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Abstract 
 

A mathematical model of convective steady flow over rotating disks in an orthotropic porous medium has been developed 

and solved the non-dimentional governing equations for flow by the shooting method that uses fourth order Runge- Kutta 

integration technique and Newton’s method. Magnitude of radial velocity of fluid decreases near the surfaces of the disks for 

increasing value of Reynolds number. Impact of stretching parameters on the radial and tangential velocity profiles is observed. 

Computational results are presented graphically for various cases of parameters on velocity (radial f  and tangential g ) and 

temperature profiles and table values are reported for skin friction and Nusselt number along both disks. It is observed that as the 

Reynolds number increases, the tangential velocity decreases. As we move far away from the disk the effects of physical parameters 

is not significant. It is seen that when the stretching parameter increases the radial velocity increases initially and when  𝜂=0.3 

onwards the radial velocity decreases. This type of study finds application in industrial and engineering fields such as turbine 

engines and electronic power generating systems etc. 
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1. Introduction 
 

The steady flow of a viscous incompressible fluid 

between two rotatory stretchable disks is seen in many 

industrial, geothermal, geophysical, technological and engi-

neering fields such as gas turbine engines, computer storage 

devices, electronic power generating systems, electronic de-

vices which have rotatory parts,  jet motors, turbine systems, air 

 

cleaning machines, plastic and metal industries, etc. With this 

motivation very interesting studies, both experimental and 

theoretical have been reported. Stewartson (1953) investigated 

both experimentally and theoretically the viscous fluid flow 

between two rotating disks. Lance and Rogers (1962) investi-

gated the steady motion of symmetric flow of a viscous fluid 

between two rotating disks. Mellor, Chapple, and Stokes (1968) 

analysed the flow between two parallel disks by considering 

one in rotation and other at rest. Ramesh Chandra and Vijay 

Kumar (1972) investigated the heat transfer between two 

rotating disks by applying numerical method. Yan and Soong 

(1997) discussed numerically the influence of transpiration on 

the free and forced convection heat transfer flow between two 

parallel rotating disks.  
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Kishorekumar, William, and Layne (1989) examined 

numerically the magnetohydrodynamic (MHD) flow between 

two parallel disks by assuming one is in rotation and other at 

rest. Soong, Chang, Tung-Ping, and Tao-Ping (2003) have done 

a systematic study about the flow structure between two co-

axial disks rotating independently. Fang and Zhang (2008) 

found an exact solution of the governing equations for the flow 

between two stretchable disks. Van Gorder, Sweet, and Vajra-

velu (2010) used an analytical method (HAM) to study the 

symmetric flow between two parallel stretchable disks. Latif 

and Peter (2010) studied heat transfer flow between two paral-

lel rotating disks bifurcated by gas-filled micro-gap. Rashidi, 

Mohimanian, Hayat, and Obaidat (2012) used homotopy ana-

lysis method for the approximate solutions for steady flow over 

a rotating disk in porous medium with heat transfer. Rashidi, 

Ali, Freidoonimehr, and Nazar (2013) presented HAM solu-

tions for the steady convective flow of a viscous incompressible 

fluid over a stretching rotating disk. Hatami, Sheikholeslami, 

and Ganji (2014) used least square method to find the solution 

of the problem on convection flow of a nano fluid between 

rotating disk and contracting rotating disks. Imtiaz, Hayat, 

Alsaedi, and Ahmed (2016) studied the thermal radiation effect 

on convective flow of carbon nanotubes between two parallel 

rotating stretchable disks. Hayat, Muhammad, Shehzad, and 

Alsaedi (2016) studied the slip effects on MHD heat transfer 

flow of nanofluid in between two rotating disks. Mallikarjuna, 

Rashidi, and Hariprasad Raju (2017) studied thermophoresis on 

double diffusive flow over a rotating cone with non-linear 

Boussinesq approximation. Mamatha, Raju, Saleem, Alderre-

my, and Mahesha (2018) investigated on MHD flow past a 

stretching cylinder filled nanoparticles using Cattaneo and 

Christov heat flux model. Raju, Saleem, Mamatha, and Hussain 

(2018) studied on double diffusive radiative flow past a slender 

body in porous media using Buongiorno’s model.  

Till now no one has studied the flow of rotating 

stretchable disks in an orthotropic porous medium. The authors 

aimed to investigate on convective flow between two rotating 

parallel stretchable disks. Therefore, our aim is to investigate 

heat transfer flow of a viscous fluid between two disks which 

are rotating with different angular velocity embedded in an 

orthotropic porous medium. 

2. Problem Formulation 

 

Consider two dimensional steady viscous incompres-

sible flow between rotating disks as shown in Figure 1. The 

lower disk is placed at z=0 and upper disk is placed at z=d. The 

lower and upper disks are rotating with different constant 

angular velocities Ω1 and Ω2 respectively. Both the disks are 

assumed to be stretched in radial direction for various 

stretching rates b1 and b2 respectively. The lower and upper 

disks are maintained with different uniform constant tempera-

ture T0 and T1 respectively. The total system is embedded in an 

orthotropic porous medium. With the above assumption the 

governing equations in polar coordinates are as follows (Rashi-

di, Mohimanian, Hayat, & Obaidat 2012): 
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Figure 1. Geometry of the problem 
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Where U, V and W  are velocity components in ,r   and z 

directions respectively,   is density,   is the kinematic 

viscosity, ,rK K  and 
zK  are permeabilities in ,r   and z 

directions respectively and   is the thermal conductivity of 

fluid. 

