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Abstract

The purpose of this research is to apply the three-dimensional differential transform method to estimate solutions to the
equation of motion for vibration in a membrane with certain types of boundary conditions. The analytical solutions without
external force or damping under specific initial and boundary conditions are presented. We found by comparison that the
analytical solution and the estimated solution are in good agreement, in case there is no damping or external forces. Furthermore,
the differential transform method can be used to find approximate solutions taking into account both external forces and

damping. This cannot be achieved via an analytical solution.
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1. Introduction

Many researchers have attempted to understand
various phenomena occurring in nature by applying know-
ledge from different fields, such as mechanical engineering,
electrical engineering, industrial engineering, energy, and
medicine. Most of these problems have been studied by
employing some form of mathematical modeling, often with
ordinary differential equations (ODE) or partial differential
equations (PDE). These problems require sufficiently accurate
solutions, either analytical or approximate. The differential
transform method (DTM) is among the most effective
mathematical methods for finding solutions to these
differential equations (Hatami, Ganji, & Sheikholeslami,
2017).

The differential transform method (DTM) is based
on high-order Taylor series expansions. This method is a
powerful tool for solving linear and non-linear ordinary
differential equations (Arikoglu, & Ozkol, 2006; Ayaz, 2004;
Catal, 2008) and for solving two-and three-dimensional partial
differential equations in both linear and non-linear problems.
DTM can be used to solve differential equations subject to
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initial and boundary conditions, having both linear and non-
linear terms, and within an acceptable error range.

The two-dimensional differential transform method
(2D-DTM) has been used to find the solutions of both linear
PDEs (Ayaz, 2003; Chen & Ho, 1999; Othman, & Mahdy,
2010; Yang, Liu, & Bai, 2006) and nonlinear PDEs (Biazar &
Eslami, 2010; Biazar, Eslami, & Islam, 2012; Bildik,
Konuralp, Bek, & Kucukarslan, 2006; Kangalgil & Ayaz,
2009).

Additionally, the three-dimensional differential
transform method (3D-DTM) has been applied to find the
solutions of linear and non-linear PDEs (Bagheri &
Manafianheris, 2012; Saravanan & Magesh, 2013). It is noted
that the differential transform method can be used to solve
multidimensional PDEs, such as the Westervelt equation
(Jafari, Sadeghi, & Biswas, 2012), heat-like and wave-like
equations (Tabaei, Celuk, & Tabaei, 2012), and fuzzy partial
differential equations (Mirzaee & Yari, 2015), as well as
linear and nonlinear systems of PDEs (Ayaz, 2004; Zedan &
AliAlghamdi, 2012).

Many researchers sought to use non-linear PDEs
with various transform methods, as follows. The Fitzhuah
Nangumo (FN) equation is a mathematical model for solving
scientific and engineering problems by using q-HATM and
the fractional reduced differential transform method
(FRDTM), which is based on DTM (Kumar, Singh, &
Baleanu, 2017).
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The numerical solutions to non-linear fractional
dynamical model of interpersonal and romantic relationships
were found by applying g-homotopy analysis via the Sumudu
transform method (q-HASTM) (Singh, Kumar, Qurashi, &
Baleanu, 2017).

Jeffery-Hamel flow with non-parallel walls, which
is represented by a non-linear PDE and occurs in fluid
dynamics and other scientific applications, is solved by using
an efficient hybrid computational technique, the homotopy
analysis transform method (HATM) (Singh, Rashidi, Sushila,
& Kumar, 2017).

The homotopy perturbation Sumudu transform
method (HPSTM) and homotopy analysis Sumuda transform
method (HASTM) are more convenient than the homotopy
perturbation method (HPM) and the homotopy analysis
method (HAM), since they produce a comparative analytical
study for a system of time fractional non-linear differential
equations (Choi, Kumar, Singh, & Swroop, 2016).

Further examples of the application of PDEs by
Laplace transform method to various problem include Case I-
application of drum head vibration solution by separation of
variables, and Case Il and Ill-applications to signal
transmission and to chemical communication in insects. All
three cases have been implemented as simulations in
MATLAB software (Ojwando, 2016).

