empty or a UP-ideal of A, and

(4) f is a Q-fuzzy UP-ideal of A if and only if the following condition (x) holds:
Jor any t < (0,1] and g € Q, UT(f;1,q) is either empty or a UP-ideal of A.

Proof. (1) Assume that f is a Q-fuzzy UP-ideal of A. Then f is a g-fuzzy UP-ideal
of Aforall ¢ € @ Letge @ andt < [0,1] be such that L(f;t,q) # 0 and let
z € L(f:t,q). Then f(x,q) < t. Now,

f(0,q) = f(z-0,q) (UP-3)
=min{f(z - (x-0),q), f(z,q)} (Definition 1.10 (2))
= min{f(z-0,q), f(z,9)} (UP-3)
= min{f(0,9), f(z,q)} (UP-3)
= f(z.q). (Definition 1.10 (1))

Then 1 — f(0,q) = 1 — f(x,q), so f(0,q) < f(z,q) < t. Hence, 0 € L(f;t,q). Let
x,y,2 € Abesuch that - (y-z) € L(f;t,q) and y € L(f;t,q). Then f(z-(y-2),q) <
t and f(y,q) < t. By Definition 1.10 (2), we have f(z - 2,q) = min{f(z - (y -
2),4), f(y,q)}. Thus

L= f(z-2q) zmin{l - f(z-(y-2),9),1 = f(y,q)}
=1-max{f(z-(y-2),9), fy.q)} (Lemma 1.8 (1))

15
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Then f(z-z,q) < max{f(z-(y-2),q), f(y,q)} < t. Hence, z-z € L(f;t,q). Therefore,
L(f;t,q) is a UP-ideal of A.

Conversely, assume that the condition (%) holds and suppose that f(0,q) =
flz.q) for all z € A and q € Q is false. Then there exist z € A and ¢ € @ such
that f(0,q) < f(z,q). Thus 1 — f(0,q) < 1 — f(x,q), so f(0,q) > f(z,q). Let
t= w. Then ¢ < [0,1] and by Lemma 2.8, we have f(0,q) >t > f(x,q).
Thus = € L(f;t,q), so L(f;t,q) # (. By assumption, we have L(f;t,q) is a UP-
ideal of A. It follows that 0 € L(f;t,¢q), so f(0,q) < t which is a contradiction.
Hence, f(0,q) > f(z,q) for all z € A and ¢ € Q. Suppose that f(x - 2.q) =
min{f(z - (y-2),q), f(y.q)} for all z,y,2 € A and q € @ is false. Then there exist
z,y,2€ A and q € Q such that f(x-2,q) <min{f(x-(y-2),q), f(y,q)}. Thus

L= f(z-2,q) <min{l — f(z(y-2),9),1 - fy,q)}
=1-max{f(z-(y-2),9), f(y,2)}. (Lemma 1.8 (1))

Then f(z-2,q) > max{f(z-(y-2),q), f(y,q)}. Let go = L2 tmax( e (r2)0).f(v0))
Then go € [0,1] and by Lemma 2.8, we have f(z-2,q) > go > max{f( - (y
2),q), f(y,9)}- Thus f(x-(y-2),q) < go and f(y,q) < go, so - (y-2) € L(f;90,9)
and y € L(f;g0,q), so L(f;g0,q) # . By assumption, we have L(f;go,q) is a
UP-ideal of A. It follows that = -z € L(f;g0,q), so f(z-z,q) < go which is a
contradiction. Hence, f(z-2,¢) > min{f(z-(y-2),q), f(y,¢)} for all z, 3,2 € 4 and
¢ € Q. Therefore, f is a g-fuzzy UP-ideal of A for all g € Q. Consequently, f is a
Q-fuzzy UP-ideal of A.

(2) Similarly to as in the proof of (1).

(3) Assume that f is a Q fuzzy UP-ideal of A. Then f is a g-fuzzy UP-ideal
of Aforall g e Q. Let g € @Qandt € [0,1] be such that U(f;t,q) # § and let
z € U(f:t,q). Then f(z,q) > t. Now,

f(0,q) = f(z-0,q) (UP-3)
= min{f(z- (x-0),q), flz,q)} (Definition 1.10 (2))
=min{f(z-0,q), f(z.q)} (UP-3)
=min{f(0,q), f(z, )} (UP-3)
=f(z,q) (Definition 1.10 (1))
>t

Hence, 0 € U(f;t,q). Let z,y,z € A be such that = - (y-2) € U(f;t,q) and
y € U(fit,q). Then f(z-(y-=2),q) > t and f(y,q) > t. By Definition 1.10 (2), we

have f(z-z,q) > min{ f(z- (y- 2),q9), f(y.q)} = t. Thus z-2 € U(f:t,q). Hence,
U(f;t,q) is a UP-ideal of A.

Conversely, assume that the condition (x) holds and suppose that f(0,q) =
flz,q) for all x € A and g € Q is false. Then there exist + € A and ¢ € @
such that f(0,q) < f(z,q). Let t = w. Then t £ [0,1] and by Lemma
2.8, we have f(0,q) < t < f(x,q). Thus z € U(f;t,q), so U(f;t,q) # 0. By
assumption, we have U(f;t,q) is a UP-ideal of A. It follows that 0 € U(f;t,q),
so f(0,q) = t which is a contradiction. Hence, f(0,q) > f(z,¢q) for all z € A and
q € Q. Suppose that f(z - z,q) = min{f(z (y-2),q), f(y,q)} for all z,y,z € A
and g € @ is false. Then there exist z,y,2 € A and g € @Q such that f(z - 2,q) <
min{ f(z (3 2),0), f(y, )} Let go = LE0tmnl/ (020, /00) Thon gy & [0,1]
and By Lemma 2.8, we have f(x - 2, q) < go < mln{f( (y - z)_‘q), (y,¢q)}. Thus
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flz-(y-2),9) > go and f(y,q) > go, so - (y-z) € U(f;90,9) and y € U(f; go, q),
so U(f;g0,q9) # 0. By assumption, we have U(f;go,q) is a UP-ideal of A. It
follows that = - z € U(f; g0,9), so f(x-z,q) = go which is a contradiction. Hence,
flz-z,q9) Zmin{f(z-(y-2),q), f(y,q)} for all x,y,z € A and ¢ € Q. Therefore, f
is a g-fuzzy UP-ideal of 4 for all ¢ € Q. Consequently, f is a Q-fuzzy UP-ideal of
A.

