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Abstract

In this paper, we find the explicit formulae of the Frobenius number for numerical semigroups generated by relatively

prime three Lucas numbers | |, and L, for givenintegers i>3, |>4.
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1. Introduction

Let a,a,,...,a, (N>2) be integers. Any expres-
sion of the form ca, +c,a, +...+c,a,where C,C,,...,C,
are integers, is called a linear combination of a,a,,...,a,-

Given positive integers a,8,...a, (N>2) with gcd

I(a,...a,)=1the Frobenius Problem is a problem to

determine the largest positive integer that cannot be

representable as a nonnegative integer combination of

a,...,a,-

Definition The Frobenius number of a ,a,,...,a,, denoted by
g(ai,az,,.,,an), is the largest integer Z such that
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Z#C@a +C,a,+...+c,a, for all nonnegative integers

C,Cy,...,Cy-
For example, g(3,5)=7, ¢(6,9,20)=43.

The Frobenius Problem is well known as the coin
problem that asks for the largest monetary amount that cannot
be obtained using only coins in the set of coin denominations
which has no common divisor greater than 1. This problem is
also referred to as the McNugget number problem introduced
by Henri Picciotto. There are several applications of the
Frobenius Problem, for example, in obtaining upper bounds
for the running time of the Shell-sort algorithm, studying
partitions of vector spaces and investigating algebraic
geometric codes; see Ramires Alfonsin (2005).

The origin of this problem for n=2 was proposed

by Sylvester (1884), and this was solved by Sharp (1884) :
9(a,a,)=(a, —1)(a,-1)-1=aa, -3 —a,
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Roberts (1956) found the Frobenius number of an arithmetic

sequence:
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In the 21% century, the Frobenius Problem is still an

interesting problem. There are several studies associated with

this problem, as follows. Marin et al. (2007) investigated the
F.E.,.F

irhi+20 itk

a-2

g(a,a+d,...,a+kd)=a[TJ+d(a—l). for

Frobenius number of Fibonacci numbers

integers i,k >3 where F is the n"™ term of the Fibonacci
For n=3, Selmer and Beyer (1978) solved the Frobenius  sequence defined by F =F ,+F ,, n>3 with F =1 and

Problem by a continued fraction algorithm. Then Ro&dseth
(1978) improved their result. Greenberg (1988) found another

F, =1. They found that

algorithm.

ifr=0orr>1and
F.F <(F -rR)F.,
otherwise,

(F| _1) Fi+2 - F. (rkaz +1)'

g(Fl ' Fi+2' Fi+k) =
(R -DF,, -R((r-HF_, +1),

where :L':i _1J for r,k >3. Later on, Ylhan and Kyper (2008) established the Frobenius number involving Lucas numbers
Fk

L, definedby L =L, ,+L,,, n=3 with | =1 and L, =3. They found the following formulae:

gL L) =Ll - L - L, for ik>2,
gL Lals) = I{'ﬂ‘z‘ 2J+m<u 1) foriz3
L

2

Moreover, Ong and Ponomarenko (2008) solved the Frobenius Problem for sets of the form {m*,m"*n,m"n?,...,n"}, where

and g(Ly Ly +2.2L; +1) ==+ 1, -1 for i>1.

m,n are relatively prime positive integers:

(n _1)m2 (mk—l _ nk—l)
m-n

g(m*,m*n,m"2n? .. n") =n“*(mn—-m-n)+

for any positive integer K. Gil et al. (2015) found the Frobenius number of primitive Pythagorean triples:

g(m? —n?,2mn,m* + n%) = (M-1)(m* —n?) + (M -1)(2mn) — (m* +n?).

Recently, Tripathi (2017) gave an exact formula for g(a,,a,,a,), where a,a,,a, are pairwise coprime positive integers. His

results are divided into several cases and are complicated, so we do not record them here.

In a recent paper, we investigate the Frobenius number g(L,,L, ,,L ) forintegers i>3, 1>4 by using the idea in

Marin et al. (2007) and generalize the work of Ylhan and Kyper (2008). Our work needs the well-known Theorem of Brauer and
Shockley (1962) stated as follows:

Theorem A. Let 1<a, <...<a, beintegers such that gcd(a,,...,a,) =1-

LetB={ax +...+a,x, | x e N U{0}forall i=1,2,...,n}. Then
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g(ai,---,an)zle{lyrzr}a;grl}{t.}—alv
where t, is the smallest positive integers congruent to | modulo a, and t, €B.
Note that Theorem A can give the value for 9@,...a,); however, the formula is not in closed form and it is difficult to

find t, for each |. In our work, we are able to give an explicit formula for g(L,,L,,L,,)-

2. Necessary Lemmas

Before investigating the value of g(Li Lo I_M) for i>3, | >4, we establish some lemmas. By Theorem A, for fixed

integers i>3, | >4, we get

g(L| ’ Li+2’ Li+|) = ke{lr,.?,a.?l(.ﬁl}{tk}_ L|
where t; is the smallest positive integer congruent to k modulo L, and t, =xL,, +yL,, forsome x,y>0. Then we shall

construct the Table 1, denoted by T, having entries t, = XL, + YL, for integers x, y>0. Since

L. =L,Ra+L.F.,= Li+2(FI - F,,2)+(Li+2 - Li)FI—Z =FL.,-F.,L.

we get

t, = XL, +YL, =X, +Y(FL,, —F_L) =(X+YR)L,, - YR L.