A modified He-Laplace method (MHLM) is applied
to solve space and time nonlinear fractional differential-
difference equations (NFDDEs) (Prakash, Kothandapan, &
Bharathi, 2016).

In our previous work, we studied the suspended
vibrating string equation using 2D —-DTM. It was found that
DTM can be applied to various problems of the suspended
string equation.

In this current report, we study further the vibration
equation in three dimensions of the motion of a membrane
using the 3D-DTM. The oscillation of a membrane-like plate
is determined by the tension when there is insignificant
resistance to bending. The differential transform method was
applied to find solutions of the motion equation of a
membrane with an external force and a damping term. We
compare the results with an analytical solution. We show in
detail the derivation of the transformed formula in DTM,
which is of the n'" power form (to be shown in theorem 3.6).
The obtained formula helps simplify the use of DTM in
solving non-linear PDEs. It is noted that the formula requires
heavy computation to find complete solutions, mainly due to
the fact that the formula is in a recursive form.

1.1 The equation of motion of a membrane

The equation of motion for the forced transverse
vibration of a membrane, after (Rao, 2011) is as follows:

o*w
_—t— = 2 !
P Y 8y2]+ f(x,y.1) = p(x,y) Fa @

where f(x,y,t)is the pressure acting in the z direction

(external force), P is the intensity of tension at a point, equal
to product of tensile stress and thickness of the membrane,
and p(x,y) is the mass per unit area. We assume that

f(x,y,t)=0, P=1 and p(x,y)=1. Then Equation (1) leads
to:

o'w o*w  o'w
EAC A @

The initial conditions of (2) after (Rao, 2011) are:

Ty

W(x,y,0)=sinﬂ—xsinT, 0<x<a, 0<y<h,
a

%(x,y,O):O, 0<x<a, 0<y<hb,

and we set a=1land b=1. Therefore, the boundary con-
ditions of the equation of motion of a membrane are given by:

w(x,0,t)=0, 0<x<],
w(0,y,t)=0, 0<y<],
w(x,1,t)=0, 0<x<1,
w(l,y,t)=0, 0<y<lteR.

©)

1.2 An analytical solution

The following is the derivation of the analytical
solution to the problem (2). Considering the initial

conditions w(x, y,0) =sinzxsinzy and %(x, y,0)=0, the

boundary conditions are shown in (3). The general solution
can be derived by separation of variables:

w(X,y,t) = X (X)Y (V)T (t), 4)
Subject to the eigenvalue, —@°,a* and £, (2) implies

X" Y _T'O__ .

X Y(y) T
X0 YO _
X(X) Y(y)
and X0 Y L e e
X(X) Y(y)
X
X(x)

then X"(X) +a?X (x) =0,

Y'O) _ o o2
Y(y)

1

assume —a’+a@’ =% Y'(y)+(-a* +@?)Y(y) =0,
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then  Y'(y)+ A% (y)=0,

and

then T"(t) + @°T (t) =0,

X"(X) + X (x) =0, )
Y'(y)+ B (y)=0, (6)
T"(t) + T (t) = 0. )

We obtain a solution of (5) as X (X) =C,cosax+C,sinax,
where C,andC,are arbitrary constants. Subject to the
boundary conditions X (0) =0, C,=0. Then
X(x)=C,sinax full step the boundary condition X (1) =0.
Let C, #0givea =mz;me |, we have that

we have

X, (x)=C,_ sinmzx . (8)

We obtain a solution of (6) as Y(y)=C,cosSx+C,sin gy .
According to boundary conditionsY (0) =0, we have C, =0.
Then the boundary conditions Y (y) =0 .

Letting C, #0 gives S =nz;ne |, then we see that:
Y,(y) =C,sinnzy. ©)

o? =ﬂ2+a2,
@=rm’ +n’.

We obtain a solution of (7) as

From

T =A,,cOs0t + B, sinwt .