(4) Similarly to as in the proof of (3).

Corollary 2.10. Let f be a Q-fuzzy set in A. Then the following statements hold:

(1) if f is a Q-fuzzy UP-ideal of A, then for any t € [0,1], L(f;t) is either empty
or a UP-ideal of A,

(2) if f is a Q-fuzzy UP-ideal of A, then for anyt € [0,1], L™ (f;t) is either empty
or a UP-ideal of A,

(3) if f is a Q-fuzzy UP-ideal of A, then for any t € [0,1], U(f;t) is either empty
or a UP-ideal of A, and

(4) if f is a Q-fuzzy UP-ideal of A, then for any t € [0,1], UT(f;t) is either empty
or a UP-ideal of A.

Proof. (1) Assume that f is a Q-fuzzy UP-ideal of A. By Theorem 2.9 (1), we
have that for any ¢t € [0,1] and g € Q, L(f;t,q) is either empty or a UP-ideal of
A. Let t € [0,1]. If L(f;t,q) = D for some g € @, it follows from Lemma 2.7 (1)
that L(f;t) = (Nyeq L(fit.q) = 0. If L(f;t,q) # 0 for all ¢ € Q, it follows from
Theorem 2.9 (1) that L(f;t,q) is a UP-ideal of A for all g € Q. By Lemma 2.7 (1)
and Theorem 1.4, we have L(f;t) = [,co L(f:t,q) is a UP-ideal of A.

(2) Similarly to as in the proof of (1).

(3) Assume that f is a @-fuzzy UP-ideal of A. By Theorem 2.9 (3), we have
that for any ¢ € [0,1] and ¢ € Q, U(f;t,q) is either empty or a UP-ideal of A.
Let t € [0,1]. It U(f:t,q) = 0 for some g € @, it follows from Lemma 2.7 (3)
that U(f;t) = N,eqU(fit.q) = 0. 1fU(f:t,q) # 0 for all ¢ € Q, it follows from
Theorem 2.9 (3) that U(f:t,q) is a UP-ideal of A for all ¢ € ). By Lemma 2.7 (3)
and Theorem 1.4, we have U(f;t) = ﬂqu U(f:t,q) is a UP-ideal of A.

(4) Similarly to as in the proof of (3).

Theorem 2.11. Let [ be a Q-fuzzy set in A. Then the following statements hold:
(1) T is a Q-fuzzy UP-subalgebra of A if and only if the following condition ()

holds: foranyt € [0,1] and q € Q, L([f;t,q) is either empty or a UP-subalgebra
of A,

(2) f is a Q-fuzzy UP-subalgebra of A if and only if the following condition (%)
holds: for any t € [0,1] and ¢ € Q, L™(f;t,q) is either empty or a UP-
subalgebra of A,

(3) f is a Q-fuzzy UP-subalgebra of A if and only if the following condition (%)
holds: foranyt € [0,1] and q € Q, U(f;t,q) is either empty or a UP-subalgebra
of A, and

(4) [ is a Q-fuzzy UP-subalgebra of A if and only if the following condition (*)
holds: for any t € [0,1] and q € Q, UT(f;t,q) is either empty or a UP-
subalgebra of A.

17
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Proof. (1) Assume that f is a Q-fuzzy UP-subalgebra of A. Then f is a g-fuzzy
UP-subalgebra of A for all ¢ € Q. Let g € Q and t € [0, 1] be such that L(f;t,q) # 0
and let z,y € L(f:t,q). Then f(z,q) <t and f(y,q) <t. Now,

f(z-y.q) = min{f(z,q), f(y,9)}
=min{l - f(z,q9),1 - f(y,9)}
— 1 max{f(z, ), (3. )}- (Lemma 1.5 (1))

Then f(z-y,q) < max{f(z,q9), f(y,q)} =1, s0 x-y < L(f;?,q). Hence, L(f;t,q) is
a UP-subalgebra of A.

Conversely, assume that the condition () holds. Let z,y € A and ¢ € Q and let
t = max{f(z,q), f(y,q)}. Thus f(z,q) <tand f(y,q) <t s0z,y < L(f;t,q) #0.
By assumption, we have L(f;t,q) is a UP-subalgebra of A. It follows that = -y €

L(f:t,q). Thus f(z-y,q) <t =max{f(z,q), f(y.q)}, so

1—f(z-y.q) = 1 —max{f(z,q). f(y,9)}
=min{l — f(z,q),1— f(y.q)}. (Lemma 1.8 (1))

Hence, f(z-y,q) = min{f(z,q), f(y,q)}. Therefore, f is a g-fuzzy UP-subalgebra
of A for all ¢ € Q. Consequently, f is a Q-fuzzy UP-subalgebra of A.

(2) Similarly to as in the proof of the necessity of (1).

Conversely, assume that the condition (*) holds. Assume that there exist z,y € A
and g € Q such that f(z - y,q) < min{f(z,q), f(y,¢)}. By Lemma 1.8 (1), we have
1 - flz-y,q) < min{l - f(z,9),1 - f(y,q)} = 1 — max{f(z.q). f(y,q)}. Thus
S y.q) > max{[(w,0), £y, @)} Now f(z-y,q) & [0,1], we choose £ = [(z - 1,q).
Thus f(z,q) <t and f(y,q) <t,sox,y < L (f;t,q) # 0. By assumption, we have
L=(f;t,q) is a UP-subalgebra of A and so z-y <€ L™(f;t,q). Thus f(z-y,q) <t =
f(x-y,q) which is a contradiction. Hence, f(z - y,q) > min{f(z,q). f(y.q)} for all
z,y € A and g € . Therefore, f is a g-fuzzy UP-subalgebra of A for all ¢ € Q.
Consequently, f is a Q-fuzzy UP-subalgebra of A.

