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Abstract 
 

The objective of this study is to determine the shearing resistance of fractures in Tak granite as affected by orthotropic 

stress states where 123. Triaxial shear tests are performed to obtain the strengths and dilations of tension-induced fractures 

and smooth saw-cut surfaces under confining pressures up to 18 MPa. The ratios of the lateral stresses vary from 0 to 4. The 

shearing resistance, dilation and areas of sheared-off asperities of the rough fractures decrease when the lateral stress ratios increase. 

The shear strengths of smooth saw-cut surfaces tend to be independent of the stress ratios. The distortional strain energy (Wd) 

required to displace the fractures under various stress states increases linearly with the mean strain energy (Wm). The energy ratio 

(Wd/Wm) in terms of the strains and dilation can be used as a predictive tool for the movements of faults or fractures in Tak granite. 
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1. Introduction 
 

Frictional behavior of rock fractures has normally 

been determined by the direct shear test method (ASTM 

D5607-08). The results have been applied to determine the 

stability of rock slope embankments, shallows rock founda-

tions and underground openings. The test configurations how-

ever have some disadvantages. The magnitudes of the applied 

normal stress are limited by the uniaxial compressive strength 

of the rock, and the fractures are sheared under unconfined 

conditions. The results can not describe the friction behavior 

and movement of the fractures or faults at great depth where 

they are under high confinements. The triaxial shear test 

method (Barton, 1976; Brady & Brown, 2006; Jaeger et al., 

2007; Li et al., 2012a, 2012b) has therefore been developed to 

simulate the frictional resistance of rock fractures under 

confining pressures. The normal stress at which the shear 

strengths are measured can be controlled by the applied axial 

stress and confining pressures (Lane & Heck, 1964; Rosso, 

 
1976). The test provides the shear strengths of rock fractures 

under uniform lateral confining stresses (12=3), which 

may also not truly represent their actual in-situ conditions, 

where 123. It has long been recognized that the inter-

mediate principal stress or the true triaxial stress condition can 

notably affect the intact rock strengths and deformability 

(Alexeev et al., 2008; Cai, 2008; Colmenares & Zoback, 2002; 

Haimson, 2006; Haimson & Chang, 2000; Haimson & 

Rudnicki, 2010). Rare attempt has however been made at 

determining the shear strengths of rock fractures under true 

triaxial stress states (Kapang et al., 2013; Morris & Ferrill, 

2009). A shear strength criterion for rock fractures that can 

incorporate the effect of the three-dimensional stresses has 

never been developed. Such knowledge could improve an 

understanding of the friction of rock fractures around deep 

underground structures and of the fault movements at great 

depth. 

  The objective of this study is to determine the 

shearing resistance of fractures in Tak granite as affected by 

orthotropic stresses when the three principal stresses are un-

equal. True triaxial shear tests are performed on tension-

induced fractures and smooth saw-cut surfaces in Tak granite 

specimens. A polyaxial load frame is used to obtain the 

strengths and dilations of the fractures under confining pres-
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sures from 1 to 18 MPa. The lateral stress ratios are also varied 

from 0 to 4. The joint roughness coefficients (JRC) are 

determined prior to and after shearing. The strain energy 

principle is applied to describe the peak shear strengths and 

confinements under varied stress conditions.  

 

2. Sample Preparation 
 

 The specimens used for the triaxial shear tests are 

prepared from the Tak granite. The granite batholith is ex-posed 

in the northwest of Thailand where there are several active 

faults and seismic activities (Fenton et al., 2003). The tested 

granite is felsic phaneritic, and fine grained with average sizes 

of 4-5 mm. It comprises 40% plagioclase (with grain sizes of 

0.5-1 mm), 30% quartz (2-5 mm), 5% ortho-clase (3-5 mm), 

3% amphibole (1-2 mm), and 2% biotite (1-2 mm) (Kemthong 

& Fuenkajorn, 2007). The average density of the specimens is 

2.67 g/cc. Rodklang et al. (2015) determine the mechanical 

properties of the Tak granite as: uniaxial compressive strength 

= 118 ± 5.2 MPa, elastic modulus = 13.8 GPa, Poisson’s ratio 

= 0.28, cohesion = 17.6 MPa, and inter-nal friction angle = 58. 