Then T, (t)=A, coszym’+n’t+B, sinzym’+n’t. (10)

According to (8), (9) and (10)

Won (X, Y1) = X (Y (Y)T (1),

:(AﬂnCansinmzzxsinnﬁycos” m2+n2t) (11)

+(anCan sinmzxsinnzysin zy/m? + nzt),

where F,,=A,C.C.,H,.

m~n»

=B_C _C_ andforall mynel

mn=m>n

By using superposition of solutions in (11)

w(x,y,t) = zzwmn (xy,1),
m=1n=1

o

:ZZ(anSinmzzxsinnﬁyC‘Js” m2+n2t), (12)

n=1

m=1
+(Hmn sinmzxsinnzysin zm? + nzt).

According to the initial condition w(x,y,0)=sinzxsinzy

and %(x, y,0) =0. By using Fourier series, we have

F =1; m=1 and n=1,

mn

H,,=0mnel

w=\2r.

Substituting F,, =1, H,, =0 and o =+/27 in (12), we
obtain the analytical solution:

w(X, y,t) =sinzxsin ﬂyCOS\/Eﬁt. 13)
In the case of problem (2) with a damping term

o’'w _o'w  o'w ow

oy ot

By similar calculations, we obtain the solution of T, (t)as

1-40°

N
2

—t
T,.(t)=e2(A,,cos t+B,,sin 1. (14)

We can see that on substituting o=\27 to (14), \/1—4502
becomes a complex number. Therefore T (t) are not solvable.

2. Three-Dimensional Differential Transform
Method

The basic definitions and fundamental operations of
differential transform are defined below.

Definition 2.1 The three-dimensional differential transform of
function w(x,y,t) is defined as:

1 ak+h+mW(X’ y:t)

W (k,h,m) =
( ) klhim!  ox*oy"at™

‘(0,0,0)

k>0, h>=0and m=>0.

Definition 2.2 The inverse three-dimensional differential

transform of sequence {W (k,h,m) } is defined as:

©
k,h,m=0

WX, y.0) = 33 S W (K, hm)xyt. (14)

k=0h=0m=0
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3. The Fundamental Operations of Three-Dimensional Differential Transform Method

From Table 1 theorem 3.1-3.5 shown in (Yang, Liu, & Bai, 2006). The following is the derivation of theorem 3.6: If
V(X Y, t) = w (X, Y, 0w, (X, y,t)..w, (XY, t)w, (X, V,t) then,

My

Kn1=0ky p=0hy ;1 =0hy ,=0m, ;=0m, ,=0 k,=0k =0h,=0h=0m,=0m, =0
W1(k1| hlv ml)WZ (kz - klv hz - hl'mz - m1)---
Wn71(kn71 - knle hnf1 - hnsz mnfl - mn—Z)Wn (k - knle h - hnle m-— mn—l)'

ForV:I" >R, W,:I">R;nel’, viR>R, w :R—>Rnel',xeR and k,h,m=0,1,2,3,...

By definition of the three-dimensional differential transform:

k+h+m,
V(khmy=—t | TV
kthim![ - axoy"at™ |0

we obtain v(X,y,t) =w, (X, y,t)w,(X, y,t)..w, (X, y,t)w, (X, y,t)

Table 1.  The fundamental operations of DTM.

The fundamental operations of three-dimensional differential transform method

Original function Transformed form

Iw(x,y.t) Vichm =33 kit 2)k-i+1)

2
OX i=0 j=0 r=0

A, jrW(k—i+2h—jm-r).

3.1 v(x,y,t)=a(x,y,t)

3.2 v(x,y,t)=b(x,y,t)w V(k,h,m):izh:i(h—i+2)(h—i+1)
i=0 j=0 r=0
BG, j,r)U(k—i,h—j+2,m—r).
o*W(x, y,t)

V (k, h,m) =Zklzh;i(m—i +2)(m—i+1)

2
ot i=0 j=0 r=0

C(, j, W (k—i,,h—j,m-r+2).

V (k,h,m) :Zk:ii(h—i +1)D(, j,r)

i=0 j=0 r=0

3.3 v(x y,t)=c(x y,t)

&4van:dmyn9ﬂ§£9

D@, j,r\W(k—i,h—j+L,m—r).

