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Abstract 
 
We introduce the notion of a completely ordered k-regular semiring as a generalization of a completely regular ordered 

semiring and characterize it using its ordered k-ideals. Moreover, we show that an ordered semiring 𝑆 is completely ordered k-

regular if and only if every ordered k-bi-ideal of 𝑆 is semiprime. 
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1. Introduction 
 

Bourne (1951) defined a semiring (𝑆, +,⋅) to be 

regular if for every 𝑎 ∈ 𝑆 there are 𝑥, 𝑦 ∈ 𝑆 such that 𝑎 +
𝑎𝑥𝑎 = 𝑎𝑦𝑎. Later, Adhikari, Sen and Weinert (1996) renamed 

the Bourne regularity to be k-regular and studied some of its 

properties.   Then many authors; for example, Bhuniya (2011) 

and Jana (2011) investigated and gave some characterizations 

of k-regular semirings by their k-ideals.  

An ordered semiring is a semiring together with a 

partially ordered relation. It was introduced by Gan and Jiang 

(2011) as an algebraic structure which is a generalization of a 

semiring. Then Mandal (2014) introduced the notions of 

regular and k-regular ordered semirings. In 2017, Patchakhieo 

and Pibaljommee (2017) defined the notion of an ordered k-

regular semiring as a generalization of k-regular ordered 

semiring defined by Mandal and introduced the notions of left 

and right ordered k-regular semirings. 

The concept of completely regular on an ordered 

algebraic structure was introduced by Kehayopulu (1998) on an 

ordered semigroup. Kehayopulu called an ordered semigroup 𝑆

 
to be completely regular if 𝑆 is regular, left regular and right 

regular. 

In this paper, we introduce the notion of a completely 

ordered k-regular semiring as an ordered semiring 𝑆 such that 

𝑆 is ordered k-regular, left ordered k-regular and right ordered 

k-regular. Then we study some properties of completely 

ordered k-regular semirings and give some of their 

characterizations by their ordered k-ideals.  

 

2. Preliminaries 
 

An ordered semirings (𝑆, +,⋅, ≤) is a semiring 

(𝑆, +  ,⋅) together with a binary relation ≤ on 𝑆 such that the 

relation ≤ is compatible with the operations + and ⋅ of 𝑆. We 

simply write 𝑆 for an ordered semiring (𝑆, +,⋅, ≤) and 𝑎𝑏 

instead of 𝑎 ⋅ 𝑏 for all 𝑎, 𝑏 ∈ 𝑆. An ordered semiring 𝑆 is said 

to be additively commutative if 𝑎 + 𝑏 = 𝑏 + 𝑎 for any 𝑎, 𝑏 ∈ 𝑆. 

Throughout this paper, we assume that 𝑆 is additively 

commutative. 

For any nonempty subsets 𝐴, 𝐵 of 𝑆, we denote 

𝐴𝐵 = { 𝑎𝑏 ∈ 𝑆 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }, 

𝐴 + 𝐵 = {𝑎 + 𝑏 ∈ 𝑆 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, 

Σ𝐴 = { ∑ 𝑎𝑖
𝑛
𝑖=1 ∈ 𝑆 ∣∣ 𝑎𝑖 ∈ 𝐴, 𝑛 ∈ ℕ }, 

Σ𝐴𝐵 = { ∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1 ∈ 𝑆 ∣∣ 𝑎𝑖 ∈ 𝐴, 𝑏𝑖 ∈ 𝐵, 𝑛 ∈ ℕ }  

and 
(𝐴] = { 𝑥 ∈ 𝑆 ∣ 𝑥 ≤ 𝑎 for some 𝑎 ∈ 𝐴 }. 
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In a special case, if 𝐴 = {𝑎} for some 𝑎 ∈ 𝑆, then we 

write Σ𝑎 instead of Σ{𝑎}. Clearly, 𝐴 ⊆ Σ𝐴 and Σ𝐴 = 𝐴 if and 

only if 𝐴 + 𝐴 ⊆ 𝐴. 