The specimens are cut to obtain rec-tangular blocks with 

nominal dimensions of 50×50×87 mm3. The fractures are 

artificially made to obtain tension-inducing fracture and saw-

cut surface. A line load is applied to obtain a tension-induced 

fracture diagonally across the rock block. The fracture area is 

50×100 mm2. The normal to the fracture plane makes an angle 

() of 59.1° with the major axis of the speci-men. The fractures 

are clean and well mated. The asperity amplitudes are measured 

from the laser-scanned profiles along the shearing direction. 

The readings are made to the nearest 0.01 mm. The maximum 

amplitudes of the profiles are used to determine the joint 

roughness coefficients (JRC) of each frac-ture based on the 

Barton’s chart (Barton, 1982). The joint roughness coefficients 

are averaged as 12±1.0. All fractures show both first and second 

order asperities.  

 

3. Test Apparatus and Method 
 

 A polyaxial load frame (Fuenkajorn et al., 2012; 

Fuenkajorn & Kenkhunthod, 2010) is used to apply true tria-

xial stresses to the specimens (Figure 1). One of the lateral 

stresses is parallel to the strike of the fracture plane and is 

designated as p. The other is normal to the fracture strike and 

is designated as o. They are applied by two pairs of 152 cm 

long cantilever beams set in mutually perpendicular directions 

of the polyaxial load frame. The axial stress representing the 

major principal stress (1) is applied by a 1000-kN hydraulic 

load cell connected to an electric oil pump via a pressure 

regulator. Neoprene sheets are placed at all interfaces between 

loading platens and rock surfaces to minimize the friction. The 

specimen deformations in the three loading directions are 

monitored. The reading are recorded every 10 kN of the axial 

load increment. The frictional resistance at the interfaces 

between the loading platens and the lateral neoprene sheets are 

determined by vertically loading an intact specimen with the 

same dimensions while the constant lateral stresses paral-lel to 

the fracture are applied. The vertical stress induced by friction 

will be used to correct the axial loads during fracture shearing. 

The lateral stress ratios are varied (p/o) from 0, 1, 1.5, 2, 2.5, 

3 to 4, when o varies from 1 to 18 MPa.  The block specimen 

with the fracture is first subjected to a pre-defined initial stress 

where 1 is first set equal to the lateral stress normal to the 

fracture plane (3). The axial stress is then increased under a 

constant rate of 0.01 mm/s while p and o are maintained 

constant.   

 The shear stress () and its corresponding normal 

stress (n) can be determined as follows (Jaeger et al., 2007): 

 

 = 1/2(1-o) 2 sin2β  (1) 

n = 1/2 (1+o) +1/2(1-o) cos2 (2) 

 

where 1 and o are the axial and lateral stresses and β is the 

angle between 1 and n directions. For all specimens the angle 

β equals to 59.1°.   

 The shear and normal (dilation) displacement (ds and 

dn) can be calculated from the measured vertical and lateral 

displacements (d1 and d3) as follows (Kleepmek et al., 2016): 

 

ds = d1/sin β                                               (3) 

dn = (d3,m-d3,c)  sin β                                          (4) 

d3,c = d1 tan(90-β)                                    (5) 

 
where d3,m is the total lateral displacement measured during the 

test, and d3,c are the calculated lateral displacement induced by 

the vertical displacement on the incline fracture plane.  

