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Abstract 

 

This paper is an extension to a recent paper by Rujivan (2016), in which we derive a closed-form formula for the 

conditional expectation of the valuation process, defined by  

 

 

   
 

, :
  

  

T s

t t

Tr s ds r u du

t T T s

t

V e f v h v e ds  

 

for 0 ,t T   where 
tv  is assumed to follow the extended Cox-Ingersoll-Ross process, for   1f v v  and   2h v v  for any 

1 2,  R , and any integrable function r .  Our newly-derived formula can be used to price a contingent claim  , ,f r h  in which 

 ,tf v   ,r t  and  th v  for  0,t T  represent, respectively, a terminal payoff, an interest rate process, and a payoff rate process. 

 

Keywords: extended CIR process, conditional expectation, closed-form formula 

 

 

1. Introduction 

 

The Cox-Ingersoll-Ross (CIR) process has form of  
 

     t t t tdv v dt v dW   (1.1) 

 

where 
tv  is an instantaneous variance, , ,  and   are 

parameters, and 
tW  is a standard Brownian motion under a 

 

probability space  , ,F P  with a filtration  
0
.t t

F


 A general 

class of the CIR process is that of the class of the extended Cox-

Ingersoll-Ross (ECIR) process,  

 

      t t t tdv t t v dt t v dW       (1.2) 

 

where all of the parameters are set to be smooth and bounded 

time-dependent parameter functions, i.e.,  , t   , t  and 

 .t  Although the CIR process is the most common model 

used to describe the dynamics of the instantaneous variance or 
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interest rates in the Heston model of stochastic volatility or in 

stochastic interest rate models (Lech & Oosterlee, 2011), there 

is much empirical evidence supporting the theory that the data 

generating process governing the dynamics of many eco-

nomics variables might vary over time, because of economic 

climate changes or time effects. In that case, the ECIR process 

is more suitable for describing the data than the corresponding 

CIR process, because the ECIR process uses time-dependent 

parameter functions to present possible time varying expected 

trends and volatilities of the market and the economy. Very 

recently, many researchers in commodity markets such as 

Schneider and Tavin (2015), and Arismendi, Back, Pro-

kopczuk, Paschke, and Rudolf (2016), described seasonal 

stochastic volatility by using the ECIR process in which  t  

represents the long-term mean variance level of commodity 

prices, which is assumed to be a function of time. 

 In the context of option pricing when the underlying 

process is assumed to follow the ECIR process (1.2), we define 

the valuation process of a contingent claim  , ,f r h  by 

 

   
 

, :
  

  

T s

t t

Tr s ds r u du

t T T s

t

V e f v h v e ds   (1.3) 

 

for real-valued functions ,f r  and .h  In this context, the pro-

cesses  ,tf v   ,r t  and  th v  for  0,t T  represent, res-

pectively, a terminal payoff, an interest rate process, and a 

payoff rate process. According to the theorem for option pricing 

proposed by Karatzas and Shreve (1991) (see page 378), the 

fair price of the contingent claim  , ,f r h  at a cur-rent time t  

is the conditional expectation of the evaluation process (1.3) 

with respect to the risk-neutral probability measure P  and 

current    field ,tF  such as  

 

, ,| |       
p P

t T t t T tE V F E V v v   (1.4) 

 

 

for  0,t T  and 0,v   where we denote by  | ,p

tE X F  the con-

ditional expectation of a random variable X  with respect to the 

probability measure P  and    field .tF   

 Next, we define  

 

( )

, :

T

t
r s ds

t TX e
   (1.5) 

 
( )

, :
 

s

t
T r u du

t T s
t

Y h v e ds   (1.6) 

 

for  0, .t T  Hence, the valuation process (1.3) can be 

expressed as  

 

 , , ,t T t T T t TV X f v Y    (1.7) 

 

and the conditional expectation (1.4) can be explicitly written 

in terms of a triple integral as 

 

    , | , , , | ,        
Y X V

p

t T t vxy
D D D

E V v v x f v y p v x y t v t dvdxdy  

 (1.8) 

for  0T t     where  , , , | ,vxyp v x y t v t  denotes the joint-

transition density of the processes 
,, ,t t Tv X  and 

,t TY  defined on 

the domains , ,  V XD DR R  and ,YD R  res-

pectively. 

In terms of computation, various analytical or nu-

merical methods can be employed to obtain exact or numeri-cal 

solutions for the triple integral on the RHS of (1.8) providing 

that the joint-transition density 
vxyp  is available in closed-form.  

However, to derive 
vxyp  in closed-form, we need to solve the 

forward Kolmogorov equation, associated with the processes 

,, ,t t Tv X  and 
,t TY  (Karatzas & Shreve, 19 91) and this is a 

difficult and complicated task in general for arbitrary real-

valued functions ,f  ,h  and r .  