 
Remark 1. Let 𝐴, 𝐵 be nonempty subsets of 𝑆. Then the 

following statements hold: 

 

(i) 𝐴 ⊆ Σ𝐴 and Σ(Σ𝐴) = Σ𝐴; 

(ii) if 𝐴 ⊆ 𝐵 then Σ𝐴 ⊆ Σ𝐵; 

(iii) 𝐴(Σ𝐵) ⊆ (Σ𝐴)(Σ𝐵) ⊆ Σ𝐴𝐵 and  
(Σ𝐴)𝐵 ⊆ (Σ𝐴)(Σ𝐵) ⊆ Σ𝐴𝐵; 

(iv) Σ(𝐴 + 𝐵) ⊆ Σ𝐴 + Σ𝐵; 

(v) Σ(𝐴] ⊆ (Σ𝐴]; 

(vi) 𝐴 ⊆ (𝐴] and ((𝐴]] = (𝐴]; 
(vii) if 𝐴 ⊆ 𝐵 then (𝐴] ⊆ (𝐵]; 
(viii) 𝐴(𝐵] ⊆ (𝐴](𝐵] ⊆ (𝐴𝐵] and  

(𝐴]𝐵 ⊆ (𝐴](𝐵] ⊆ (𝐴𝐵]; 
(ix) 𝐴 + (𝐵] ⊆ (𝐴] + (𝐵] ⊆ (𝐴 + 𝐵]; 
(x) (𝐴 ∪ 𝐵] = (𝐴] ∪ (𝐵]; 
(xi) (𝐴 ∩ 𝐵] ⊆ (𝐴] ∩ (𝐵]. 
The k-closure (Patchakhieo & Pibaljommee, 2017) of 

∅ ≠ 𝐴 ⊆ 𝑆 is defined by  

 𝐴 = { 𝑥 ∈ 𝑆 ∣ 𝑥 + 𝑎 ≤ 𝑏 for some 𝑎, 𝑏, ∈ 𝐴 }. 

 

Remark 2. Let 𝐴, 𝐵 be nonempty subsets of 𝑆. Then the 

following statements hold: 
 

(i) Σ𝐴 ⊆ Σ𝐴; 

(ii) if 𝐴 + 𝐴 ⊆ 𝐴 then 𝐴 ⊆ 𝐴 and 𝐴 = (𝐴] = (𝐴]; 

(iii) if 𝐴 ⊆ 𝐵 then 𝐴 ⊆ 𝐵; 

(iv) 𝐴𝐵 ⊆ 𝐴𝐵 and 𝐴𝐵 ⊆ 𝐴𝐵; 

(v) 𝐴 + 𝐵 ⊆ 𝐴 + 𝐵;  

(vi) 𝐴 ∪ 𝐵 ⊆ 𝐴 ∪ 𝐵; 

(vii) 𝐴 ∩ 𝐵 ⊆ 𝐴 ∩ 𝐵; 

(viii) if 𝐴 + 𝐴 ⊆ 𝐴 then 𝐴 ⊆ (𝐴] ⊆ (𝐴] = 𝐴 ⊆

(𝐴]. 
 

We note that if ∅ ≠ 𝐴 ⊆ 𝑆 is closed under addition 

then (𝐴], 𝐴 and (𝐴] are also closed. As a consequence of 

Remark 1 and Remark 2, we obtain the following remark. 

 

Remark 3. Let 𝐴, 𝐵 be nonempty subsets of 𝑆 such that 𝐴 and 

𝐵 are closed under addition. Then the following statements 

hold: 
 

(i) Σ(𝐴] = (Σ𝐴]; 

(ii) ((A]̅̅ ̅̅ ]̅̅ ̅̅ ̅̅ ̅ = (A]̅̅ ̅̅ ; 

(iii) 𝐴(𝐵] ⊆ (𝐴]̅̅ ̅̅  (𝐵]̅̅̅̅̅ ⊆ (Σ𝐴𝐵] and  

(𝐴]𝐵 ⊆ (𝐴]̅̅ ̅̅  (𝐵]̅̅̅̅̅ ⊆ (Σ𝐴𝐵]; 

(iv) 𝐴 + (𝐵]̅̅̅̅̅ ⊆ (𝐴] + (𝐵] ⊆ (𝐴 + 𝐵]. 
 