 
 

 

Figure 1. Polyaxial load frame used in this study (Fuenkajorn & Kenkhunthod, 2010; Fuenkajorn et al., 2012). 
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4. Test Results 
 

 Figure 2 shows the major principal stresses (1) as 

a function of vertical displacements (d1), and lateral displace-

ments (do) as a function of vertical displacements (d1) for the 

tension-induced fractures. The diagrams show that the larger 

lateral stress ratios induce lower peak and residual stresses. The 

stress ratios also decrease the fracture dilation at the peak stress. 

The axial stresses corresponding to the peak shear strengths are 

plotted as a function of the lateral stress,o, for various p/o 

ratios in Figure 3a, showing that the stress ratios can signifi-

cantly reduce the fracture shear strengths for all o values. To 

incorporate all principal stresses applied on the fractures the 

octahedral shear strengths (oct) at the peak point are derived 

and presented as  a  function  of  the  mean  stress  as  shown  in 

Figure 3b. The effect of the stress ratios is enhanced when the 

mean stress increases. This suggests that the stress ratio effect 

becomes even more significant under greater depth. Table 1 

summarizes the shear strength results and their corresponding 

normal stress for different p/o ratios. 

 The shear strength of the smooth saw-cut surfaces 

tends to be independent of the lateral stress ratio, as shown in 

the 1,p-o and oct -m diagrams in Figure 3. Note that as the 

stress ratio increases the oct/m slopes of the tension-induced 

fractures approach those of the smooth saw cut surface. This 

suggests that fractures under high lateral stress ratio (p/o) can 

displace more smoothly and easily than those under lower stress 

ratio, and that under higher stress ratios, the fracture roughness 

becomes less significant. 

 

 
 

 

Figure 2. Major principal stresses as a function of vertical displacements (a), and lateral displacements as a function of vertical displacements (b). 
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Figure 3. Major principal stresses at peak (1,p) as a function confining stresses (o) (a), and octahedral shear stresses as a function of mean 

stress (b) . 

 
Table 1. Peak shear strengths and their corresponding normal stresses for different p/o ratios.  
 

Fracture  
Types 

p/o JRC 
p 

(MPa) 

o 

(MPa) 

1,p 

(MPa) 

p 

(MPa) 

n 

(MPa) 

oct  

(MPa) 

oct 

(10-3) 

          

Tension-

Induced 
Fracture 

 

0 

13 0 1 77.72 33.15 20.14 36.40 7.93 

13 0 3 88.40 36.43 25.19 40.98 8.09 

11 0 7 105.45 42.63 31.61 48.14 8.85 

10 0 12 129.46 50.77 41.31 58.41 9.01 

11 0 18 150.65 57.56 51.21 67.18 9.34 
         

         

1 

13 1 1 63.22 26.98 16.58 29.33 8.24 

11 3 3 75.30 29.31 21.07 34.08 8.81 

10 7 7 98.20 35.49 29.80 42.99 9.44 

10 12 12 116.59 44.20 39.83 49.30 10.33 

11 18 18 146.50 49.64 50.12 60.58 10.50 
         

         

1.5 

13 1.5 1 48.22 20.48 12.80 22.14 8.58 

13 4.5 3 58.80 24.03 16.95 25.96 9.21 

11 10.5 7 78.51 30.24 24.72 32.92 9.92 

10 18 12 98.28 37.00 33.57 39.33 10.71 
         

         

2 

13 2 1 41.18 18.45 11.65 18.71 8.80 

11 6 3 50.90 20.81 14.98 21.91 9.22 

11 14 7 69.38 26.12 22.34 27.90 10.31 

13 18 9 79.84 30.15 27.83 31.49 10.94 
         

         

2.5 

13 2.5 1 38.07 16.07 10.28 17.13 8.86 
13 5 2 40.95 16.88 11.75 17.70 9.12 

11 7.5 3 44.41 17.91 13.34 18.55 9.65 

11 12.5 5 52.59 20.68 16.94 20.89 10.09 

11 17.5 7 60.87 23.22 20.41 23.32 10.44 
         

         