(3) Assume that f is a Q-fuzzy UP-subalgebra of A. Then f is a g-fuzzy UP-
subalgebra of A for all g € Q. Let ¢ € @Q and t € [0,1] be such that U(f;t,q) # 0
and let z,y € U(f;t,q). Then f(x,q) > ¢ and f(y,q) > t, we have f(z-y,q) >
min{ f(x,q), f(y,q)} = t. Thus z-y € U(f;t,q). Hence, U(f;t,q) is a UP-subalgebra
of A.

Conversely, assume that the condition (%) holds. Let =,y € A and ¢ € @@ and
let t = min{f(z,q), f(y.q)}. Thus f(z,q) >t and f(y,q) = t,s0 x,y € U(f;t.q) #
). By assumption, we have U(f;t,q) is a UP-subalgebra of A. It follows that
-y e U(f;t.q). Thus f(r-y,q) =t = min{f(z,q), f(y,q)}. Hence, f is a g-fuzzy
UP-subalgebra of A for all ¢ £ Q). Consequently, f is a Q-fuzzy UP-subalgebra of
A,

(4) Similarly to as in the proof of the necessity of (3).

Conversely, assume that the condition (x) holds. Assume that there exist z,y € A
and ¢ € @ such that f(r-y,q) < min{f(z,q), f(y,q)}. Then f(z-y,q) € [0,1].
Choose t = f(z-y.q). Thus f(z,q) >t and f(y,q) > t,s0 x,y € U (f:t,q) # 0. By
assumption, we have UT(f;t,q) is a UP-subalgebra of A and so -y € U"(f;t.q).
Thus f(z-y,q) > t = f(zr-y,q) which is a contradiction. Hence, f(z-y,q) >
min{ f(z,q), f(y,q)} for all z,y € A and ¢ € Q. Therefore, f is a g-fuzzy UP-
subalgebra of A for all ¢ € . Consequently, f is a -fuzzy UP-subalgebra of A.
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Corollary 2.12. Let f be a Q-fuzzy set in A. Then the following statements hold:

(1) if  is a Q-fuzzy UP-subalgebra of A, then for any t € [0,1], L(f;t) is either
empty or a UP-subalgebra of A,

(2) if f is a Q-fuzzy UP-subalgebra of A, then for any t € [0,1], L™ (f;t) is either
empty or a UP-subalgebra of A,

(2) if [ is a Q-fuzzy UP-subalgebra of A, then for any t € [0,1], U(f;t) is either
empty or a UP-subalgebra of A, and

(4) if f is a Q-fuzzy UP-subalgebra of A, then for anyt € [0,1], UT(f;t) is either
empty or a UP-subalgebra of A.

Proof. (1) Assume that f is a Q-fuzzy UP-subalgebra of A. By Theorem 2.11 (1),
we have for any ¢t € [0,1] and ¢ € @, L(f;t,q) is either empty or a UP-subalgebra
of A. Let t € [0,1]. If L(f;t,q) = 0 for some g € @, it follows from Lemma 2.7 (1)
that L(f;t) = Nyeq L(fit.q) = 0. I L(f;t,q) # 0 for all ¢ € @, it follows from
Theorem 2.11 (1) that L(f;¢,q) is a UP-subalgebra of A for all ¢ € Q. By Lemma
2.7 (1) and Theorem1.7, we have L(f;t) = ﬂqu L(f;t,q) is a UP-subalgebra of A.

(2) Similarly to as in the proof of (1).

(3) Assume that f is a @Q-fuzzy UP-subalgebra of A. By Theorem 2.11 (3), we
have for any ¢t € [0,1] and ¢ € Q, U(f;t,q) is either empty or a UP-subalgehra of
A. Let t € [0,1]. IfU(f:t,q) = 0 for some g € @, it follows from Lemma 2.7 (3)
that U(f;t) = nqu U(fit,g) =0. TU(f;t,q) # 0 for all g € @, it follows from
Theorem 2.11 (3) that U(f;t.q) is a UP-subalgebra of A for all g € (). By Lemma
2.7 (3) and Theorem 1.7, we have U(f;t) = [\,eq U(f; 1, q) is a UP-subalgebra of A.

(4) Similarly to as in the proof of (3).

Corollary 2.13. Let I be a UP-ideal of A. Then the following statements hold:

(1) for any k € (0,1], then there ewists a Q-fuzzy UP-ideal g of A such that
L(git)=1I forallt <k and L(g;t) = A for allt = k, and

(2) for any k € [0,1), then there exists a Q-fuzzy UP-ideal f of A such that
U(f:t)=1I forallt >k and U(f;t) = A for allt < k.

Proof. (1) Let f be a Q-fuzzy set in A defined by

0 ifrel,
f(l“‘”:{ Eoifrél,

forall g € Q.

Case 1: To show that L(f;t) =1 for all t < k, let ¢t € [0, 1] be such that ¢ < k.
Let @ € L(f;t). Then f(x,q) <t <k for all ¢ € Q. Thus f(x,q) # k for all ¢ € Q,
g0 f(z,q) =0 forall ¢ € Q. Thus z € I, so L(f;t) € I. Now, let # € I. Then
flz,q) =0<tforal ge @ Thusz < L(f;t),so I C L(f;t). Hence, L(f;t) =1
for all t < k.

