
 

 

*Corresponding author 

  Email address: fsciwnb@ku.ac.th 

Songklanakarin J. Sci. Technol. 

42 (1), 152-162, Jan. - Feb. 2020 
 

 

 

Original Article 
 

 

The new Poisson mixed weighted Lindley distribution  

with applications to insurance claims data 
 

Yupapin Atikankul, Ampai Thongteeraparp, and Winai Bodhisuwan* 

 
Department of Statistics, Faculty of Science,  

Kasetsart University, Chatuchak, Bangkok, 10900 Thailand 

 
Received: 8 June 2017; Revised: 6 October 2018; Accepted: 17 October 2018 

 

 

Abstract 
 
Mixed Poisson distributions have been applied for overdispersed count data analysis. In this paper, an alternative mixed 

Poisson distribution is proposed. The proposed distribution is derived by mixing the Poisson distribution with the new weighted 

Lindley distribution, named as the new Poisson mixed weighted Lindley distribution. Some special cases and several statistical 

properties have been derived including shape, factorial moments, probability generating function, moment generating function 

and moments. The maximum likelihood estimators of the parameters are obtained. Finally, two automobile insurance claims data 

sets are analyzed to compare the performance of the proposed distribution with some competitive distributions. 

 

Keywords: count data, overdispersion, new weighted Lindley distribution, mixed Poisson distribution, maximum likelihood  

                      estimation 

 

 

1. Introduction 
 

Count data models are utilized in various fields such 

as public health, insurance, and agriculture. Some applications 

of count data have been studied, for example, the daily 

number of seizures of patients with epilepsy (Albert, 1991), 

the number of automobile insurance claims in Germany 

(Tröbliger, 1961), and the number of roots of types of apple 

rootstock (Ridout, Demétrio, & Hinde, 1998). The Poisson 

distribution is a classic distribution for describing count data 

with the property of equality of variance and mean, i.e. 

equidispersion. Unfortunately, in practical count data, the 

variance is usually larger than the mean which is referred to as 

overdispersion, and rarely, the variance may be smaller than 

the mean which is referred to as underdispersion. The Poisson 

distribution cannot be applied to account for these pheno-

mena. 

Overdispersion occurs in almost all count data. An 

approach that is widely applied to deal with overdispersed 

count data is mixed Poisson distributions (Grandell, 1997; 

Gupta & Ong, 2005; Karlis & Xekalaki, 2005;). The best

 
known distribution of the Poisson type is the negative 

binomial distribution (Greenwood & Yule, 1920) which arises 

from a mixture of Poisson and gamma distributions.  

The Lindley distribution (Lindley, 1958) arises from 

mixing the exponential distribution with the gamma 

distribution. Ghitany, Atieh, and Nadarajah (2008) applied the 

Lindley distribution to a data set of waiting times for bank 

customers. The result showed that the Lindley distribution 

provided a better fit than the exponential distribution. Thus in 

various papers, the Lindley distribution and some of its 

modifications have been studied and developed as mixing 

distributions for a mixed Poisson distribution. Sankaran 

(1970) proposed the discrete Poisson-Lindley (PL) distri-

bution, which arises from the Poisson distribution and the 

Lindley mixing distribution (Lindley, 1958). Mahmoudi and 

Zakerzadeh (2010) introduced a mixture of the Poisson and 

generalized Lindley distributions (Zakerzadeh & Dolati, 

2009). Shanker, Sharma, and Shanker (2012) proposed a 

mixed Poisson distribution with the two-parameter Lindley 

mixing distribution (Shanker, Sharma, & Shanker, 2013). 

Shanker and Mishra (2014) introduced the two-parameter 

Lindley distribution (Shanker & Mishra, 2013) as a mixing 

distribution. In the same year, the Poisson-weighted Lindley 

(PWL) distribution was proposed by El-Monsef and Sohsah 

(2014) and Manesh, Hamzah, and Zamani (2014). Wongrin 
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and Bodhisuwan (2016) proposed a mixture of the Poisson 

and new generalized Lindley distributions (Elbatal, Merovci, 

& Elgarhy, 2013).  