In some special cases, the conditional expectation 

(1.4) has a closed-form formula. For example, Dufresne (2001) 

proposed a closed-form formula for the case  f v v  for any 

2

2







 and 0h r   in which 
tv  is assumed to fol-low the 

CIR process (1.1). Recently, Rujivan (2016) extended 

Dufresne’s (2001) work to the ECIR processes (1.2) for any 

. R   

 

In this study, we adopt the analytical approach 

presented by Rujivan (2016) to derive a closed-form formula 

for the conditional expectation (1.4) for   1f v v  and 

  2h v v  for any 
1 2,  R , and any integrable function r . 

Very interestingly, the derivation of our approach has 
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completely avoided the utilization of the joint-transition den-

sity .vxyp  

There are two major contributions of this paper. First, 

our closed-form formula produces the exact value of the 

conditional expectation (1.4) without employing numerical 

integration or Monte-Carlo (MC) simulations. Clearly, this can 

substantially reduce the computational burden as shown in 

Rujivan (2016), which is a major drawback of numerical in-

tegration and MC method. Second, our closed-form formula 

has a simple form, which can be easily used by practitioners. 

With these contributions, our closed-form formula should be 

valuable in both theoretical and practical senses. 

The following two assumptions proposed by Magh-

soodi (1996) are needed, in order to ensure that the stochastic 

differential equation (SDE) (1.2) has a pathwise unique strong 

solution, in which 
tv  avoids zero a.s. P  for all  0, .t T   

 

Assumption 1 The parameter functions  , t   , t  and  t  

are strictly positive and continuous on  0,T  such that the 

dimension of the ECIR process (1.2), defined by 

 
   
 2

4
: ,

t t
t

t

 





 is bounded. 

 

 Assumption  2 The inequality   2t   holds for all  0, .t T   

 

2. Main Results 

 

Suppose 
tv  follows the ECIR process (1.2) and As-

sumptions 1-2 hold. We denote 

 

  ,, : |p

E t T tU v E V v v    
  (2.1) 

 

for 0v   and 0.T t     On the other hand, if 
tv  follows the 

CIR process (1.1), we write   ,CU v  instead of  ,EU v  . 

 

Theorem 2.1. Suppose that f  and h  can be written as 

  1f v v  and   2h v v  for any 
1 2,  R , and r  is integra-

ble on  0, .T  Then, the conditional expectation (1.4) can be 

expressed as 

 
 

   
 

1 2

2
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 


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



       
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 
T s

t t

T
r s ds r u du k

E E k

k t

U v e U v A s t e ds v
 

 (2.2) 

 

for 0v   and 0T t     where the functions    ,EU v


  and 

 , 0,1,...,kA s t k     for any  R  are given by  

 

       
0

, k

E k

k

U v A v A v
  
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







    (2.3) 

 
 

0
T s ds

A e


 

 
    (2.4) 

 

 
       

   0 0

1 1
0

 
     

     
    

    

  
k T s ds k T dk

k k kA v e e P T A d  

 (2.5) 

 

           2

1

1
1

2
kP k k          

 
     

 

  (2.6) 

 

for 1,2,....k  In particular, if 
1 1m   and 

2 2m   are non-

negative integers, then 

 

 
       

 2

1

0

, , 
 



       
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 
T s

t t

Tm
r s ds r u dum j

E E j

j t

U v e U v A s t e ds v  

 (2.7) 

for 0v   and 0,T t    where the functions     ,
n

EU v  and 

 , 0,1,..., ,jA s t j n   for any non-negative integer n are given 

by 

 

       
1

0

,  




 
n

n n j

E n j

j

U v A v A v   (2.8) 

 
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0
n T s ds

nA e





    (2.9) 

 

 
   

   0 0

1 1
0

j T s ds j T d

j j jA e e P T A d

 
   

   
  

 

     (2.10) 

 

where 
         2

1

1
1

2
jP j j      

 
   

 

 for 1,...,0.j n    

 

Proof.  From (1.3)–(1.4), we have 

 

 
 
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Tr s ds r u duP

E T s t
t

U v E e f v h v e ds v v
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 
   

 
| |

              
 


T s

t t

T
r s ds r u duP P

T t s t

t

e E f v v v E h v v v e ds
 

   
1 2| | .               

 


T s

t t

T
r s ds r u duP P

T t s t

t

e E v v v E v v v e ds                  (2.11) 

 

Using the closed-form formula (2.2) written in Theorem 2.1 by Rujivan (2016) to compute the th i
 conditional moments on the 

RHS of (2.11) for 1,2,i   we thus obtain  

 

   
1

|
  

  








   
  

i
i i

i i

kP

s t k

k

E v v v A v A v   (2.12) 

 

For  , .s t T  Inserting (2.12) into the RHS of (2.11) yields (2.12). 