Case 2: To show that L(f;t) = A for all t > k, let t € [0,1] be such that t > k.
Clearly, L(f;t) CA. Let 2 € A. Then

0<t ifzrel,
f(I=Q)_{ E<t ifrgl,

forall g € Q. Thus = € L(f;t), s0 A C L(f;t). Hence, L(f;t) = A for all ¢ > k. We
claim that L(f;t,q) = L(f;t.¢') for all ¢,¢' € Q. For ¢,¢' € @, we obtain

reL(fit.q) & f(z,q) <1
& flz,d)<t (f(z,q) = f(z.q"))
s relL(fit.q).
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Hence, L(f;t,q) = L(f;t,q') for all q,¢' € Q. By Lemma 2.7 (1), we have L(f;t) =
MNgeq L(f;t.q). By the claim, we have L(f;t) = L(f;t.q) for all ¢ € Q. Since
L(f;t,q) = L(f:t) =1 forall t < k and L(f;t,q) = L(f;t) = Aforallt > k, it
follows from Theorem 2.9 (1) that f is a Q-fuzzy UP-ideal of A. By Remark 1.17,
we have L(f;t) = L(f;t) = I for all t < k and L(f;t) = L(f:t) = A for all t > k.
Let [ = g. Then g is a Q-fuzzy UP-ideal of A such that L(g;t) =1 for all t < k and
L(g:t)=Aforallt > k.
(2) Let f be a Q-fuzzy set in A defined by

tea={ } frey

for all g € Q.

Case 1: To show that U(f;t) = I for all ¢ > k, let t £ [0,1] be such that ¢t > k.
Let z € U(f;t). Then f(x,q) = ¢ > k for all ¢ € Q. Thus f(z,q) # k for all ¢ € Q,
so f(z,q) =1lforall g € Q. Thus z € I, so U(f;t) C I. Now, let z € I. Then

flz,q)=1>tforall g€ Q. Thus z € U(f;t), so I CU(f;t). Hence, U(f;t) =1
for all t > k.

Case 2: To show that U(f;t) = A for all ¢t < k, let ¢ € [0, 1] be such that ¢t < k.
Clearly, U(f;t) € A. Let z € A. Then

k>t ifzgl,
f(r"”_{ 1>t ifzel,

for all ¢ € Q. Thus =z € U(f;t), so A C U(f;t). Hence, U(f;t) = A for all t < k.
We claim that U(f;t,q) =U(f;t,q") for all q,¢' € Q. For ¢,q' € @, we obtain

reU(fit.q) & flz,q) 2t
& flz,q) >t (f(z,q) = f(z,q))
s zxeU(fit.q).

Hence, U(f;t,q) = U(f;t,q') for all ¢,q' € Q. By Lemma 2.7 (3), we have U(f;t) =
mqu U(f;t,q). By the claim, we have U(f;t) = U(f;t,q) for all ¢ € Q. Since
U(fit,q) =U(f;t) =1 forall t > k and U(f;t,q) = U(f;t) = Aforallt <k, it
follows from Theorem 2.9 (3) that f is a Q-fuzzy UP-ideal of A.

Corollary 2.14. Let S be a UP-subalgebra of A. Then the following statements
hold:

(1) for any k € (0,1], then there exists a Q-fuzzy UP-subalgebra g of A such that
L(g;t)= S for allt < k and L(g;t) = A for allt > k, and

(2) for any k € [0,1), then there erists a Q-fuzzy UP-subalgebra f of A such that
U(f;t)=S forallt >k and U(f;t) = A for allt <k.

Proof. (1) Let f be a Q-fuzzy set in A defined by

0 ifzes,
f(-T:Q):{ k itz égs,

for all ¢ € Q.

In the proof of Corollary 2.13 (1), we have L(f;t) = S forall t < k and L(f;t) =
A for all t > k, and L(f:t,q) = L(f:;t,q') for all q,¢' € Q. By Lemma 2.7 (1),
we have L(f;t) = ﬂquL(fE t,q). By the claim, we have L(f;t) = L(f;t, q) for all
q € Q. Since L(f;t,q) = L(f;t) = S forall t < k and L(f;t,q) = L(f;t) = A for all
t > k, it follows from Theorem 2.11 (1) that f is a Q-fuzzy UP-subalgebra of A. By
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Remark 1.17, we have L(f;t) = L(f;t) = S for all t < k and L(f;t) = L(f;t) = A
for all t > k. Let f = g. Then ¢ is a Q-fuzzy UP-subalgebra of A such that
L(g;t)=Stforallt < k and L(g;t) = A for all t > k.

(2) Let f be a Q-fuzzy set in A defined by

| ifzes,
f(-T:Q):{ k ifzés,

for all g € Q.

In the proof of Corollary 2.13 (2), we have U(f;¢) = Sfor all¢ > k and U(f;1) =
Aforall t <k, and U(f:t,q) =U(f;t,q') for all ¢,¢' € Q. By Lemma 2.7 (3), we
have U(f;t) = ﬂqu U(f;t,q). By the claim, we have U(f;t) = U(f:t,q) for all
g € Q. Since U(f;t,q) =U(f;t) =5 forallt > k and U(f;t,q) = U(f;t) = A for
all £ < k, it follows from Theorem 2.11 (3) that f is a Q-fuzzy UP-subalgebra of
A.

Theorem 2.15. Let f be a Q-fuzzy set in A and s < t for s,t € [0,1]. Then the
following statements hold:

(1) L(f;s,q) = L(f;t,q) if and only if there is no x € A such that s < f(z,q) <t,

(2) L™(f:s,q) = L™(f:t,q) if and only if there is no x € A such that s < f(x,q) <
t,

(3) U(f;s,q) =Ul(f:t,q) if and only if there is no v € A such that s < f(z,q) <t,
and

(4) Ut (f:s,q) =UT(f:t,q) if and only if there is no x € A such that s < f(x,q) <
t.

Proof. (1) Assume that L(f:;s,q) = L(f:t,q). Suppose that there is x € A such
that s < f(z,q) <t. Then = € L(f;t,q) but = & L(f;s,q), so L(f:t,q) # L(f;s,9)
which is a contradiction. Hence, there is no = € A such that s < f(z,q) < t.

Conversely, assume that there is no € A such that s < f(x,q) <t. Let x €
L(f;s,q). Then f(x,q) <s <t ,sox e L(f;t,q). Thus L(f;s,q) € L(f;t,q). Sup-
pose that L(f:t,q) € L(f;s,q). Then there exists = € L(f;¢,q) but = & L([;s.q).
Thus f(x,q) <t and f(z,q) > s, s0 s < f(x,q) <t which is a contradiction. Thus
L(f:t,q) € L(f;s.q). Hence, L(f;s,q) = L(f;t.q).