3 

11 3 1 32.00 13.23 8.60 14.17 9.04 

13 9 3 38.22 15.80 12.12 15.38 9.75 

11 15 5 45.80 17.69 15.22 17.36 10.23 

13 21 7 52.62 19.74 18.40 19.08 10.58 
         
         

4 
10 4 1 26.23 10.84 7.26 11.25 9.29 
11 12 3 32.45 12.89 10.44 12.32 9.87 

10 20 5 40.18 15.37 13.87 14.41 10.57 
          

          

 

 

Smooth 
saw-cut 

surface 

 - 0 1 7.89 2.98 2.72 3.25 5.64 

0 - 0 7 16.83 4.26 9.46 4.63 6.94 

 - 0 12 24.65 5.48 15.16 5.96 8.46 
         

         

 - 1 1 7.48 2.81 2.62 3.05 9.23 

1 - 7 7 16.32 4.04 9.33 4.39 9.17 

 - 12 12 23.80 5.11 14.95 5.56 11.09 
         

         

2 

- 2 1 6.97 2.59 2.49 2.81 7.68 

- 6 7 10.71 3.34 4.93 3.63 8.09 

- 14 12 16.15 3.96 9.29 4.31 10.08 
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5. Fracture Dilation 
 

 The shear and normal (dilation) displacements (ds and 

dn) of the fractures can be calculated using Equations 3 and 4. 

Under the some o, the fractures dilation at the peak strength 

decreases with increasing lateral stress ratios, as shown in 

Figure 4a, suggesting that the fracture asperities tend to be 

sheared-off more under large lateral stress ratio than those 

under lower stress ratio. Figure 4a also shows that the stress 

ratio can reduce the dilation rate more effective than the con-

fining stress, o, can. This agrees with the experimental results 

obtained by Kapang et al. (2013) on fractures in sandstone. This 

is probably because the stress that is parallel to the fracture 

plane can cause localized stress concentration at the fracture 

asperities, and hence reduces the fracture shear strength. This 

is supported by the JRC measurements obtained after shearing, 

as shown in Figure 4b. The smoother sheared fracture surfaces 

(lower JRC’s) are obtained under higher lateral stress ratios. 

Examples of the laser-scanned images obtained before and after 

shearing are given in Figure 5, which confirms the visual 

observations of the post-test fractures that the sheared-off areas 

increase with the lateral stress ratio. 

6. Empirical Criterion 
 

 An attempt is made here to develop an empirical 

strength criterion that can explicitly incorporate the effect of the 

lateral stress ratio and the normal stress. The power equation is 

proposed as follows: 
 

 = n
                                          (6) 

 

where  and  are empirical constants. The above equation is 

fitted to the experimental results in the forms of -n diagrams 

in Figure 6. Non-linear behavior of the -n relation is 

observed. Regression analysis of the test data by SPSS software 

(Colin & Paul, 2012) are performed on Equation 6 using the 

peak shear strength data given in Table 1. The parameter  can 

be defined as 0.566 and 0.334 for rough and smooth surfaces. 

The parameter  decreases with increasing the stress ratios (p 

/o), which can be described by a linear equation: 

 
 = - (p /o)                                   (7) 

 
where  and  are empirical constants. For the tension-induced

 

 
 

Figure 4. Dilation rates (dn/ds) as a function of confining stresses (o) (a) and post-test JRC’s as a function of o (b). 

 

 
 

Figure 5. Three-dimensional laser scanning images of fractures before (a) and after (b) shearing. 
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Figure 6. Shear strengths () as a function of normal stress (n) for tension-induced fracture and smooth saw-cut surfaces. 
 

 

(rough) fractures the parameters  and  are 5.274 and 0.370. 

For the saw-cut (smooth) fractures  and  are 2.090 and 0.075. 

Equations 6 and 7 fit well with the test results (R20.9). 