The new weighted Lindley (NWL) distribution was 

proposed by Asgharzadeh, Bakouch, Nadarajah, and Sharafi 

(2016). The NWL distribution is obtained by mixing the 

weighted exponential distribution (Gupta & Kundu, 2009) 

with the weighted gamma distribution. The probability density 

function (pdf) is 
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for 0,0  x  and 0 . 

 

The Lindley and weighted Lindley distributions are 

special cases of the NWL distribution. The pdf is log-concave 

and unimodal. A data set of the amount of carbon in leaves 

from the different mountainous areas of Navarra, Spain was 

modeled with the NWL distribution. The result showed that 

the NWL distribution is a better fit than the compared 

distributions.  

In this paper, the new Poisson mixed weighted 

Lindley (NPWL) distribution is proposed which is a mixture 

of the Poisson and the NWL distributions. The rest of this 

paper is arranged as follows. In Section 2, the NPWL 

distribution is introduced. Some important statistical proper-

ties such as shape, factorial moments, probability generating 

function, moment generating function and moments are 

exhibited in Section 3. In Section 4, the steps for random 

variate generation are presented. In Section 5, the maximum 

likelihood estimators of the parameters are discussed. In 

Section 6, the NPWL distribution is applied to some 

automobile insurance claims data sets. The conclusions are 

presented in Section 7. 

 

2. The New Poisson Mixed Weighted Lindley Distribution 
 

The proposed distribution is a mixture of the Poisson distribution and the NWL distribution (Asgharzadeh, Bakouch, 

Nadarajah, & Sharafi, 2016). Moreover; some special cases, the distribution function and the survival function of the proposed 

distribution are shown in this section.  

 

Let |X  be a Poisson random variable with probability mass function (pmf) 
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for ,2,1,0x  and 0 , written as ~| X Pois )( . Now we assume that   is distributed as the NWL distribution with 

pdf 
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for 0 , 0 and 0 , written as ~λ NWL ),( αθ ; then the unconditional discrete random variable X follows the NPWL 

distribution. 

 

Proposition 1. A discrete random variable X is distributed as the NPWL distribution with parameters θ  and , denoted as 

~X NPWL ),( αθ , the pmf of X is 
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for ,2,1,0x , where 0  
and 0 . 

 

Proof. Let ~| λX Pois )(λ and ~λ NWL ),( αθ , the pmf of X is derived as the following 
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ID = 10.735, skewness = 1.165,  

kurtosis = 5.034 
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ID = 2.039, skewness = 1.33,  

kurtosis = 5.517 
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ID = 5.932, skewness = 1.177,  

kurtosis = 5.064 
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ID = 1.95, skewness = 1.48,  
kurtosis = 6.193 

(e) 

ID = 1.527, skewness = 1.512,  
kurtosis = 6.122 

(f) 

ID = 2.102, skewness = 1.744,  
kurtosis = 7.347 

 
Figure 1. Some probability mass function plots of the NPWL distribution with different values of θ and α.. 

 

Special cases 

)(i  If α , the NPWL distribution becomes the PL distribution (Sankaran, 1970). 

)(ii If 0α , the NPWL distribution becomes the PWL distribution (El-Monsef & Sohsah, 2014; Manesh, Hamzah, 

& Zamani, 2014) with c = 2. 

The cumulative distribution and survival functions of the NPWL distribution are given by 
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Pochhammer’s symbol (Johnson, Kemp, & Kotz, 2005).  

 

3. Properties 
 

This section presents some statistical properties such as shape, factorial moments, probability generating function, 

moment generating function and moments of the NPWL (θ, α) distribution. 