(2) Similarly to as in the proof of (1).

(3) Assume that U(f;s,¢) = U(f;t.q). Suppose that there is 2 € A such that
s < f(z,q) <t Then x € U(f;s,q) but = & U(f;t,q), so U(f:s,q) = U(f:t,q)
which is a contradiction. Hence, there is no 2z € A such that s < f(z,q) < t.

Conversely, assume that there is no € A such that s < f(z,q) < t. Let x €
U(f:t,q). Then f(z,q) =t > s,s0 2 € U(f;s,q). Thus U(f;t,q) S U(f:s,q). Sup-
pose that U(f;s,q) £ U(f;t,q). Then there exists € U(f;s,q) but = € U(f:t,q).
Thus f(z,q) = s and f(z,q) < t, s0 s < f(x,q) < t which is a contradiction. Thus
U(f;s,q) CU(f:t,q). Hence, U(f;s,q9) =U(f;t,q).

(4) Similarly to as in the proof of (3).

Corollary 2.16. Let f be a Q-fuzzy set in A and s < t for s,t € [0,1]. Then the
following statements hold:

(1) L(f;s,q) = L(f;t,q) if and only if U™ (f;s,q) = Ut(f;t,q), and
(2) U(f;s,q) =Ulfit,q) if and only if L~ (f;5,q) = L~ (fit,q).

Proof. (1) It follows from Theorem 2.15 (1) and Theorem 2.15 (4).
(2) It follows from Theorem 2.15 (2) and Theorem 2.15 (3).
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Theorem 2.17. Let (A;-,04) and (B;*,05) be UP-algebras and let f: A — B be
a UP-homomorphism. Then the following statements hold:

(1) if p is a q-fuzzy UP-ideal of B, then py is also a q-fuzzy UP-ideal of A, and

(2) if p is a q-fuzzy UP-subalgebra of B, then py is also a g-fuzzy UP-subalgebra
of A.

Proof. (1) Assume that p is a g-fuzzy UP-ideal of B. Let » € A. Then

(04, q) = p(f(04), )

= pu(0p,q) (Proposition 1.22)
= pl(f(z),q) (Definition 1.10 (1))
= py(z, q).

Let =, y,z € A. Then

pp(z-z,q) = p(f(z-2),q)
u(f(x) = f(2),9)
min{pu(f(z) * (f(y) * f(2)),9),n(f(y).q)}  (Definition 1.10 (2))
min{p(f(2) * f(y - 2),9), p(f(¥). )}

min{p(f(z - (y-2)),q), u(f(v),
min{ps(z - (v - 2),q), 15y, 9)}-

ol

),q
7)}

Hence, py is a g-fuzzy UP-ideal of A.
(2) Assume that p is a g-fuzzy UP-subalgebra of B. Let 2,y € A. Then

prlz-y.q) = p(flz-y).q)
= p(f(x) * fy),q)
> min{u(f(2), ), n(f (), 0)} (Definition 1.13)
= min{yu(z, q), uy(y, q)}-
Hence, py is a g-fuzzy UP-subalgebra of A.
With Definition 1.10 and 1.13 and Theorem 2.17, we obtain the corollary.

Corollary 2.18. Let f: A— B be a UP-homomorphism. Then the following state-
ments hold:

(1) if jp is a Q-fuzzy UP-ideal of B, then iy is also a Q-fuzzy UP-ideal of A, and

(2) if p is a Q-fuzzy UP-subalgebra of B, then py is also a Q-fuzzy UP-subalgebra
of A.

Theorem 2.19. Let (A;-,04) and (B;*,05) be UP-algebras and let f: A — B be
a UP-isomorphism. Then the following statements hold:

(1) if py is a q-fuzzy UP-ideal of A, then p is also a q-fuzzy UP-ideal of B, and

(2) if py is a g-fuzzy UP-subalgebra of A, then p is also a q-fuzzy UP-subalgebra
of B.

Proof. (1) Assume that p; is a g-fuzzy UP-ideal of A. Let y € B. Then there exists
z € A such that f(z) =y, we have
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#(0B,9) = pu(y * 0B, q) (UP-3)
= pu(f(z) * f(04),9) (Proposition 1.22)
= u(f(z-04),9)
= pf(z-04.q)
= p1(04,9) (UP-3)
> py(zr.q) (Definition 1.10 (1))
= u(f(z),q)
= u(y. ).

Let a,b,c € B. Then there exist z,y,z € A such that f(z) = a, f(y) = b and
f(z) = ¢, we have

pla*c,q) = p(f(z) * f(2),9)

=p(f(z-2),4q)
ZW( £ 2,9)
>min{pes(x- (- 2),q) 1y, q)} (Definition 1.10 (2))
=min{p(f(z- (¥-2)),q), u(f(y),2)}
=min{p(f(x) * (f(y) = f(2)), ), n(f(¥), 0)}

= min{p(a (b= c),q), ub,q)}.

Hence, p is a g-fuzzy UP-ideal of B.
(2) Assume that py is a g-fuzzy UP-subalgebra of A. Let a,b € B. Then there
exist z,y € A such that f(z) =a and f(y) = b, we have

plaxb,q) = p(f(z) * f(y). q)
=p(f(z-y),q9)
=pf(z y,q)
> min{,uf(:r., q),,uf(y,q)} (Definition 1.13)
= min{u(f(z),q), n(f(y).a)}
= min{u(a, q), u(b,q)}.

Hence, p is a g-fuzzy UP-subalgebra of B.
With Definition 1.10 and 1.13 and Theorem 2.19, we obtain the corollary.

Corollary 2.20. Let f: A — B be a UP-isomorphism. Then the following state-
ments hold:

(1) if py is a Q-fuzzy UP-ideal of A, then p is also a Q-fuzzy UP-ideal of B, and

(2) if py is a Q-fuzzy UP-subalgebra of A, then p is also a Q-fuzzy UP-subalgebra
of B.