 
7.  Strain Energy Density Criterion under Lateral  

     Stress Ratios 
 

 The activation energy has been widely used for the 

predictions of fault movements under great depth (high con-

fining pressures) and elevated temperatures (Odedra et al., 

2001; Ohnaka, 1995; Stesky, 1978), where the fault dilation is 

neglected (i.e. plastic deformation of the shear zone). For 

shallow faults or fractures with low temperatures the lateral 

dilation of the fractures (brittle deformation) can not be ig-

nored.  An alternative approach is used here. The strain energy 

density principle is applied to describe the fracture strength and 

deformation under high confining pressures. The distor-tional 

strain energy (Wd) required to displace the fractures can be 

defined as a function of mean strain energy (Wm) as follows: 

 

Wd =   Wm                                      (8) 

where  is an empirical constant. The distortional and mean 

strain energies can be calculated from the test results as (Jaeger 
et al., 2007): 

Wd = 3/2 oct  oct                                                   (9) 

Wm = 3/2 m  m                                                 (10) 

where oct and oct are octahedral shear stress and strain, and m 

and m are mean stress and mean strain. For the test conditions 

used here, the strain along the fracture strike is equal to zero 

(p= 0). As a result the shear and mean stress and strain at the 

peak point can be determined as: 

oct = (1/3) [2 (1,p  o,p)2]1/2                             (11) 

oct = (1/3) [(1,p  p,p) + (1,p  o,p)]1/2         (12) 

m = (1,p + p,p + o,p) / 3                                (13) 

m = (1,p + o,p ) / 3                                           (14) 

 
where 1,p, p,p and o,p are the stresses at the peak point, and 

1,p and o,p are the strains at the peak point. Assuming that the 

intact portion of the specimen is rigid, the vertical and lateral 
strains can be determined from the fracture displacements: 

1,p = d1,p / L                                      (15) 

o,p = do,p / W                                     (16) 

 

where d1,p and do,p are the vertical displacement and lateral 

displacement normal to the fracture strike, L is the specimen 

length (87 mm), and W is the specimen width (50 mm). Table 

2 gives the distortional and mean strain energy calculated for 

the rough and smooth fractures. Note that the strain that is 

parallel to the fracture strike is equal to zero because the test 

configurations (loading platens) do not allow lateral displace-

ment in this direction. 

 Regression analysis of Equations 8 indicates that  

equals to 4.78 for the rough fractures, and equals to 1.42 for the 

smooth fractures (Figure 7). The proposed criterion fit well to 

the test data with the correlation coefficient (R2) greater than 

0.9. It implicitly incorporates the effects of stress ratio and 

confining pressure on the fractures. The Wd obtained from the 

rough fractures under high stress ratio is in the lower portion of 

the curve. The mean strain energy can be related to the depth of 

the fractures. The distortional strain energy represents the 

deviatoric stresses that cause the shear displacement. The ratio 

of Wd to Wm (or ) is probably governed by the roughness and 

strength of the fracture asperities. The Wd-Wm curve of the 

smooth fractures would represent the lower bound of the energy 

required to shear the fractures. 

 From Equations 9 and 10 the Wd and Wm can be 

written as (Jaeger et al., 2007): 

Wd = 3G  oct
2                                    (17) 

Wm = (9/2) K  m
2                                            (18) 

  

where G and K are the shear and bulk modulus: 

 

G = E / [2(1+)]                                 (19) 

K = E / [3(12)]                               (20) 

 

where E is the elastic modulus, and  is the Poisson’s ratio.  

The slope of the Wd-Wm curve can be represented by: 
 

Wd / Wm = (oct
 /m)2 [(12) / (1+)]                (21) 
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Table 2. Distortional and mean strain energy densities for different p/o ratios. 
 