A left ordered k-ideal (right ordered k-ideal) 

(Patchakhieo & Pibaljommee, 2017) of 𝑆 is a subsemigroup 

(𝐴, +) of (𝑆, +) such that 𝑆𝐴 ⊆ 𝐴 (𝐴𝑆 ⊆ 𝐴) and  𝐴 = 𝐴. An 

ordered k-ideal of 𝑆 is both a left and a right ordered k-ideal of 

𝑆. An ordered quasi k-ideal (Palakawong na Ayutthaya & 

Pibaljommee, 2017) of 𝑆 is a subsemigroup (𝑄, +) of (𝑆, +) 

such that (Σ𝑆𝑄] ∩ (Σ𝑄𝑆] ⊆ 𝑄 and 𝑄 = 𝑄. It is easy to see that 

every ordered quasi k-ideal of 𝑆 is a subsemiring of 𝑆, indeed; 

𝑄2 ⊆ 𝑆𝑄 ∩ 𝑄𝑆 ⊆ 𝑄. A subsemiring 𝐵 of 𝑆 is called an ordered 

k-bi-ideal (ordered k-interior ideal) of S if 𝐵𝑆𝐵 ⊆ 𝐵 (𝑆𝐵𝑆 ⊆

𝐵) and 𝐵 = 𝐵. 

For ∅ ≠ 𝐴 ⊆ 𝑆, we denote 𝐿𝑘(𝐴) (resp. 𝑅𝑘(𝐴), 

𝐽𝑘(𝐴), 𝑄𝑘(𝐴), 𝐵𝑘(𝐴)) as the smallest left ordered k-ideal (resp. 

right ordered k-ideal, ordered k-ideal, ordered quasi k-ideal, 

ordered k-bi-ideal) of S containing A. Palakawong na 

Ayutthaya and Pibaljommee (2017) gave their constructions as 

the following lemma. 

 

Lemma 2.1 Let ∅ ≠ 𝐴 ⊆ 𝑆. Then the following statements 

hold: 

 

(i) 𝐿𝑘(𝐴) = (Σ𝐴 + Σ𝑆𝐴]; 

(ii) 𝑅𝑘(𝐴) = (Σ𝐴 + Σ𝐴𝑆]; 

(iii) 𝐽𝑘(𝐴) = (Σ𝐴 + Σ𝑆𝐴 + Σ𝐴𝑆 + Σ𝑆𝐴𝑆]; 

(iv) 𝑄𝑘(𝐴) = (Σ𝐴 + (Σ𝑆𝐴] ∩ (Σ𝐴𝑆]]; 

(v) 𝐵𝑘(𝐴) = (Σ𝐴 + Σ𝐴2 + Σ𝐴𝑆𝐴]. 
 

Mandal (2014) defined 𝑆 to be regular if for every 

𝑎 ∈ 𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑎𝑥𝑎. We call 𝑆 left 

regular (right regular) (Palakawong na Ayutthaya & 

Pibaljommee, 2016) if for every 𝑎 ∈ 𝑆, there exists 𝑥 ∈ 𝑆 such 

that 𝑎 ≤ 𝑥𝑎2 (𝑎 ≤ 𝑎2𝑥).   

If 𝑆 is regular, left regular and right regular then we 

call 𝑆 a completely regular ordered semiring. An ordered 

semiring 𝑆 is said to be ordered k-regular (Patchakhieo & 

Pibaljommee, 2017) if 𝑎 ∈ (𝑎𝑆𝑎] for all 𝑎 ∈ 𝑆 (equiva-

lently, 𝐴 ⊆ (Σ𝐴𝑆𝐴] ∀𝐴 ⊆ 𝑆). 

In general, every ordered quasi k-ideal of an ordered 

semiring 𝑆 is an ordered k-bi-ideal of 𝑆 but the converse is not 

true. Palakawong na Ayutthaya & Pibaljommee (2017) gave an 

example for this case and show that the converse can be true in 

an ordered k-regular semiring. 

 
3. Ordered k-idempotent Semirings 

 

Here, we introduce the notion of fully ordered k-

idempotent semirings, give some their characterizations and 

show that their ordered k-ideals and their ordered k-interior 

ideals coincide. 

 

Definition 3.1 An ordered k-ideal 𝐽 of 𝑆 is called ordered k-

idempotent if 𝐽 = (Σ𝐽2]. 
We call 𝑆 an fully ordered k-idempotent semiring if 

every ordered k-ideal of 𝑆 is ordered k-idempotent. 
 