Lemma 2.21. (Bali, 2005) For any a,b,c,d € R, the following properties hold:
(1) max{max{a,b}, max{c,d}} = max{max{a,c}, max{b,d}}, and
(2) min{min{a, b}, min{c, d}} = min{min{a, ¢}, min{b, d}}.

Let (A4;-,04) and (B;*,0g) be UP-algebras. We can easily prove that 4 x B is
a UP-algebra defined by

(z1,22) © (1, 42) = (21 - 11, 22 * U2)

for all z1,y; € A and x2,y2 € B.
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Theorem 2.22. Let (A;-,04) and (B;#*,0p) be UP-algebras. Then the following

statements hold:

(1) if p is a q-fuzzy UP-ideal of A and ¢ is a g-fuzzy UP-ideal of B, then p -6 is
a q-fuzzy UP-ideal of A x B, and

(2) if p is a q-fuzzy UP-subalgebra of A and § is a q-fuzzy UP-subalgebra of B,
then 1+ 6 is a q-fuzzy UP-subalgebra of A x B.

Proof. (1) Assume that p is a ¢g-fuzzy UP-ideal of A and 4 is a g-fuzzy UP-ideal of
B. Let (z1,23) € A x B. Then

(k- 0)((04,08), ¢) = min{p(04,9),5(0p, 9) }
> min{g(r1,q), 0(z2,q)} (Definition 1.10 (1))

= (p-0)((z1,22),q).

Let (z1,22), (y1,¥2), (21,22) € A x B. Then

(- 0)((z1, 22) © (21, 22),9)
= (- 8)((z1- 21,72 % 22),q)
= min{p(zr1 - 21, q), (2 * 22, q) }
Z min{min{p(zy - (41 - 21),4), 1(y1.9)}
min{d(xz * (y2 * 22), ), 6(y2, 9) } } (Definition 1.10 (2))
= min{min{p(z1 - (y1 - 21),9), 0(z2 * (y2 * 22), ) },
min{z(y1, ), 0(y2,9)}} (Lemma 2.21 (2))
=min{ (g - 8)((x1 - (w1 - 21), 22 * (Y2 * 22)).4), (- ) ((y1,92).q)}
= min{ (g - §)((21,22) © (y1 - 21,92 * 22),9), (- ) ((y1,¥2),9)}
=min{(p - 6)((z1,22) © ((y1,y2) © (21, 22)), @), (1 - 6)((y1,%2), ) }-

Hence, i - 6 is a g-fuzzy UP-ideal of A x B.

(2) Assume that p is a g¢-fuzzy UP-subalgebra of A and § is a ¢-fuzzy UP-
subalgebra of B. Let (x1,72), (11,¥2) € A x B. Then

(- 0) (21, 22) © (y1, 92), 9)
= (p-0)((z1 - y1, 22 % ), q)
= min{u(z: - y1,9),8(z2 % y2,9)}
> min{min{u(z1,q), u(y1,q) }, min{d(z2,q),6(y2.9)}}  (Definition 1.13)
= min{min{u(z1,q),6(z2,9)}, min{u(y1,9),0(y2,9)}} (Lemma 2.21 (2))
— min{ (- 6)((z1,22), ), (4 - ) ((91,2), )}

Hence, y - & is a g-fuzzy UP-subalgebra of A x B.

Give examples of conflict that u and § are g-fuzzy UP-ideals (resp. ¢-fuzzy UP-
subalgebras) of A but g x 8 is not a ¢-fuzzy UP-ideal (resp. g-fuzzy UP-subalgebra)
of A x A.

Example 2.23. Let A4 = {0,1} be a set with a binary operation - defined by the
following Cayley table:

o oo
(=3

0
1
Then (A4;-,0) is a UP-algebra. Let @ = {g}. We define Q-fuzzy sets g and § in A as
follows: p(0,q) = 0.2,6(0,q) = 0.3, (1,q) = 0.1 and 4(1,q) = 0.1. Using this data,

we can show that g and 0 are g-fuzzy UP-ideals of A. Let (z1,22) = (0,0), (y1,92) =
(1,0),(21,22) = (1,1) € A x A. Then
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(e % 8)((z1,22) © (21,22),q) = 0.1
and
min{(p x 8)((z1,72) o [(y1,2) © (21, 22)],q), (1 % 0)((y1,42),9)} = 0.2.

Hence, (1 x 6)((z1,22)0 (21, 22). ¢) # min{(p x 8)((z1, z2) o [(y1. y2) o (21, 22)], 4), (1 %
&) ((y1,y2),q9)}. Therefore, p x & is not a g-fuzzy UP-ideal of A x A.

Example 2.24. Let A ={0,1,2} be a set with a binary operation - defined by the
following Cayley table:

=T S V]

1
1
0
0

Then (A;-,0) is a UP-algebra. Let @ = {¢q}. We defined a Q-fuzzy set pp and § in A
as follows: p(0,q) = 0.4,6(0,q) = 0.7,1(1,q) = 0.1,4(1,q) = 0.1, u(2,q) = 0.3 and
4(2,g) = 0.3. Using this data, we can show that g and § are g-fuzzy UP-subalgebras
of A. Let (z1,29) = (0,1), (y1,12) = (1,2) € A x A. Then

(1 x 6)((z1,22) © (Y1, 42),9) = 0.1

and

min{ (4 x 6)((z1, 22), ), (1 X 8)((y1,2), )} = 0.3.

Hence, (1 % 0)((z1,22) © (y1,¥2), ) # min{(p x 6)((z1,22),9), (1 % 8)((1,92).)}-
Therefore, i x & is not a g-fuzzy UP-subalgebra of A x A.

With Definition 1.10 and 1.13 and Theorem 2.22, we obtain the corollary.
Corollary 2.25. The following statements hold:

(1) if p is a Q-fuzzy UP-ideal of A and § is a Q-fuzzy UP-ideal of B, then pi-4d 1s
a (Q-fuzzy UP-ideal of A x B, and

(2) if jpis a Q-fuzzy UP-subalgebra of A and § is a Q-fuzzy UP-subalgebra of B,
then p -4 is a Q-fuzzy UP-subalgebra of A x B.