Fracture 

Types 
p/o 

p 
(MPa) 

o 

(MPa) 

d1,p 

(mm) 

do,p 

(mm) 
1,p 

(milli-strain) 
o,p 

(milli-strain) 

Wd 

(kPa) 

Wm 

(kPa) 

          

Tension-Induced 

Fracture 

0 

0 1 1.09 -0.33 12.53 -6.58 405.53 78.05 

0 3 1.11 -0.34 12.76 -6.74 470.88 91.68 

0 7 1.20 -0.38 13.79 -7.58 613.22 116.44 

0 12 1.22 -0.39 14.02 -7.76 767.65 147.66 

0 18 1.26 -0.41 14.48 -8.10 925.54 179.41 
         

         

1 

1 1 1.11 -0.36 12.76 -7.16 338.86 60.86 

3 3 1.18 -0.39 13.54 -7.78 420.07 78.05 

7 7 1.25 -0.43 14.37 -8.50 565.98 109.73 

12 12 1.35 -0.48 15.52 -9.56 707.63 139.59 

18 18 1.37 -0.49 15.75 -9.74 883.10 182.72 
         

         

1.5 

1.5 1 1.13 -0.39 12.99 -7.82 263.17 43.69 

4.5 3 1.20 -0.43 13.79 -8.56 327.12 57.83 

10.5 7 1.28 -0.47 14.71 -9.38 439.86 85.33 

18 12 1.37 -0.52 15.75 -10.30 559.21 116.46 
         

         

2 

2 1 1.15 -0.41 13.23 -8.12 235.62 37.63 

6 3 1.20 -0.43 13.79 -8.60 301.78 51.84 

14 7 1.32 -0.49 15.17 -9.90 453.05 79.42 

18 9 1.39 -0.53 16.02 -10.60 551.19 96.57 
         

         

2.5 

2.5 1 1.15 -0.42 13.22 -8.30 218.35 34.08 

5 2 1.18 -0.43 13.56 -8.60 239.69 39.66 

7.5 3 1.24 -0.46 14.25 -9.20 272.76 46.24 

12.5 5 1.29 -0.49 14.83 -9.70 334.25 59.90 

17.5 7 1.33 -0.51 15.29 -10.10 397.50 73.81 
         

         

3 

3 1 1.16 -0.43 13.38 -8.58 186.06 28.80 

9 3 1.25 -0.47 14.31 -9.40 234.82 41.10 

15 5 1.30 -0.49 14.94 -9.94 291.48 54.86 

21 7 1.34 -0.52 15.40 -10.36 343.35 67.75 
         

         

4 

4 1 1.19 -0.45 13.68 -8.92 155.42 24.77 

12 3 1.26 -0.48 14.43 -9.60 198.30 38.16 

20 5 1.34 -0.52 15.34 -10.40 258.68 53.72 
          

          

Smooth saw-cut 
surface 

0 

0 1 1.00 -0.05 11.49 -0.90 27.42 17.50 

0 7 1.02 -0.24 11.72 -4.80 46.28 35.58 

0 12 1.15 -0.36 13.22 -7.20 70.92 48.80 
         

         

1 

1 1 1.27 -0.13 18.14 -2.60 42.00 24.56 

7 7 1.29 -0.36 14.83 -7.20 57.25 38.54 

12 12 1.37 -0.51 16.71 -10.20 85.78 51.84 
         

         

2 

2 1 1.28 -0.14 14.71 -2.80 32.06 17.81 

6 3 1.30 -0.19 14.94 -3.80 43.29 31.03 

14 7 1.44 -0.38 16.55 -7.60 62.07 44.98 
          

 

Equations 17 through 21 are based on the linear 

elastic theory.  From the assumption posed in the previous 

section that the intact portion of the specimen is rigid.  All 

deformations measured during shearing can be taken as the 

axial displacement (d1) and the lateral displacement (do) of the 

fractures.  The do/d1 is defined here as the lateral displacement 

rate.  The energy ratio (Wd/Wm) of the tested specimens can 

therefore be approximated from the do/d1 as: 