 

3.1 Shape 
 

Holgate’s theorem states that if )(λg is the pdf of mixing distribution, which is unimodal and absolutely continuous 

distribution, then the pmf of the mixed Poisson distribution is unimodal (Holgate, 1970). According to this theorem, the pmf of 

NPWL distribution is unimodal because the pdf of NWL distribution is unimodal (Asgharzadeh, Bakouch, Nadarajah, & Sharafi, 

2016).  

The NPWL distribution is log-concave 
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& Kotz, 2005). 

 

3.2 Factorial moments 
 

Proposition 2. Let ~X  NPWL ),( αθ , then the factorial moments of  X are  
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Proof. The kth factorial moment of mixed Poisson distribution can be written in the form  
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3.3 Probability generating function 
 

Proposition 3. Let ~X  NPWL ),( αθ , then the probability generating function (pgf) of X is  
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Proof. The pgf of mixed Poisson distribution can be defined as  
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3.4 Moment generating function 
 

Proposition 4. Let ~X  NPWL ),( αθ , then the moment generating function (mgf) of X is 
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The mgf is obtained trivially from the pgf as )(tM X
= (e )tG .  

 

3.5 Moments 
 

The kth raw moment is obtained by taking the kth derivative of mgf with respect to t and setting t to zero. 
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The central moments of X can be written in term of raw moments as  
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The skewness, kurtosis, and index of dispersion (ID) of ~X  NPWL ),( αθ are  
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The mean, ID, skewness and kurtosis plots of the NPWL distribution are shown in Figure 2 which illustrates that the 

mean decreases as θ and α increase. For fixed θ, as α increases, the ID increases but the ID decreases as θ increases for a fixed α. 

Moreover, we can see that the ID is greater than one, thus the NPWL distribution is overdispersed, while the skewness and 

kurtosis increase as θ and α increase. 

 

 
 

Figure 2. Mean, ID, and skewness and kurtosis plots of the NPWL distribution. 
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4. Random Variate Generation 
 

In this section, a NPWL random variate generation is indicated. Let ~X  Pois )(λ and ~ NWL ),( αθ , then random 

variables from the NPWL ),( αθ  distribution can be generated by the following algorithm. 

1. Generate 
i  using the rnwlindley function in the LindleyR package (Mazucheli, Fernandes, & de Oliveira, 2016) in 

the R programming language (R Core Team, 2018). 

2. Generate 
iX  from Pois )( i , i = 1, 2, , n. 

 

5. Parameter Estimation 
 

In this section, the parameter estimates of the NPWL distribution are obtained using maximum likelihood. 

Let 
nXXX ,,, 21   be independent and identically distributed as NPWL distribution with Θ = Tαθ ),( , the parameter 

vector. Then the likelihood function from (3) is  
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The associated log-likelihood function can be expressed as: 
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The score functions are found to be 
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The score functions are set equal to zero in order to obtain the parameter estimates of the NPWL distribution. Although 

these equations are non-linear, the maximum likelihood estimates can be solved by the numerical methods. In this paper, the 

method of moment estimators are given as the initial values for the BFGS method in the optimx function of the optimx package 

(Nash & Varadhan, 2011) in the R programming language (R Core Team, 2018).  
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6. Applications 
 

We consider the application of the NPWL distribution to two automobile insurance claim data sets. These data sets are 

overdispersed count data with excess zeros. The competitive distributions are as follows: 

 

)(i The Poisson distribution (Poisson, 1837), with pmf 

 

)(xf   =  
!x

e x
,    > 0 

 

)(ii The PL distribution (Sankaran, 1970), with pmf 
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3

2

)1(

)2(
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x

x


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)(iii The PWL distribution (El-Monsef & Sohsah, 2014; Manesh, Hamzah, & Zamani, 2014), with pmf 
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c cx
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The mixed Poisson distributions have proportions of 

zeros higher than the Poisson distribution. Thus, they have 

been applied to overdispersed and zero-inflated data. Puig 

(2006) proposed the zero-inflation index (zi), which is a 

measure to detect zero inflation. If X is a non-negative integer 

random variable with mean and proportion of zeros are   and 

p0, respectively. The zi is 

 

)(Xzi  
= 



)log(
1 0p
 .                                          (5) 

 

If X is a Poisson random variable, the zi is equal to 0 

but if X is zero-inflated, then the zi is greater than 0. Figure 3 

shows the zi versus the index of dispersion for the PL, PWL, 

and NPWL distributions. The zi values of the three 

distributions are similar. That is, the zi increases as the index 

of dispersion increases. 
 