3.5 v(x,y,t)=x"y'tt V(k,h,m) =8k —n,h—1,m-s)=5((k —n)o(h—1)6(m-s), where
1 k=n, 1 h=l, 1 ms=s,
tem=y o pann={g (7 vam =g 1

Kn1=0 ky =0 h, ;=0 h, ,=0m, ;=0m, ,=0 k,=0 k;=0 h,=0 h=0 m,=0 m;=0
Wl(kl’ rﬁv m1)W2 (kz - kl' hz - hlvmz _ml)
Wn—l(kn—l - kn—Z' hn—l -h m,.,— mn—z)Wn (k - kn—l’ h— hn—l’ m-— mn—l)'

n-21"""n

3.7 v(x,y,t) =q(x, Y, )W (X, y,t) V (k. h,m) = Zk:izh:iz’”: iwl(kl' h.m)

k,=0k,=0h,=0h,=0m,=0m; =0

Wz(kz 7k1'h2 *hvmz *m1)W3(k7kz’h*hz'm*mz)-

Then by using definition (13), we have:
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1 ak+h+m
k!h!m![axkay“atm
1 &y k! ht m!
'<'h'“1'k21:'0hn1-omnzi_o(|<n DIk =k, )t (b, )i(h=h, )t (m, )i (m—m,_)!
akn71+hn,l+mn4
{&(k“ay““at"‘“

kK—kqq +h=h, g +m-m,

6Xk’kn—1ayh*hn—1atm’mn—1

V(k,h,m) = wl(x,y,t)wz(x,y,t)...wn1(x,y.t)wn(x,y.t)}

(0,0,0)

w, (X, Y, D)W, (X, y,t)...

W, (X y,t)

w, (X, y,t)}
(0,0,0)

k h m
,kZOh;OmZ;O
ak LR
|: n- 1)|(hn 1)'(mn 1)|5)( ay 1 5t
6k*k 11 +h—hy g +m—m
{ I A

Kk Koy h by m My g

W (X, Y, D)W, (X, Y, ). W, (X, y,t)}

(0,0,0)

W, (X, y,t)}

(0,0,0)

ko1 =0ky 5 =0Mhy 4 =0h, ,=0m, ,=0m, ,=0

6k 2+h o +m
X, Y, DW, (X, Y, t).w (X, Yt
{ n z)l(hn z)l(mn z)laX"Zay”atm -2 1( y ) 2( y ) n2( y )}

(0,0,0)

1
{ n— 1_kn 2) (hn 1_hn z) (mn 1_mn 2)'

o Kn-1 —Knz + Py =Py + My =My,

X
OX kn1—Kn-2 ay M1 =Pz ot My-1=My_p

an1(xl yvt)

(0,0,0)

1 ak—kn,1+h—h,,,1+m—mn,1
{(k - kn—l)!(h - hn—l)!(m - mn—l)! axkiknilayhihmatmimnil

Koo ko h My hoop

W, (Xr yvt):|

(0,0,0)

rE nﬁ
Ky1=0k, ,=0k, 3=0h, ;=0h, ,=0h, 3=0m, ;=0m, ,=0m, 3=0

1 ez ms
| (Ko_a)(h,_5) (M, _;)! ox'r-2 0y ot ™
[ 1

| (K, =k o)!(h,, =, 5)im,_, —m, )}

aknfz —Kng+hy o —hy 3 +my_,—m, 5
x W, (X, Y.t
an"’Z —Kn-3 ayhnfz’hnfaatmnfz’mnfs ”’2( Yy )

W, (X, Y, D)W, (X, Y, t).. W, _,(X, y,t)}

(0,0,0)

(0,0,0)
1
( n-1" "n- 2) (hn 17 n—Z)!(mnfl_mn—Z)!

akn 1Koz P =Py o My =y,
Wy (%Y, 1)

X
OX kn1=kn—2 6y by —hy, ot My g =My _p

(0,0,0)
{ 1 61"(”’1 +1-hy g +1-m
PR Wn(X,y,t)} ,
L=k, AR, )IL—m, )1 ooyt Mot ™ 000