Example 3.2 Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Define a binary operation 

+ on 𝑆 by 𝑥 + 𝑎 = 𝑥 = 𝑎 + 𝑥 for all 𝑥 ∈ 𝑆 and 𝑥 + 𝑦 = 𝑏 for 

all 𝑥, 𝑦 ∈ 𝑆 − {𝑎}. Define a binary operation ⋅ on 𝑆 by 𝑎 ⋅ 𝑎 =
𝑎, 𝑥 ⋅ 𝑎 = 𝑎 = 𝑎 ⋅ 𝑥, 𝑑 ⋅ 𝑒 = 𝑒 ⋅ 𝑑 = 𝑒 ⋅ 𝑒 = 𝑐 and 𝑏 ⋅ 𝑥 = 𝑥 ⋅
𝑏 = 𝑐 ⋅ 𝑥 = 𝑥 ⋅ 𝑐 = 𝑑 ⋅ 𝑑 = 𝑏 for all 𝑥 ∈ 𝑆 − {𝑎}. Define             

a  binary  relation  ≤  on 𝑆 by ≤≔ {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), 
(𝑏, 𝑐)}. Then (𝑆, +,⋅, ≤) forms an additively commutative 

ordered semiring. We have that 𝑆 and {𝑎} are only two ordered 

𝑘-ideals of 𝑆. It is not difficult to check that 𝑆 = (Σ𝑆2]̅̅ ̅̅ ̅̅ ̅ and 

{𝑎} = (Σ𝑎2]̅̅ ̅̅ ̅̅ ̅ and so we obtain that 𝑆 is a fully ordered k-

idempotent semiring. 
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Theorem 3.3 The following conditions are equivalent: 

 

(i) 𝑆 is fully ordered k-idempotent; 

(ii) 𝐴 ⊆  (Σ𝑆𝐴𝑆𝐴𝑆] for any 𝐴 ⊆ 𝑆; 

(iii) 𝑎 ∈ (Σ𝑆𝑎𝑆𝑎𝑆] for any 𝑎 ∈ 𝑆. 

 

Proof. (i)⇒(ii): Assume that 𝑆 is fully ordered k-idempotent 

and let 𝐴 ⊆ 𝑆. Then 𝐴 ⊆ 𝐽𝑘(𝐴) = (Σ𝐽𝑘(𝐴)2] 

= (Σ(Σ𝐴 + Σ𝑆𝐴 + Σ𝐴𝑆 + Σ𝑆𝐴𝑆] ⋅ (Σ𝐴 + Σ𝑆𝐴 + Σ𝐴𝑆 + Σ𝑆𝐴𝑆]]   

⊆  (Σ(Σ𝐴 + Σ𝑆𝐴 + Σ𝐴𝑆 + Σ𝑆𝐴𝑆)(Σ𝐴 + Σ𝑆𝐴 + Σ𝐴𝑆 + Σ𝑆𝐴𝑆)] 

⊆  (Σ𝐴2 + Σ𝐴𝑆𝐴 + Σ𝐴2𝑆 + Σ𝐴𝑆𝐴𝑆 + Σ𝑆𝐴2 + Σ𝑆𝐴𝑆𝐴 + Σ𝑆𝐴2𝑆 + Σ𝑆𝐴𝑆𝐴𝑆] 

⊆ (Σ𝑆𝐴𝑆𝐴𝑆]. 

 

(ii)⇒(iii): It is obvious. 

(iii)⇒(i): Assume that (iii) holds and let 𝐽 be an 

ordered k-ideal of 𝑆. Clearly, (Σ𝐽2] ⊆ (Σ𝐽] = 𝐽. On the other 

hand, if 𝑥 ∈ 𝐽 then 𝑥 ∈ (Σ𝑆𝑥𝑆𝑥𝑆] ⊆ (Σ𝑆𝐽𝑆𝐽𝑆] ⊆ (Σ𝐽2]. So, 𝐽 =

(Σ𝐽2]. Therefore, 𝑆 is fully ordered k-idempotent. 

Now, we show that the concept of ordered k-ideals 

and the concept of ordered k-interior ideals coincide in fully 

ordered k-idempotent semirings. 

 
Theorem 3.4 If 𝑆 is fully ordered k-idempotent, then its ordered 

k-ideals coincide with its ordered k-interior ideals. 

 

Proof. Assume that 𝑆 is a fully ordered k-idempotent semiring. 