 
 

Figure 3. Zero-inflation index versus index of dispersion. 

 

In this paper, the distribution with minimum the 

Akaike Information Criterion (AIC), the Bayesian Information 

Criterion (BIC), the negative log-likelihood (-LL), and the 

maximum P-value based on the Anderson-Darling (AD) 

goodness of fit test for a discrete distribution (Choulakian, 

Lockhart, & Stephens, 1994) is recommended as the most 

appropriate distribution for fitting overdispersed count data. 

Moreover, the likelihood ratio (LR) test is employed to 

compare special cases of the NPWL distribution. 
 

Application 1. Lemaire (1985) presented the number of 

claims from third-party automobile liability in Belgium. This 

data set is overdispersed with a mean of 0.101, variance of 

0.107, ID of 1.063 and the zi of 0.029.  

Table 1 illustrates that the P-values based on the AD 

test for the PL and Poisson distributions are less than the 5% 

significance level; hence, this data set cannot be described by 

the PL and Poisson distributions. The means of all 

distributions are equal to the mean of the data set but the 

variance, ID and zi of the PWL and NPWL distributions are 

nearest the variance, ID and zi of the data set. However, the 

NPWL distribution provides the lowest -LL, AIC, BIC, and 

the highest P-value based on the AD test for a discrete 

distribution.  

The LR statistic for testing H0 : PWL vs. H1 : NPWL 

is 0.36 with a P-value 0.549. Thus, there is no statistically 

significant difference between the PWL and NPWL distri-

butions.     

 

Application 2. Tröbliger (1961) as cited in Klugman, Panjer 

and Willmot (2012) presented the count of motor vehicle 

insurance claims per policy in Germany during 1960. It had a 

mean of 0.144, variance of 0.164, ID of 1.136 and the zi of 

0.058; therefore, this data set is overdispersed.  

Table 2 shows that the Poisson distribution also 

cannot describe this data set because its P-value based on the 

AD test for a discrete distribution is less than the 5% 

significance level. The mean of all distributions are also equal 

to the mean of the data set. The variance and ID of the PL 

distribution and the data set are equal but the zi of the PWL 

distribution is closest the zi of the data set. The NPWL 
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Table 1. Distribution of number of claims from third-party automobile liability in Belgium. 
 

Number of claims Observed frequencies 
Expected frequencies 

Poisson PL PWL NPWL 

      

0 
1 

2 

3 
4 

5 

96978 
9240 

704 

43 
9 

0 

96689.53 
9773.440 

493.953 

16.643 
0.421 

0.009 

97147.15 
8928.854 

816.306 

74.286 
6.733 

0.608 

96980.98 
9230.643 

708.754 

50.019 
3.372 

0.221 

96981.22 
9231.137 

706.911 

50.884 
3.583 

0.250 

Estimated parameters 
 

Mean 

Variance 
ID 

zi 

̂ = 0.101 

 

0.101 

0.101 
1 

0 

̂ = 10.73 

 

0.101 
0.111 

1.098 

0.046 

ĉ = 1.62 

̂ = 16.89 

0.101 

0.107 

1.061 
0.029 

̂ = 14.10 

̂ =1.835 

0.101 

0.107 

1.061 
0.029 

-LL 

AIC 
BIC 

36188.25 

72378.51 
72388.09 

10.301 
<0.01 

36122.53 

72247.06 
72256.64 

36104.11 

72212.22 
72231.38 

36103.93 

72211.85 
72231.01 

AD statistic 

P-value 

2.667 

0.022 

0.005 

0.991 

0.005 

0.992 
     

 

Abbreviations: PL, Poisson-Lindley; PWL, Poisson-weighted Lindley; NPWL, new Poisson mixed weighted Lindley; ID, index of dispersion; zi, 

zero-inflation index; -LL, negative log-likelihood; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; AD, Anderson-
Darling. 