Koy kop My Moy moomyy oM,

vkhm-3 5 5 3 5

Kn-1=0 ky_p=0ky_3=0hy =0y ,=0h, 3=0m, ;=0 M, ,=0 M, 3=0

Ky kg g Py omg o mg

PIIIIIP)

k3=0 k,=0 hy=0 h,=0 my=0 m,=0
Wl(kl' hl’ m1)Wz(k2 - k1v hz - hl’ m, - m1)---
Wn—l(kn—l - kn—Z' hn—l - hn—Z' m,.,— mnfz)Wn (k - kn -1 h- hn - M—=m, )
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since V(X Y, 1) =w (X, Y, t)w, (X, y,t)..w (X y,t)w, (X, y,t) then,

k Kot h hoy m My ks ko My b, mg M
UCUILEDNDNSUDNDWPIEHIPIPIPIPIP
Kn1=0knp =0y =0hy ,=0m, ;=0m, ,=0 k,;=0k;=0h,=0h =0m,=0m; =0

Wl(kl’ hl’ ml)WZ (kz - kl’ hz - hl’mZ - m1)---
anl(knfl - I(n72' hnfl - hn—Z’ m,_,— mnfz)Wn (k - kn—l’ h- hnfl’ m-— mnfl)'

4. Application

In this section, we apply the three-dimensional differential transform method to the vibration of a membrane. We
demonstrate four examples of the problem under different conditions. The conditions are (i) without damping term, (ii) with
damping term, (iii) with external force, and (iv) with damping term and external force. The initial and boundary conditions are

defined as follows.
Example 4.1 Consider the equation of the motion for the vibration of a membrane

ow  o'w  o°w

F A 1
with the initial and boundary conditions,

w(x,0,t)=0, 0<x<1,

_sinsin ™Y
w(x,y,0) =sin - sin b 0<x<1 0<y<] W(,y,t)=0, 0<y<1

, i (16)
M (%,y,0)=0, 0<x<L 0<y<l Wx 11 =0, 0<x=<l,
ot w(lyt)=0, 0<y<lteR.
Comparing (15) to the general terms of PDEs in Table 1, we have:
a(x,y,t) =b(x,yt) =c(x,y,t) =1.
Thenforall i20, j>0andr =0, we have
A, j,r)=B(, j,r)=C(, j,r) =50, j,r).
The following Kronecker symbols can be used:
Lx=y=t=0
o(x,y,t) =0(x)o(y)o(t) = . o(X,y) =0(xX)o(y).
(x,y:1) = 5(5()5(1) { o otheruize, O Y) =(08W)
By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have
1
W(k,h,m+2) =
(m+2)(m+1)5(0,0,0)
k h m
x{zz (k—i+2)(k —i +DAG, j,rWK-i+2,h—jm-r)
i=0 j=0r=0
k h m
+ZZZ(h—i+2)(h—i+1)B(i, jUk-i,h—j+2,m-r) ]
i=0 j=0r=0
;(k +2)(k +D)(h+2)(h+DW (k + 2,h,m}W (k,h + 2,m),
(m+2)(m+1)
that is
W(k,hm+2)= [(k +2)(k +D(h+2)(h+DW (k +2,h,mW (k,h + 2,m)]/ an
17

(M+2)(m+D(m+2)(m+1).



722 K. Mansilp & J. Kasemsuwan / Songklanakarin J. Sci. Technol. 41 (4), 716-726, 2019

Comparing the coefficients of Taylor’s series for sine with the series in definition (14)
4zt 67° 8r° 107"

2
sin(zx)sin(zy) = 2—xt Xt — Xt —— Xt + x°t s
2! 41 6! 8! 10! 12!