Since every ordered k-ideal is an ordered k-interior ideal, it is 

sufficient to show that every ordered k-interior ideal is an 

ordered k-ideal. Let 𝐼 be an ordered k-interior ideal of S. Using 

Theorem 3.2, we obtain that 𝑆𝐼 ⊆ (Σ𝑆𝑆𝐼𝑆𝑆𝐼𝑆] ⊆ (Σ𝑆𝐼𝑆] ⊆

(Σ𝐼] = 𝐼. Similarly, we can show that 𝐼𝑆 ⊆ 𝐼. Hence, 𝐼 is an 

ordered k-ideal of 𝑆. 

 
Theorem 3.5 An ordered semiring 𝑆 is fully ordered k-

idempotent if and only if 𝐼1 ∩ 𝐼2 = (Σ𝐼1𝐼2] for every two 

ordered k-interior ideals 𝐼1, 𝐼2 of 𝑆. 

 
Proof. Let 𝐼1, 𝐼2 be ordered k-interior ideals of 𝑆. By Theorem 

3.3, we have that 𝐼1 and 𝐼2 are ordered k-ideals of S. It follows 

that (Σ𝐼1𝐼2] ⊆ (Σ𝐼1] = 𝐼1 and (Σ𝐼1𝐼2] ⊆ (Σ𝐼2] = 𝐼2. Thus, 

(Σ𝐼1𝐼2] ⊆ 𝐼1 ∩ 𝐼2. For the opposite inclusion, we have that    

𝐼1 ∩  𝐼2 = (Σ(𝐼1 ∩ 𝐼2)(𝐼1 ∩ 𝐼2)] ⊆ (Σ𝐼1𝐼2]. Hence, 𝐼1 ∩ 𝐼2 =

(Σ𝐼1𝐼2]. 
Conversely, let 𝐽 be an ordered k-ideal of S. Since 𝐽 

is an ordered k-interior ideal, 𝐽 = 𝐽 ∩ 𝐽 = (Σ 𝐽𝐽] = (Σ𝐽2].      
 

4. Left and Right Ordered k-regular Semirings 
  

In this section, we recall the notions of left and right 

ordered k-regular semirings which defined by Patchakhieo and 

Pibaljommee (2017) and give some their characterizations. 

 

Definition 4.1 An ordered semiring 𝑆 is said to be left ordered 

k-regular (right ordered k-regular) if 𝑎 ∈ (𝑆𝑎2] (𝑎 ∈ (𝑎2𝑆]) 
for all 𝑎 ∈ 𝑆. 

 We can also obtain that an ordered semiring 𝑆 is said 

to be left ordered k-regular (right ordered k-regular) if and 

only if 𝐴 ⊆ (Σ𝑆𝐴2] (𝐴 ⊆ (Σ𝐴2𝑆]) for all ∅ ≠ 𝐴 ⊆ 𝑆. 

 
Theorem 4.2 The following conditions are equivalent: 
 

(i) 𝑆 is left ordered k-regular; 

(ii) every left ordered k-ideal of 𝑆 is a left ordered 

k-regular subsemiring of 𝑆; 

(iii) 𝐿𝑘(𝐴) is a left ordered k-regular subsemiring 

of 𝑆 for any 𝐴 ⊆ 𝑆;   

(iv) 𝐿𝑘(𝑎) is a left ordered k-regular subsemiring 

of 𝑆 for any 𝑎 ∈ 𝑆. 

 

Proof. (i)⇒(ii): Assume that 𝑆 is left ordered k-regular and let 

L be any left ordered k-ideal of S. If 𝑥 ∈ 𝐿 then we obtain 

 

𝑥 ∈ (𝑆𝑥2] ⊆ (𝑆(𝑆𝑥2]𝑥] ⊆ (𝑆𝑥3] ⊆ (𝑆𝐿𝑥2] ⊆ (𝐿𝑥2]. 

 

This shows that 𝐿 is left ordered k-regular. 

 

 (ii)⇒(iii) and (iii)⇒(iv) are obvious. 

 (iv)⇒(i): Assume that (iv) holds and let 𝑎 ∈ 𝑆. It 

turns out 𝑎 ∈ (𝐿𝑘(𝑎)𝑎2] ⊆ (𝑆𝑎2]. Therefore, 𝑆 is left ordered 

k-regular.  

 As a duality of Theorem 4.2, we obtain the following 

theorem. 