Theorem 2.26. If p is a Q-fuzzy set in A and § is a Q-fuzzy set in B such that
-0 is a q-fuzzy UP-ideal of A x B, then the following statements hold:

(1) either 1(04,q) = p(z,q) for all w € A or 6(0p,q) = 6(x,q) for all x € B,

(2) if 1(0a,q) = p(z,q) for all x € A, then either §(0p,q) = p(z,q) for allz € A
or8(0p,q) = d(x,q) for allz € B, and

(3) if 6(0p,q) = 6(z,q) for all z € B, then either u(04,q) > p(x,q) for allz € A
or u(04,q) = 8(z,q) for all z € B.

Proof. (1) Suppose that there exist z € 4 and y € B such that p(04,q) < p(z,q)
and §(0g,q) < d(y,q). Then

(-0)((z,y),q) = min{u(z,q),0(y,q)}
> l?ﬂiﬂ{p,(OAT Q): 6(0 JQ)}
= (- 8)((04,08),9)

which is a contradiction. Hence, pi(04,¢q) > p(z, q) for all 2 € A or §(0p, q) = d(z,q)
for all = € B.
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(2) Assume that p(04,q) > p(z, q) for all x € A. Suppose that there exist z € A
and y € B such that §(0p,q) < p(z,q) and 6(0p,q) < §(y.q). Then p(04,q) >
p(z,q) > 6(0B,q). Thus

(- 8)((x,),q) = min{pu(z,q),d(y,q)}
> min{6(0p,q),5(0B,q)}
=4(0p,q)
=min{;1(04,9),5(0B,q)}
= (1-6)((04,08),49)

which is a contradiction. Hence, §(0p, q) > p(z, q) for all z € A or 6(0p. q) > é(z, q)
for all =z € B.

(3) Assume that 6(0g,q) = d(z,q) for all z € B. Suppose that there exist
r € A and y € B such that p(04.q) < p(r,q) and p(04.q) < d(y,q). Then
9(0p,q) = 6(z,q) > p(04,q). Thus

(- 8)((z,y),q) = min{u(z,q),d(y.q)}
> min{u(04,4),1(04,9)}
= 1(04,9)
= min{u(04,49),5(0B,q)}
= (1~ 6)((04,0B),q)

which is a contradiction. Hence, p(04,q) > p(z,q) forall z € A or p(04,q) = d(z,q)
for all x € B.

With Definition 1.10 and 1.13 and Theorem 2.26, we obtain the corollary.

Corollary 2.27. If p is a Q-fuzzy set in A and § is a Q-fuzzy set in B such that
i 0 is a Q-fuzzy UP-ideal of A x B, then the following statements hold:

(1) for all g € @Q, either u(0a,q) = p(z,q) for allx € A or (0, q) = d(x,q) for
allr € B,

(2) for all g € Q, if (04, q) = p(x,q) for all x € A, then either 6(05,q) > p(x,q)
forallz € A ordé(0g,q) = d(z,q) for allz € B, and

(3) forallq € Q, if (0p,q) = d(x,q) for all x € B, then either 1i(04,q) > plz,q)
forallz € A or u(04,q) = 6(z,q) for all z € B.

Theorem 2.28. Let (A;-,04) and (B;*,0p) be UP-algebras and let p be a Q-fuzzy
set in A and § be a Q-fuzzy set in B. Then the following statements hold:

(1) if p- 6 is a q-fuzzy UP-ideal of A x B, then either p is a g-fuzzy UP-ideal of
A oré is a q-fuzzy UP-ideal of B, and

(2) if p -9 is a q-fuzzy UP-subalgebra of A x B, then either p is a g-fuzzy UP-
subalgebra of A or d is a q-fuzzy UP-subalgebra of B.
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Proof. (1) Assume that p-§ is a g-fuzzy UP-ideal of A x B. Suppose that p is not a
g-fuzzy UP-ideal of A and § is not a g-fuzzy UP-ideal of B. By Theorem 2.26 (1), we
have p(04,q) = p(z,q) for all z € Aor d(0p, q) = §(x, g) for all z € B. Suppose that
(04, q) 2 p(x,q) for all x € A. By Theorem 2.26 (2), either 6(0p,q) = p(z,q) for
all z € A or §(0p,q) = 6(x,q) for all z € B. If 6(0p, ¢q) = p(x,q) for all x € A, then

(p-6)((z,0B),q) = min{p(x,q),d(0p,q)} = p(x,q). We consider, for all z,y,z € A,

pu(z - z,q) = min{u(z - 2.9),8(0B.q)}

=(pu-0)((z-2,08),q9) (Definition 1.25)
= (p-6)((z-=z,0p+0g),q) (Proposition 1.2 (1))
— (4 8)((2,05) o (2,05),q)

> min{ (s 8)((x,08) © (4. 08) © (=,0)]. ),

(- 6)((v.0B),9)} (Definition 1.10 (2))
= min{(p - 8)((z - (y-2),08 % (0B % 0B)). ), (k- 6)((y,0B).a)}
= min{(p - 6)((z- (y-2).08),9). (1 6)((y,08).¢)} (Proposition 1.2 (1))
= min{min{p(z- (y - z),q),6(0p,q)},

min{yx(y,q),6(0B,q)}} (Definition 1.25)
= min{p(z - (y-2).q9), (¥, 9)}.