XMt +

iiW(k,h,O)xkyh W (0,0,0)x°y° +W (1L,1,0)xy +W (2,1,0)x%y
k=0h=0
18
+W (3,1,0)x%y +...+W (0,1,0)xy + W (1, 2,0)xy> (18)

+W(2,2,0)x°y? +

Then, we have

0 if k=012.. and h=0,2,486,..
k+h
uohoy=] &7 e 159 and h=1357.. | (19)
(k +h)!
k+h
KMz e ) 3711, and h=1357,..
(k+h)!

and from the initial condition (16)
W(k,h,1)=0, k,h=0,1,2,3,..., (20)
and from the boundary condition (16), we have

W(k,0,m)=0, k,m=0,1,2,3,...,

W(0,h,m)=0, h,m=0,12,3,..., 21)
W(k,,,m)=0, k,m=0,1,2,3,...,

W(@hm)=0, hm=0,12,3,...,

for each k,h,m substituting(19)-(21), and by recursion relation in (17), we obtain the coefficientsW (k,h,m) for the series
solution.

Thatis u(x, y,t) = z2xy — z*t? xy+ net Xy — % 7oexy — 7zxy+(137r6txy+...

Comparing to (14), we cannot apply separation of variables to find the analytical solution to the problem with damping
in equation (22). In the following example, we apply the DTM to find an approximate solution to the problem.

Example 4.2 Consider the equation of motion for the vibration of a membrane with damping term.

o’w _ o'w 62w_8w
X o e 22)

comparing (22) to general terms of PDEs in table 1, we have
a(x,y,t) =b(x,yt) =c(x,y,t) =1,d(x,y,t) =-1.
Then forall i>0,j>0andr >0, we have

A, j,r)=B(, j,r)=C(, j,r)=4G,jr),D(G, j,r)=-5, j,r).
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By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have:

W (k,h,m+2) =[(k + 2)(k + D)(h+2)(h +DW (k + 2,h,m)W (k,h +2,m)

(23)
—(h+DW (k,h+L,m)]/ (m+2)(m +1).

For each k,h,m substituting(19)-(21) and by recursion in (23), we obtain the coefficients W (k,h,m) for the series solution.

That is w(x, y,t) = 25 22+ 2 20t 2 0 — 2t — oy L s
2 6 12 36 48 144

Example 4.3 Consider the equation of motion for the vibration of a membrane with external force.
2 2 2
e vt e
Comparing (24) to general terms of PDEs in table 1, we have:
a(x,y,t) =b(x,yt) =c(x,y,t) =1,q(x, y,t) =-1
Then forall i>0,j>0andr>0, we have:
A(, j.r)=B(i, j.r)=C(, j,r) =4, J,n.Q(, j,r) ==&, j.r).

By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have

W (K, h,m+2) =[(Kk +2)(k + )(h + 2)(h + DW (K + 2,h,m)W (k, h + 2,m)

k kk h b m m
-2 Z; > S Wk, by, my) (25)
k,=0 k,=0h,=0h, =0m, =0m, =0

W, (K, —k;,h, —hy,m, —m)W, (k =Ky, h —hy,,m—m,)]/ (m+2)(m +1).

For each k,h,m substituting (19)-(21) and by recursion relation in (25), we obtain the coefficients W (k,h,m) for the series
solution.

1
That is: w(X, V.t “t2xy + = 7%* +— — 3= = Nty — = 2y + = 2y
(x,y,t) =7z°xy — 7'ty ”Xy ( (18 36)) ﬁy67f y

Example 4.4 Consider the equation of the motion for the vibration of a membrane with external force and damping term.
ow o'w 0w ow
et W (26)
ot°  ox- oy- ot
Comparing (26) to general terms of PDEs in table 1, we have
a(x,y,t) =b(x,yt) =c(x,y,t) =L d(x,y,t) =q(x, y,t) = -1.
Then forall i>0,j>0andr >0, we have

A(, J,r)=B(, j,r)=C(, j,r)=5(@, j,r), D3, j,r) =Q(i, j,r) = =6(, j,r).

By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have:
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W (K, h,m+2) =[(k + 2)(k + D(h+2)(h+DW (k + 2,h,m)W (k,h +2,m)

~(h+ )W (k,h+1,m)

_222 zz i iwl(kl'hl’ml)wz(kz -

k=0 k;=0h, =0h, =0m, =0m, =0

W, (K —K,,h —h,,m—m,)]/ (m+2)(m +1).

kl’hZ _hl'mz _m1)

@7)

For each k,h, m substituting (19)-(21) and by recursion in (27), we obtain the coefficients W (k,h,m) for the series solution.