 

Theorem 4.3 The following conditions are equivalent: 

 

(i) 𝑆 is right ordered k-regular; 

(ii) every right ordered k-ideal of 𝑆 is a right 

ordered k-regular subsemiring of 𝑆; 

(iii) 𝑅𝑘(𝐴) is a right ordered k-regular 

subsemiring of 𝑆 for any 𝐴 ⊆ 𝑆;   

(iv) 𝑅𝑘(𝑎) is a right ordered k-regular 

subsemiring of 𝑆 for any 𝑎 ∈ 𝑆. 

 
Definition 4.4 Let ∅ ≠  𝑇 ⊆ 𝑆. Then 𝑇 is said to be semiprime 

if for any 𝑎 ∈ 𝑆, 𝑎2 ∈ 𝑇 implies 𝑎 ∈ 𝑇. 

 We note that ∅ ≠ 𝑇 ⊆ 𝑆 is semiprime if and only if 

for any ∅ ≠ 𝐴 ⊆ 𝑆, 𝐴2 ⊆ 𝑇 implies 𝐴 ⊆ 𝑇.  

 Now, we give a characterization of an ordered 

semiring which is both left and right ordered k-regular by its 

ordered quasi k-ideals as follows. 

 

Theorem 4.5 An ordered semiring 𝑆 is both left and right 

ordered k-regular if and only if every ordered quasi k-ideal of 𝑆 

is semiprime. 

 
Proof. Assume that 𝑆 is left and right ordered k-regular. Let Q 

be an ordered quasi k-ideal of S and let A be a nonempty subset 

of S such that 𝐴2 ⊆ 𝑄. Then, we have that 𝐴 ⊆ (Σ𝑆𝐴2] and 𝐴 ⊆

(Σ𝐴2𝑆].  It follows that 
 

𝐴 ⊆ (Σ𝑆𝐴2] ∩ (Σ𝐴2𝑆] ⊆ (Σ𝑆𝑄] ∩ (Σ𝑄𝑆] ⊆ 𝑄. 
 

Therefore, 𝑄 is semiprime. 
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 Conversely, assume that every ordered quasi k-ideal 

of 𝑆 is semiprime. Let 𝐴 ⊆ 𝑆. By Lemma 2.1, we have that 

𝑄𝑘(𝐴2) = (Σ𝐴2 + (Σ𝑆𝐴2] ∩ (Σ𝐴2𝑆]].      Since 𝐴2 ⊆ 𝑄(𝐴2) is  

semiprime, 𝐴 ⊆ 𝑄(𝐴2). Then, we obtain that 

 

 𝐴 ⊆ 𝑄𝑘(𝐴2) = (Σ𝐴2 + (Σ𝑆𝐴2] ∩ (Σ𝐴2𝑆]] ⊆ (Σ𝐴2 + (Σ𝑆𝐴2]] 

     ⊆ ((Σ𝐴2 + Σ𝑆𝐴2]] = (Σ𝐴2 + Σ𝑆𝐴2]  and 

 𝐴 ⊆ 𝑄𝑘(𝐴2) = (Σ𝐴2 + (Σ𝑆𝐴2] ∩ (Σ𝐴2𝑆]] ⊆ (Σ𝐴2 + (Σ𝐴2𝑆]] 

     ⊆ ((Σ𝐴2 + Σ𝐴2𝑆]] = (Σ𝐴2 + Σ𝐴2𝑆].   

 

In case of 𝐴 ⊆ (Σ𝐴2 + Σ𝑆𝐴2], we obtain that  

 

 Σ𝐴2 = Σ𝐴𝐴 ⊆ Σ𝐴(Σ𝐴2 + Σ𝑆𝐴2] ⊆ Σ(Σ𝐴3 + Σ𝐴𝑆𝐴2] 

          ⊆ Σ(Σ𝐴3 + Σ𝑆𝐴2] ⊆ (Σ𝑆𝐴2 + Σ𝑆𝐴2] = (Σ𝑆𝐴2]. 

 

Thus, 𝐴 ⊆ (Σ𝐴2 + Σ𝑆𝐴2] ⊆ ((Σ𝑆𝐴2] + Σ𝑆𝐴2] ⊆ ((Σ𝑆𝐴2 + Σ𝑆𝐴2]]  

= (Σ𝑆𝐴2]. In case of 𝐴 ⊆ (Σ𝐴2 + Σ𝐴2𝑆], we can prove similarly 

and so we get that 𝐴 ⊆ (Σ𝐴2𝑆]. Therefore, 𝑆 is left and right 

ordered k-regular. 