In order to non-dimensionalize the Equations (1) – (6), the 

following transformations are introduced 
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Using (7), eqns. (1) – (6) become 
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The skin friction coefficients at the lower and upper disks are: 
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Rate of heat transfer (Nusselt numbers) at lower and upper 

disks are: 
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3. Numerical Procedure 

 

A set of Equations (8) – (11) with conditions (12) are 

solved numerically, with the shooting method by Mallikarjuna, 

Rashad, Chamkha, and Hariprasad Raju (2016), Mallikarjuna, 

Rashad, Hussein, and Hariprasad Raju (2016), and Sriniva-

sachary Mallikarjuna, and Bhuvanavijaya (2015) that uses 

Runge-Kutta method and Newton’ method. To validate the 

present code the obtained results are compared with Stewartson 

(1953) and Imatiaz (2016) in the absence of heat transfer and 

porous media for limiting cases as shown in Table 1. The 

physical parameter values are assumed to be Re=10 (laminar 

flow), Pr =6.23 (light organic fluids), k1=0.5, k2 =0.5, R1=0.7, 

R2=0.7, Ω = 0.5 (see Mustafa (2016)) unless specified. 

Computational results are presented graphically for various 

cases of parameters on velocity (radial f  and tangential g ) 

and temperature profiles and table values are reported for skin 

friction and Nusselt number along both disks. 

 

4. Results and Discussion 

 

Figure 2 illustrates the effect of 𝑘1 on radial velocity. 

The parameter 𝑘1 represents permeability along the radial 

direction. At the mean position of the disks the increase of the  

 
Figure 2. Effect of K1 on f   
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Table 1. Comparison of (0) (0)f and g  for various values of Ω when R1=0, R2=0 and in the absence of porous medium for Re=1 

 

Ω 
K. Stewartson (1953)  Imtiaz, Hayat, Alsaedi, Ahmad (2016) Present results 

(0)f   (0)g  (0)f   (0)g  (0)f   (0)g  

       

-1 0.06666 2.00095 0.06666 2.00095 0.06666263 2.00095376 

-0.3 0.10395 1.30442 0.10395 1.30442 0.10395043 1.30442628 
0.5 0.06663 0.50261 0.06663 0.50261 0.06663394 0.50261755 

       

 

 

permeability parameter results in deceleration of radial velocity 

and, moreover, the profiles are parabolic in nature. The effect 

of 𝑘1 on the tangential velocity is shown in Figure 3. It is 

observed that permeability increases as the tangential velocity 

profiles increases. Figure 4 shows the effect of 𝑘1 on tempera-

ture profiles. It is observed that when the permeability increases 

the temperature profile decreases. Enhancing permeability 𝑘1 

of the porous medium along the radial direction permits greater 

flow of the fluid in the tangential direction. Therefore, it 

decelerates the radial velocity and accelerates the tangential 

velocity and increases fluid temperature. 

The effect of 𝑘2 on radial velocity can be observed in 

Figure 5. At the mean position of a disk a permeability para-

meter increase results in an increase in the radial velocity and 

moreover, the profiles are parabolic in nature. Figure 6 illus-

trates the effect of  𝑘2 on the tangential velocity; from the graph 

it is observed that as permeability increases the tangential 

velocity profile increases. Figure 7 shows the effect of 𝑘2 on 

temperature profiles. It is observed that when permeability 

increases the temperature profiles decreases. Increasing Darcy 

number (enhancing permeability) 𝑘2 of the porous medium 

along tangential direction permits greater flow of the fluid in 

the radial direction. Therefore, it accelerates the radial velocity 

and decelerates the tangential velocity and decreases fluid 

temperature. 

Figure 8 illustrates the effect of 𝑅1 on radial velocity.  

It is seen that when 𝑅1 increases, the radial velocity increases 

initially and when  𝜂 =0.3 onwards the radial velocity de-

creases. The effect of 𝑅1on tangential velocity is observed in 

Figure 9. It is observed that as 𝑅1 increases the tangential 

velocity profile decreases. Figure 10 shows the effect of 𝑅1 on 

temperature profiles. It is observed that when 𝑅1 increases the 

temperature profiles decreases. Increasing stretchable para-

meter 𝑅1 at η=0 opposes the disk angular velocity and in-

fluences the adjacent fluid. Therefore, radical velocity is in-

creased near the disk at η=0 and reversed at litter far to that 

disk.  