 On the other hand, when 
1 1m   and 

2 2m   are non-negative integers, we adopt the closed-form formula (2.13) written 

in Theorem 2.2. by Rujivan (2016) to obtain 

 

   
1

0

|
i

mi
i

i

m
mP j

s t m j

j

E v v v A v A v 



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     (2.13) 

 

for 1,2,i  and  , .s t T  Inserting (2.13) into the RHS of (2.11) yields (2.7).                                  

 

 The following corollary can readily be deduced from Theorem 2.1. 

 

Corollary 2.1. Suppose f  and h  can be written as  
0

fn

k

k

k

f v a v



 and  

0

hn
k

k

k

h v b v



 for 0v   and for some sequences of real 

numbers  0 ,...,
fna a and  0 ,...,

hnb b  in which 
fna  and 

hnb are not zero and r  is integrable on  0, .T  Then, the conditional expectation 

(1.4) can be expressed as  

 

 
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1

1 2

1 20 0 0

, , 
 

  

       
   

   
T sf h

t t

n Tn m
r s ds r u dum j

E m E m j

m m j t

U v e a U v b A s t e ds v    (2.14) 

 

for 0v   and 0,T t     where the functions    ,
n

EU v  and   , 0,1,..., , jA s t j n  for any non-negative integer n  are given 

in (2.8)-(2.10), respectively. 

 

Proof. From (0.3)-(0.4), we have 

 

 
   

1 2

1 2

1 20 0

, | | .

T sf h

t t

n n
Tr s ds r u dum mP P

E m T t m s t
t

m m

U v e a E v v v b E v v v e ds
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 

             
 

                           (2.15) 

 

Applying (2.13) to the conditional expectations on the RHS of (2.15) yields (2.14)          

 The integral terms on the RHS of (2.2) and (2.7) can be worked out when tv  follows the CIR process (1.1), as shown in 

the following Theorem. 
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Theorem 2.2. According to Theorem 2.1., if 
tv  follows the CIR process (1.1) and 

0r r  is  a constant then 

   
   

 

  

 

0 20 1
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( )
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11 1 1
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! ! !
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   

     
 

 

         
                   
 

k k i r ir k
k k

C k k k
k i

e e e
U v c v c v

k k i i r i
      (2.14) 

 

for 0v   and 0,T t    where we define  

 

 
0 1c

  and       2

1

1
1

2

k

k

l
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

 
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 
  for 1,2,...k   and  R  

 

In particular, if 
1 1m   and 

2 2m   are non-negative integers then  
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
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        


 

     
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 
                          (2.17) 

 

 for 0v   and 0,T t     where for any non-negative integer ,N  we define 

 

  0
N

jd   for  , 1
N

Nj N d   and       2

1

1
1

2

N j
N

j

l

d N l N l  




 
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 
  for .j N  

 

Proof.  When tv  follows the CIR process (1.1), the function on the LHS of (2.2) can be written as 

 

          1 00 2

2

0

, ,
T r s tr k

C C k
t

k

U v e U v A s t e ds v
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
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



                                                                                                             (2.18) 

 

where    1 ,CU v


  can be obtained using the closed-form formula (2.18) written in Theorem 2.3. by Rujivan (2016)  with 
1    as  

     
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1 1 1
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, .

!

k

C k

k

e e
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



   
   

   
                                                       (2.19) 

 

Therefore, we now obtain the first term on the RHS of (2.18). Next, we apply the binomial expansion to the term  1
k

ue   in order 

to compute the integral terms on the RHS of (2.18) as follows. For any 0,1,...,k    
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  
  

    
                                                                                     (2.20)                             

By analogy with the proof for obtaining (2.20) and (2.16), but using the closed-form formula (2.25) written Theorem 2.4. by 

Rujivan (2016), the closed-form formula (2.17) can be derived in a similar fashion.                                                                                   
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3. Conclusions 

 

This paper has proposed closed-form formulas for the 

conditional expectation of the valuation process, defined by 

 
   

 

, :
    

T s

s u
t t

Tr v ds r v du

t T T s
t

V e f v h v e ds  for 0 ,t T   

where 
tv  is assumed to follow the CIR process (1.1) and ex-

tended CIR process (1.2), for   1f v v  and   2h v v  for any 

1 2,  R , and any integrable function r . Moreover, we have 

provided a closed-form formula for the conditional expectation 

of 
,t T

V  when f  and h  are polynomial functions. Clearly, our 

results will be very useful to obtain a closed-form 

approximation for the conditional expectation of  
,t T

V  when f  

and h  can be approximated by series of polynomial func-tions, 

which will be left to future research with results shown in a 

forthcoming paper. 
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