 

5. Completely Ordered k-regular Semirings 
 

In this section, we introduce the notion of completely 

ordered k-regular semirings, study some of their properties and 

give some of their characterizations.   

 

Definition 5.1 An ordered semiring 𝑆 is called completely 

ordered k-regular if 𝑆 is ordered k-regular, left ordered k-

regular and right ordered k-regular. 

 

Example 5.2 Consider the set of all natural numbers ℕ together 

with the operations max and min and the natural ordered 

relation ≤. It is easy to see that (ℕ, max, min, ≤) forms a 

completely ordered k-regular semiring. 

 We know that every regular ordered semiring is an 

ordered k-regular semiring, every left regular ordered semiring 

is a left ordered k-regular semiring and every right regular 

ordered semiring is a right ordered k-regular semiring. These 

mean that every completely regular ordered semiring is a 

completely ordered k-regular semiring. 

 We now show that there is a completely ordered k-

regular semiring which is not completely regular as the 

following example. 

 

Example 5.3 Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}. Define a binary operation 

+ by 𝑎 + 𝑥 = 𝑥 = 𝑥 + 𝑎, 𝑏 + 𝑥 = 𝑏 = 𝑥 + 𝑏 for all 𝑥 ∈ 𝑆, 

𝑐 + 𝑐 = 𝑐 and 𝑐 + 𝑑 = 𝑐 + 𝑑 = 𝑑 = 𝑑 + 𝑑. Define a binary 

operation ⋅ by 𝑥 ⋅ 𝑎 = 𝑥 ⋅ 𝑐 = 𝑎, 𝑥 ⋅ 𝑑 = 𝑑 for all 𝑥 ∈ 𝑆, 𝑦 ⋅ 𝑏 =
𝑑 for all 𝑦 ∈ 𝑆\{𝑏} and 𝑏 ⋅ 𝑏 = 𝑏. Define a binary relation ≤ 

on 𝑆 by ≤≔ {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), (𝑎, 𝑑), (𝑏, 𝑑), (𝑐, 𝑑)} 

Then (𝑆, +,⋅, ≤) is an additively commutative ordered semiring. 

Obviously, 𝑎, 𝑏 and 𝑑 are regular, left regular and right regular. 

However, we have that 𝑐 ∉ (𝑐𝑆𝑐] = {𝑎} and so 𝑐 is not regular. 

It leads that 𝑆 is not regular and thus 𝑆 is not completely regular. 

 Since 𝑎, 𝑏, 𝑑 are regular, right regular and left regular, 

we can obtain that 𝑎, 𝑏, 𝑑 are ordered k-regular, left ordered k- 

regular and right ordered k-regular. Moreover, we have that 𝑐 ∈

(𝑐𝑆𝑐] = {𝑎, 𝑐}, 𝑐 ∈ (𝑐2𝑆] = 𝑆 and 𝑐 ∈ (𝑆𝑐2] = {𝑎, 𝑐}. This 

shows that 𝑆 is completely ordered k-regular. 

  In consequence of Example 5.3, we can conclude 

that the concept of a completely ordered k-regular semiring is a 

generalization of the concept of a completely regular ordered 

semiring. 

 Here, we give some characterizations of completely 

ordered k-regular semirings. 

 

Lemma 5.4 The following conditions are equivalent: 

 

(i) 𝑆 is completely ordered k-regular; 

(ii) 𝐴 ⊆ (Σ𝐴2𝑆𝐴2] for every 𝐴 ⊆ 𝑆; 

(iii) 𝑎 ∈ (𝑎2𝑆𝑎2] for every 𝑎 ∈ 𝑆. 

 

Proof. (i)⇒(ii): Assume that 𝑆 is completely ordered k-regular 

and let 𝐴 ⊆ 𝑆. We obtain that 𝐴 ⊆ (Σ𝐴𝑆𝐴], 𝐴 ⊆ (Σ𝐴2𝑆] and 

𝐴 ⊆ (Σ𝑆𝐴2]. It follows that 
 

𝐴 ⊆ (Σ𝐴𝑆𝐴] ⊆ (Σ(Σ𝐴2𝑆] 𝑆(Σ𝑆𝐴2]] 

    ⊆ ((Σ𝐴2𝑆𝐴2]] = (Σ𝐴2𝑆𝐴2]. 

  

(ii)⇒(iii) and (iii)⇒(i) are obvious. 