Thus the table T, can be represented as the table T,

Tablel. T, : tx,y =xL,, +yL,, for x,y >0

y 0 1 2 I

X

0 0 Ly 2L, oo L.

1 Li+2 Li+2 + I‘i+| Li+2 + 2Li+| DR I‘i+2 + I’I‘iJrI

2 2Li+2 2Li+2+Li+I 2Li+2+2|-i+| cee 2Li+2+rLi+I

3 3I‘i+2 3I‘i-¢-2 + I‘i+| 3Li+2 +2I-|+| ce 3Li+2 + rLHI
F-2  (R-2L,  (F-2L,+L,  (R-2L,+2L, ...  (R-2)L,+rl,
F-1 (F-DL, (F-DL., +L, (F-DL.,+2L, - (R-DL,, +rL,,

Fl F|Li+2 FILi+2+Li+I F|Li+2+2|-i+| cos F|Li+2+r|_i+|
F' +1 (FI +1)Li+2 (FI +1)Li+2 + I‘i+| (FI +1)Li+2 +2Li+| e (FI +1)Li+2 + rI‘i+|

From now on, we define the set TH _,,, tocontain the first | —1 entries of all columns in Table 2: T,. That is

T, ={t,,|0<x<F-landy>0}.
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Table2. T,: tx,y = (x+ yFI)LHZ — yFlsz‘ for x,y >0

y 0 1 2 r

X

0 0 I:ll-iJrz_Flszi 2FIL1'+2_2FI—2Li rFILi+2_rFI—2Li

1 Li+2 (1+FI)Li+2_FI—2Li (1+2|:I)Li+2_2|:l—2|‘i (1+ I’E)Li+z—l’|:|_2Li

2 2L, (2+F)L,,—F.L (2+2FR)L,,-2F,L T 2+rR)L,, —TF_L

3 3L, (B+F)L.,—F.L (3+2FR)L,, —2F_,L (B+rR)L., —rFL
F-1  (F-DL., (2R-DL,—-F,L GF-DL,—2F.L 7 ((r+DFR -1)L,—rFRL

R L. 2FL,, -FoL 3R L. —2FR,L (r+)FL., —rF.L
F+1 (F+DL,, (2R +)L,, -F_,L BF +)L,, —2F L ((I’ +1)F +1) L., —rR.L

Throughout the paper, we set | _ {L,—l
F

J and L, —1=rF +q for some integer 0<q<F —1. Let TH—l,r be the set that contains
|

the first | —1 entries of columns 0,1,2,...,r —1 and the first ¢ entries of column I, i.e.,
Te o ={t, [0<x<F-land 0<y<r-1}U{t, . t;,,... 4}

Lemma 1. (i) The set T o is a complete system of residues modulo L, .

<t

m,n+1

(ii) In the table T, ton gt].vk forall m<j and n< k. Moreover, t

m+1,n

forall 0<m,n<F -2

Proof. (i) Foreach t, =(x+YR)L,,-YyF L €T ,,, wehave 0<x+yF <q+rF =L, —1. Since

ged(L;, Ly.,) =1, T 4, is a complete system of residues modulo L.

mn — 7],

(ii) Recall that t..=mbL,,+nl,, and t = jL., +KkL,,. Itis obvious that for m<j, t <tj , and for n<k,

ton St

m,n — ‘mKk*

(FI _1)Li+2 - FI—ZLi >0.

Therefore, t  <t; for all m<j and n<k. For 0<mn<F-2, we have t t

mn+l ~ tmeln T

We define , as follows:

t, =t tF, =1y, t2F, =, .. trF, =1,
t=t, tF, a=ly t25+1 =t, .. trﬁ a=b,
=1 o=l bro=b, o Lpo =l
tF, e tﬁ -10 t2|=,—1 = tﬁ -11 t35—1 = tF| 12 e t(r+1)H—l = tF| -ir

The elements of TF.—l,w can be represented as t =xL, _L):(J F_L for x=0,1,....
|

Lemma2. Lett, beanentryof T and t,, €T ;- Thenthereexist t, eT_ , suchthatt =t (modl) andt, >t .
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Proof. By the definition of t, given above, the set TF,—l,r can be written as

Te o ={tor ot ot br b tog b e g =t

We will consider two cases as follows.

Casel: t,, €Tp \TFI iy

Then t,, =t, ., forsomeinteger a>1 and 0<b<L; —1. We see that

al, +b

taw = (@5 +D)L, — { JlZLI bl - { JIZLi =t, (modL,).