 
Wd / Wm = (oct

 /m)2 [(1+2 do/d1) / (1 do/d1)]          (22) 

The (oct
 /m)2 function relates to the induced strains 

required to reach the peak strength of the fractures.  The [(1+2 

do/d1) / (1 do/d1)] function, called here as displacement 

function, relates to the fracture displacements.  The octahedral 

shear strain-to-mean strain ratio is plotted as a function of the 

mean stress for all stress ratios in Figure 8a.  The ratios increase 

with the mean stress (or depth). A higher stress ratio leads to a 

more plastic deformation of the fractures or less brittle 

movement.  The displacement functions are plotted as a 

function of mean stress in Figure 8b. The diagram suggests that 

the functions decrease when the confining pressures and the 

stress ratios increase. 
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Figure 7. Distortional strain energy (Wd) at peak shears strength as 

a function of mean strain energy (Wm).  

 
 

 

 
 

 
 

Figure 8. Octahedral shear strain-to-mean strain ratio as a function of 

mean stress (a), and displacement function as a function of 

mean stress (b). 

8. Discussion and Conclusions 
 

 Triaxial shear tests have been performed on rough 

(tension-induced) and smooth (saw-cut) fractures in Tak granite 

under confining pressures between 1 and 18 MPa with varying 

lateral stress ratios from 0 to 4. The results indicate that the 

rough fracture shear strengths decrease when the stress ratios 

increase. The areas of the sheared-off asperities increase with 

the confining pressure, as evidenced by the lower JRC values 

measured from the post-test fractures.  This results in the lower 

dilation rates at the peak strength (Figure 4). The effects of the 

stress ratio and confining pressure on the shear strengths of the 

rough fractures can be well described by a power equation 

(Equation 6).  The equation can be used as a strength criterion 

to determine the stability of engineering structures near ground 

surface (e.g., foundations, slope embankments and tunnels) 

where the applied shear and normal stresses and stress ratio are 

known. It may not be appropriate for use as a predictive tool for 

the fault movements where the needed stress components can 

not be monitored accurately at depths. 

 An attempt has been made at deriving a criterion that 

can be used to predict a shallow fault movement in the Tak 

granite batholith.  The distortional and mean strain energy 

densities are calculated from the test results.  Their linear 

relation has implicitly incorporated the effects of lateral stress 

ratio and confining pressure (Figure 7). The slope (δ) of the Wd-

Wm ratio is dependent of the fracture roughness and strength of 

the asperities. Assuming that the rock adjacent to a fault is a 

rigid body, and that all deformations are from the shear and 

dilation within the fault. The energy ratio can be derived here 

in terms of the shear strain-to-mean strain ratio and the 

displacement function. The strain ratios increase with confining 

pressure and stress ratio. The displacement functions decrease 

as the pressure and lateral stress ratio increase. Their 

components can be obtained from the on- or near- surface 

measurements.  This may allow estimating the strength of the 

shallow faults in the Tak batholith by calculating the changes 

of the energy ratios (or ) from the displacements monitored 

along the fault line. In principle the measured energy ratios 

along a fault line would slowly increase with time due to the 

tectonic forces. The earthquake or seismic events will occur 

when the energy ratio () reaches the criterion defined in Figure 

7.   

 It is recognized that there are other factors governing 

the fault strengths that are not studied here, for example pore 

pressures, displacement rates, temperature and fracture/fault 

roughness (Barton & Choubey, 1977; Belem et al., 2000; 

Blacic, 1975; Crawford & Currant, 1981; Curran & Leong, 

1983; Yeo et al., 1998). The effects of these factors may alter 

the accuracy of the proposed equation, but they would not 

change the main conclusions drawn here. The proposed strain 

energy concept nevertheless is a precursory step toward the 

prediction of the seismic activities caused by the movement of 

shallow fault zones. 
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