Hence, p is a g-fuzzy UP-ideal of A which is a contradiction. Suppose that §(0g,q) =
d(z, q) for all z € B. By Theorem 2.26 (3), either p(04.q) > p(z,q) forall z € A
or p(04,q) = 6(z,q) for all x € B. If u(04,q) = d(z,q) for all = € B, then
(p-0)((04,2),q) =min{p(04,q),8(z,q)} = d(z, g). We consider, for all z,y,z € B,

O0(x*z,q) =min{pu(04,q),0(z =z q)}
=(p-0)((04,2*2),q) (Definition 1.25)

=(p-0)((04-04,2%2),q) (Proposition 1.2 (1))
= (1-6)((04,7) 0 (04,2),0q)
= min{(x - 6)((04, ) © [(04,9) © (04,2)],9),

(pe-9)((04,9), )} (Definition 1.10 (2))
= min{(u - 6)((04 - (04 -04), 2 % (y + 2)),q), (- 0)((04,9).9)}
= min{(p - 8)((04,z % (y* 2)),q),

(- 0)((0a,u),2)} (Proposition 1.2 (1))
= min{min{yx(04,q),d(z * (y = 2),q)},
min{p(04,9),5(y,q)}} (Definition 1.25)

=min{d(z * (y * 2),q),0(y,q)}-

Hence, § is a ¢-fuzzy UP-ideal of B which is a contradiction. Since u is not a
g-fuzzy UP-ideal of A and § is not a ¢-fuzzy UP-ideal of B, we have u(04,q) =
p(z,q) for all z € A and 6(0p,q) > é(x,q) for all = € B. Let 21,2, 73 € A and
y1.Y2,y3s € B be such that p(zy - x3,9) < min{u(z; - (z2 - 73),9), p(22,q)} and
0(y1 * y3,q) < min{d(y1 * (Y2 * ¥3),9),0(y2, 9}, so min{pu(z1 - 23,q),6(y1 * y3,9)} <
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min{min{p(zy - (z2 - 23).q). p(z2,9)}, min{d(y1 * (y2 * ¥3), ), 6(y2.9)}}. Thus

min{y(z1 - 23, 9),6(31 * ys,q)}
= (- 0) (1~ 23,31 *y3),9) (Definition 1.25)
= (p-0)((z1,91) © (z3,93). q)
= min{ (g - §)((x1,11) © [(22,92) © (3, 93)], ),
(- 0)((w2,12), )} (Definition 1.10 (2))
=min{(u - 8)((z1- (z2 - 23), 41 % (Y2 *¥3)), @), (1 - 0)((22,92). 0)}
= min{min{u(xy - (2 - 23),q),0(y1 * (¥2 * ¥3), )},

min{p(z2,q), 6(y2,¢)}} (Definition 1.25)
= min{min{pu(zy - (z2- z3),q), p(z2,9)},
min{d(yy * (y2 * y3),q),6(y2,q)}}- (Lemma 2.21 (2))

It follows that min{p(zy-x3, ¢), 6(y1*ys. g)} ¢ min{min{y(zi-(x2-x3), q), p(r2. q)}, min{d(;
(y2 * y3),4q),d(y2,q)}} which is a contradiction. Hence, p is a g-fuzzy UP-ideal of A
or § is a g-fuzzy UP-ideal of B.

(2) Assume that p - J is a ¢-fuzzy UP-subalgebra of A x B. Suppose that p is
not a g-fuzzy UP-subalgebra of A and § is not a ¢g-fuzzy UP-subalgebra of B. Then
there exist .y € A and a,b € B such that

p(z-y,q) <min{p(z,q),x(y,q)} and d(a+b, q) < min{d(a,q),d(b,q)}.

ghen_;lin{u(r “¥.q).8(a+b.q)} < min{min{p(z,q),p(y.q)} min{d(a,q).5(b,q)}}.

min{p(z - y,q),8(axb,q)} = (u-0)((z-y,a*b).q) (Definition 1.25)
= (u-0)((z,a) o (y,0),q)
Z min{(p - 6)((x, a), q),

(e 0)((y.b),q)} (Definition 1.13)
= min{min{u(z,q),d(a,q)}.

min{u(y, q),6(b,q)}} (Definition 1.25)
= min{min{p(z, q), u(y, 9)},

min{d(a,q),d(b,q)}}. (Lemma 2.21 (2))

Thus min{pu(z - y,q),0(a = b,q)} £ min{min{p(z,q),(y,q)}, min{d(a,q),4(b, q)}}
which is a contradiction. Hence, p is a g-fuzzy UP-subalgebra of A or § is a g-fuzzy

UP-subalgebra of B.

Give examples of conflict that p and d are not Q-fuzzy UP-ideals (resp. Q-fuzzy
UP-subalgebras) of A but pi-4 is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra)
of 4 x A.

Example 2.29. Let A = {0,1} be a set with a binary operation - defined by the
following table:

-0 1
0]0 1
1{0 0

Then (A;-,0) is a UP-algebra. Let Q = {a,b}. We define two Q-fuzzy sets p and §
in A as follows:

and
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Since p(0,a) = 0.1 < 0.3 = p(1,a), we have p(0,a) #? p(l.a). Thus g is not an
a-fuzzy UP-ideal of A. Since 6(0,b) = 0.1 < 0.3 = 4(1,b), we have §(0,b) # 4(1.b).
Thus 4 is not a b-fuzzy UP-ideal of A. Therefore, u and § are not Q-fuzzy UP-ideals
of A. Using the above data, we can show that p - d is a Q-fuzzy UP-ideal of A x A.

Example 2.30. Let A = {0,1} be a set with a binary operation - defined by the
following table:

=]
o olo

1
1
0

Then (A;-,0) is a UP-algebra. Let @ = {a,b}. We defined two Q-fuzzy sets p and
din A as follows:
pwl a b
001 03
1103 03
and i
ol a b
0[03 0.1
1103 0.3
Since p(1-1,a) = p(0,a) = 0.1 < 0.3 = min{0.3,0.3} = min{p(1,a),px(1,a)}, we
have p(1-1,a) #? min{p(1,a), p(1,a)}. Thus p is not an a-fuzzy UP-subalgebra of
A. Since 6(1-1,b) = 4(0,b) = 0.1 < 0.3 = min{0.3,0.3} = min{d(1,b),4(1,b)}, we
have 6(1-1,b) # min{4(1,5),4(1,b)}. Thus J is not a b-fuzzy UP-subalgebra of A.
Therefore, p and § are not Q-fuzzy UP-subalgebras of A. By Example 2.29, we have
i -0 is a Q-fuzzy UP-ideal of A x A. By Corollary 2.2, we have p - 4§ is a Q-fuzzy
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UP-subalgebra of A x A.
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