 
Table 2. Distribution of number of automobile insurance claims in Germany 1960.  

 

Number of claims Observed frequencies 

Expected frequencies 

Poisson PL PWL NPWL 

      

0 

1 
2 

3 
4 

5 

6 
7 

20592 

2651 
297 

41 
7 

0 

1 
0 

20420.94 

2945.103 
212.371 

10.209 
0.368 

0.011 

0 
0 

20612.13 

2604.386 
326.210 

40.562 
5.013  

0.616 

0.075 
0.009 

20596.48 

2631.839 
318.143 

37.588 
4.380 

 0.505 

0.058 
0.007 

20593.11 

2637.904 
315.640 

37.367 
4.397  

0.515 

0.060 
0 

Estimated parameters 

 
Mean 

Variance 

ID 
zi 

̂ = 0.144 

 

0.144 
0.144 

1.00 

0 

̂ = 7.728 

 

0.144 

0.164 
1.136 

0.063 

ĉ = 1.103 

̂ = 8.453 

0.144 
0.162 

1.123 

0.057 

̂ = 8.145 

̂ =14.24 

0.144 
0.161 

1.121 

0.056 

-LL 

AIC 

BIC 

10297.84 

20597.69 

20605.75 
10.565 

<0.01 

10223.88 

20449.76 

20457.82 

10223.49 

20450.97 

20467.11 

10223.28 

20450.56 

20466.69 

AD statistic 
P-value 

0.198 
0.618 

0.051 
0.883 

0.035 
0.922 

 

 

Abbreviations: PL, Poisson-Lindley; PWL, Poisson-weighted Lindley; NPWL, new Poisson mixed weighted Lindley ID, index of dispersion; zi, 
zero-inflation index; -LL, negative log-likelihood; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; AD, Anderson-

Darling. 

 

distribution also provides the lowest -LL and the highest P-

value based on the AD test for a discrete distribution but the 

PL distribution provides the lowest AIC and BIC. However, 

the number of parameters of the PL distribution is less than 

the NPWL distribution.  

In order to test H0 : PL vs H1 : NPWL, the LR 

statistic is 1.2 with a P-value 0.273. Hence, there is no sta-

tistically significant difference between the PL and NPWL 

distributions. The LR statistic for testing H0 : PWL vs H1 : 

NPWL is 0.42 with a P-value 0.517. There is also no 

statistically significant difference between the PWL and 

NPWL distributions.     

The log expected values of the distributions and the 

log observed values are shown in Figure 4 which shows that 
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the log expected values of the NPWL and PWL distributions 

are close to the observed values in both data sets. However, 

the log expected values of the Poisson distribution are far 

from observed values. Thus, the Poisson distribution cannot 

be applied to describe the overdispersed count data. 
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Figure 4. Log plots of the expected values and the observed values. 

 

7. Conclusions 
 

In this paper, an alternative mixed Poisson dis-

tribution, namely the NPWL distribution, is introduced. The 

NPWL distribution is derived from the Poisson distribution 

where the parameter follows the NWL distribution. The PL 

and PWL distributions are special cases of the NPWL 

distribution. Also, the pmf of NPWL distribution is log-

concave and unimodal. Some statistical properties were 

studied such as shape, factorial moments, probability 

generating function, moment generating function and 

moments. Parameter estimation was derived by the maximum 

likelihood estimation. Moreover, two real overdispersed count 

data sets that were analyzed showed that the NPWL 

distribution provides a satisfactory fit in both data sets. 

Therefore, it is an alternative distribution for modeling 

overdispersed count data. 
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