6 4

That is: w(x,y,t) = —%ﬂztzx +1/67°*x +i(—(7z5) + E(7rE —27°)t°x + éﬂAtZXB _ L e

30

5. Results and Discussion

Next, we will assess the results from examples 4.1
to— 4.4. In Figure 1, at the initial time, the approximate
solution (dashed blue lines) obtained from DTM in Example
4.1 is close to the analytical solution (solid orange line)
calculated from equation (13). As time progresses the results
continue to stay close to each other.

The graphical results of the approximate solution
from DTM of the vibration of a vibrating membrane with a
damping term (Example 4.2) are shown in Figure 2. We found
that the amplitude of vibration is less than that without a
damping term, as shown in Table 2.

The exact solution, approximate solution with a
damping term and error for the vibration of membrane are
shown in Table 2.

----- t{DTM}=0.000
HDTM}=0.015
DTM)=
)=
Analytical)=0.000
Analytical)=0.015
Analytical)=0.030
Analytical}=0.045
Analytical)=0.060

~ Displacement - =

)=
)=
)=
)=

Position

Figure 1. Graphical comparison between the amplitude of the
analytical solution and the approximate solution from

DTM of the vibration of a membrane.

p — t=0000 w
t=0.015
/ \

=0.030

[ \E

=0.060 x

Displacement

Position

Figure 2. Graphical result of the amplitude of the approximate
solution from DTM of the vibration of a membrane with a
damping term.

36

The graphical results of the approximate solution
from DTM of the vibration of a membrane with external force
(Example 4.3) are shown in Figure 3. We found that the
amplitude of vibration is less than that of the vibrating
membrane without external force, as shown by the results in
Table 3.

The graphical results of the approximate solution
from DTM of the vibration a membrane with a damping term
and external force (Example 4.4) are shown in Figure 4. We
found that the amplitude of vibration is less than that of the
vibrating membrane without a damping term and external
force as shown by the results in Table 3.

The approximate solution for the vibration of a
membrane with external force, with external force and a
damping term, and error for the vibration of a membrane are
shown in Table.

— =0.000
=0.015

=0.030

— =04

Displacement

— =060

Position
Figure 3. Graphical result of the amplitude of the approximate
solution from DTM of the vibration of a membrane with
an external force.

Displacement

. =0.060 B
Position
Figure 4. Graphical result of the amplitude of the approximate

solution from DTM of the vibration of a membrane with a
damping term and external force.
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Table 2. DataValueat x=05, y=05.
t(sec) w(exact solution) w(DTM) w(damping) | w(exact)- w(DTM) | | w(DTM)- w(damping) |
t=0.000 1.00000 1.000101 1.0001078 0.000101 0.0007806
t=0.015 0.99113 0.997883 0.9970827 0.000103 0.0008003
t=0.030 0.980081 0.991239 0.9780586 0.000109 0.0131804
t=0.045 0.980081 0.980198 0.9133756 0.000117 0.0668224
t=0.060 0.964679 0.96481 0.7544184 0.000149 0.2103916
Table3. DataValueat x=0.5, y=0.5.
t(sec) w(DTM) w(external w(damping-+external w(DTM)- w( external force ) | w(DTM)- w(damping-+external
force) force) force)
t=0.000 1.00000 0.999787 0.999787 0.000313 0.000313
t=0.015 0.99113 0.9810904 0.9834975 0.0167926 0.0143855
t=0.030 0.980081 0.4118883 0.5655184 0.5793507 0.4257206
t=0.045 0.980081 -5.3055571 -3.556495 6.2857551 4.536693
t=0.060 0.902917 -34.028812 -24.203159 34.9936223 25.1679693

6. Conclusions

We found that the analytical solutions and
approximate solutions are very similar in case of a problem
with no damping or external force. In the case with damping
and external force, analytical solutions are not available.
Therefore, DTM was used to find approximate solutions. The
obtained results show that the addition of a damping term, or
addition of external force to the equation of motion of the
membrane, can reduction the amplitude of membrane
vibrations.
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