Since 0<b<l;-1, t, =t €T,

Foar for some X,Yy. That is, t, =t (modL; ). Next, we will show that t., >txyy, ie.,

ty o>t Since ., >t , for a>1, it is enough to show only that t_ ., >t . Recall that r{LiF—lJ and
|

L —1=rF +q forsome 0<q< F -1 We will consider two subcases depending on the value of I .

Subcase 1.1: If r=0, then L -1<F .,so L, +b<2FR -1.1If 0<L, +b<F -1, then both t, and t ., are in the first column
of the table T, . By Lemma 1(ii), we obtain t . >t
Suppose that F <L +b<2F -1 Then tb and t are in the first and second columns of the table Tl, respectively. If

Li+b

=

L<L. Finally, we have
2

R '; F, a contradiction. Hence we have F,<2

|_|<7l then | +b<—L 5

tw—t=LL.—F.L=L(L.-F.)>L(L-F,)>0

Subcase 1.2: Suppose that I >1. Consider

)

Write b=mF +n where 0<n< F-1. Since L -1=rF +q with 0<q<F -1, it follows that

Ll_i;bJ_“:)J:[Li—1;b+1J_m:LrF, +q+'r:nFI +n+1J_er+1.

It is enough to show that L, >(r+1)F_,. To this end, we see that

Lo =(r+ DR, =L +La—(r+1)R
:rFI +q+1+ LM—(r +1)F_,
:r(FI _I:I—Z)_I:I—2+q+l+ Lia
=rF,-F,+q+1+L,;>0

since r>1.
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—1,00

Case2: t,, T,

Since T, is a complete system of residues modulo L, there exists t, eT. , suchthatt =t  (modL;). Then

g
0<x<F-1<u- If v>y, by Lemma 1(ii), t,, <t <t Suppose v<Yy. Then tu,vEtx,y (modLy) implies

U+VF =x+YyR (modL, ). From Lemma 1(3), 0<x+ yF <L -1, and thus u+vF| :m(x+yF|) for some integer m>1. Hence

U+VF| 2X—"_yFI - Since _VFI—ZLi >_yl:l—zl‘i » We have l:u,v >tx,y :

3. Main Theorem

Theorem. Let >3, |>4 be integers and r{'-i —1J.Then
R

(L-Dh,~@HFLL, if L)r=0,
g(Li'Li+2’Li+|): 0r2.)r213nd (Li_rFI)Li+2>FI—2Li'
(rf -DL,, -+ (r-)F_,)L, otherwise.

Proof. From Theorem A, now we have to consider t; for k=12,..., L-1 when t; is the smallest positive integer congruent to
k modulo L, and t, can be written as xL, , +yL,,, for some integers x,y >0. Since t =xL,, _[éJ FL for x=01,....
|

If r=0, by Lemma 2, we have that t, is the smallest positive integer congruent to kK modulo L, for some integer

0<k<lL,—1. And we see that t, can be represented as a linear combination of |, and L. Hence

TF|—1,r ={t: k=12,..,L -1 If r>1, by Lemma 1(ii), then
te :ngls@ﬁax_l{tx,i t,; ETH—l,r} foreach i=01...,r-1,
b= Orgg_)fl{tﬁ—l,i | te o ETH—l,r}l

and
tk,r = ngag)lf{txr t><,r eTlﬁ—l,r}'

We will find the necessary condition for t . >t._, ;. Itistrueifand only if (L, ~1)L;,, - F L > (K -DL,, —(r-1)F_,L; that

is (L, —rRK)L,, > K_,L;.Hence we can conclude the result of this theorem.

Example 1. Let i=3 and | =5. Then ¢ :{ L _lJ =0, and by our main theorem, we have
5

9L, L, L) =g(4.11.47) = (L, ~D L — L+ O)F; )L, =3(10) ~1(4) =29.

We would like to confirm the value of g(4,11,47) by the well-known Theorem A. Since g(LS, L, LS) =g(4,11,47)

= max {t;}—4- Then we have to find t; for each k=1,2,3, that t is the smallest positive integer congruent to k modulo
kefl,2,3}
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L,=4 and { eB. We get t; =33,t,=22 and t;=11. Thus
gL, L, L) =max{33,22,11}—4=29 which is the same
value obtained by our result.

Example 2. Take i=4 and I=4. Then rzr"‘_lJ:Z'
F,

and (L, —2F,)L, > F,L,. Thus

9L, Ly L) =g(7,18,47) = (L, ~DL, — (L+ 2L, =87

On the other hand, by using Theorem A,

(Lol L) =g(7.18,47) = _max {}-7-

We get t, =36,t, =65,t; =94, t, =18, t; =47 and t; =83.
Thus g(L,, L, L) =max {36, 65, 94, 18, 47, 83}—7=87
which is the same value as above.
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