The effect of 𝑅2 on radial velocity is shown in Figure 

11. It is observed that when 𝑅2 increases radial velocity 

decreases and from 𝜂=0.7 the radial velocity increases. Figure 

12 shows the effect of 𝑅2 on tangential velocity. It is observed 

that when 𝑅2 increases the tangential velocity increases. The 

effect of 𝑅2 on temperature profile seen in Figure 13. It shows 

that   as    𝑅2  increases   the   temperature   profiles    increases. 

Increasing stretchable parameter 𝑅2 at η=1 opposes the disk 

angular velocity and influences the adjacent fluid. Therefore, 

radical velocity increases near the disk at η=1 and is reversed 

from η=0 to a certain point. 

 

 

 
 

Figure 3. Effect of K1 on g 

 

 
 

Figure 4. Effect of K1 on temperature profiles 
 

 
 

Figure 5. Effect of K2 on f   
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Figure 6. Effect of K2on g 
 

 
 

 

Figure 7. Effect of K2 on temperature profiles 
 

 
 

Figure 8. Effect of R1 on f   

 
 

Figure 9. Effect of R1 on g 
 

 
 

Figure 10.   Effect of R1 on temperature profiles 
 

 
 

Figure 11.   Effect of R2 on f   
 

 
 

 

Figure 12.   Effect of R2 on g 
 

 
 

Figure 13.   Effect of R2 on temperature profiles 
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Table 2 shows the impact of Darcy numbers 𝑘1, 𝑘2, 

rotation parameter Ω, and scaled stretching parameters  𝑅1,  𝑅2  

on skin friction coefficient at lower disk 𝜏1 and upper disk 𝜏2. 

It is observed that the skin friction coefficient at lower and 

upper disks decreases with the increasing values of 𝑘1. When 

𝑘2 increases the values of 𝜏1 and 𝜏2 decrease. The skin friction 

coefficient at lower and upper disks decreases when the values 

of Ω increase. When 𝑅1 increases the values of 𝜏1 and 𝜏2 

increase. It is observed that when 𝑅2values increase then  𝜏1 

and  𝜏2 increase. 

 
Table 2. Skin friction coefficient values at lower and upper disks 

Re=10, Pr=6.23. 

 

K1 K2 Ω R1 R2 1  2  
       

0.1 0.5 0.5 0.7 0.7 5.00554926 4.86136052 

0.3     4.59254700 4.43481529 

0.5     4.50589128 4.34498479 
 0.1    5.29967341 4.53883830 

 0.3    4.62983393 4.35847810 

 0.5    4.50589128 4.34498479 
  0.2   4.56962298 4.36560446 

  0.4   4.52594584 4.34616141 

  0.8   4.45305449 4.37562491 
  0.5 0.2  2.51467800 3.37922242 

   0.4  3.28884477 3.76598075 

   0.7  4.50589128 4.34498479 
    0.2 3.58891528 2.20955789 

    0.4 3.95334681 3.06299775 

    0.6 4.32108445 3.91742165 
       

 

From table 3 we observe that when 𝑘1 increases the 

Nusselt number at the lower disk 𝑁𝑢1 increases and the Nusselt 

number at the upper disk 𝑁𝑢2 increases. With the increase of  

𝑘2, the Nusselt number at lower and upper disk increases. It 

also shows that the Nusselt number values at the lower disk 

decease and at the upper disk increase with the increase in the 

values of Ω. With the increased values of  𝑅1 the Nusselt num-

ber values at the lower disk increase and at the upper disk 

decrease and with increased values 𝑅2 the values of 𝜏1 de-

creases and  𝜏2 increase. 

 
Table-3. Nusselt number values at lower and upper disks. 

 

K1 K2 Ω R1 R2 Nu1 Nu2 

       

0.1 0.5 0.5 0.7 0.7 2.70517290 2.68136146 
0.3     2.77295464 2.74507443 

0.5     2.78744100 2.75858604 

 0.1    2.78213929 2.76423857 
 0.3    2.78614873 2.76002346 

 0.5    2.78744100 2.75858604 

  0.2   2.79150773 2.75457320 
  0.4   2.78917483 2.75685730 

  0.8   2.77997129 2.76612070 

  0.5 0.2  0.04037686 6.03335654 
   0.4  0.27202104 5.45796464 

   0.7  2.78744100 2.75858604 

    0.2 6.03965425 0.03958594 
    0.4 5.47019476 0.26701219 

    0.6 3.98882854 1.44860677 
       

 

 

5. Conclusions  
 

Heat transfer flow of viscous incompressible fluid 

between two parallel rotating disks with different angular 

velocity in an anisotropic porous medium has been investi-

gated. Non-dimensionalized governing equations are solved 

numerically and the results are presented graphically on 

velocity (tangential and radial) and temperature profiles and 

table values are reported on skin friction and Nusselt number 

over two stretchable disks. The conclusions of the results are: 

with increasing Darcy numbers along x and θ – direction (k1 

and k2) radial and tangential velocity profiles are increased and 

temperature profiles results show opposite behavior between 

the two stretchable disks. Increasing stretchable parameters (R1 

and R2) results in velocity and temperature profiles with 

opposite behavior. The authors intend to extend this study with 

different boundary conditions and under thermal stratification. 
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