 

Theorem 5.5 An ordered semiring 𝑆 is completely ordered k-

regular if and only if every ordered quasi k-ideal of 𝑆 is a 

completely ordered k-regular subsemiring of 𝑆. 

 

Proof. Assume that 𝑆 is completely ordered k-regular and let 𝑄 

be an ordered quasi 𝑘-ideal of 𝑆. Let 𝐴 ⊆ 𝑄. Using Lemma 5.4, 

we obtain that  

 

 𝐴 ⊆ (Σ𝐴2𝑆𝐴2] ⊆ (Σ𝐴(Σ𝐴2𝑆]𝑆(Σ𝑆𝐴2]𝐴] 

⊆ ((Σ𝐴3𝑆]𝑆(Σ𝑆𝐴3]] ⊆ ((Σ𝐴3𝑆𝐴3]] 

       = (Σ𝐴3𝑆𝐴3] ⊆ (Σ𝐴2𝑄𝑆𝑄𝐴2] ⊆ (Σ𝐴2𝑄𝐴2]. 

 
Using Lemma 5.4 again, we obtain that 𝑄 is 

completely ordered k-regular. The converse is clear, since 𝑆 

itself is an ordered quasi k-ideal. 

 Using the fact that ordered quasi k-ideals and ordered 

k-bi-ideals of ordered k-regular semirings coincide and 

Theorem 5.5, we can obtain the following corollary. 
 

Corollary 5.6 An ordered semiring 𝑆 is completely ordered k-

regular if and only if every ordered k-bi-ideal of 𝑆 is a 

completely ordered k-regular subsemiring of 𝑆. 

 
Theorem 5.7 An ordered semiring 𝑆 is completely ordered k-

regular if and only if every ordered k-bi-ideal of S is semiprime. 

 

Proof. Since 𝑆 is completely ordered k-regular, 𝑆 is ordered k-

regular. So, every ordered quasi k-ideal and every ordered k-bi-

ideal of 𝑆 coincide (Palakawong na Ayutthaya & Pibaljommee, 

2017). Using Theorem 4.5, we obtain that every ordered k-bi-

ideal of 𝑆 is also semiprime. 
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 Conversely, let ∅ ≠ 𝐴 ⊆ 𝑆. We claim that (Σ𝐴2𝑆𝐴2] 
is an ordered k-bi-ideal of S. Since Σ𝐴2𝑆𝐴2 is closed under 

addition, (Σ𝐴2𝑆𝐴2] is also closed. Furthermore, we get that 

 

(Σ𝐴2𝑆𝐴2] ⋅ (Σ𝐴2𝑆𝐴2] ⊆ (Σ(Σ𝐴2𝑆𝐴2)(Σ𝐴2𝑆𝐴2)] ⊆

(Σ𝐴2𝑆𝐴4𝑆𝐴2)] ⊆ (Σ𝐴2𝑆𝐴2].  
 

Now, (Σ𝐴2𝑆𝐴2] is a subsemiring of 𝑆. We consider 

 (Σ𝐴2𝑆𝐴2]𝑆(Σ𝐴2𝑆𝐴2] ⊆ (Σ𝐴2𝑆]𝑆(Σ𝑆𝐴2] ⊆

(Σ𝐴2𝑆𝑆] ⋅ (Σ𝑆𝐴2] ⊆ (Σ𝐴2𝑆] ⋅ (Σ𝑆𝐴2] ⊆

(Σ(Σ𝐴2𝑆)(Σ𝑆𝐴2)] ⊆ (Σ𝐴2𝑆𝐴2)] 

and (Σ𝐴2𝑆𝐴2] = (Σ𝐴2𝑆𝐴2]. Hence, (Σ𝐴2𝑆𝐴2] is an ordered k-

bi-ideal of 𝑆. We have that 𝐴8 =  𝐴2𝐴4𝐴2 ⊆ 𝐴2𝑆𝐴2 ⊆

Σ𝐴2𝑆𝐴2 ⊆ (Σ𝐴2𝑆𝐴2]. By assumption, (Σ𝐴2𝑆𝐴2] is semiprime. 

This implies 𝐴4 ⊆ (Σ𝐴2𝑆𝐴2] and 𝐴2 ⊆ (Σ𝐴2𝑆𝐴2] and hence 

𝐴 ⊆ (Σ𝐴2𝑆𝐴2]. Therefore, 𝑆 is completely ordered k-regular by 

Lemma 5.4. 
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