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Abstract 
 

In this research, the Compressive Strength (CS) and Thickening Time (TT) of oil well cement with different  

Metakaolin (MK) dosages was evaluated in the presence of Nanoclay (NC). The experiments followed a randomized Box- 

Behnken Design (BBD) using 5 - 15 wt. % MK by weight of cement and 5-15 wt. % NC by weight of MK. The CS and TT were 

assessed and optimized using Response Surface Methodology (RSM). The results show that CS increases linearly with NC and 

hyperbolically with MK. Cement slurries with 5–15 wt.% NC shorten TT by about 35 minutes in the presence of 5 wt.% MK. A 

TT reduction of 103 minutes was recorded when MK was increased to 15 wt.% in the slurry with 5wt.% NC. At the optimum 

conditions with 10.78 wt. % MK and 13.73 wt. % NC, CS and TT were 3029±2.65 psi and 410±1.25 minutes, respectively. 
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1. Introduction 
 

Oil well cementing was introduced in the late 1920s 

primarily because drilling fluid alone cannot prevent the well 

bore from collapsing (Joshi & Lohita, 1997). Other reasons  

for cementing oil wells include: protecting oil producing  

zones against salt water, protecting the casing from collapse 

under pressure, protecting well casings against corrosion, 

reducing  the  risk  of  groundwater  contamination  by  hydro- 
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carbons or salt water, and zonal isolation. There are two 

critical conditions that a successful oil well cement should 

satisfy: ability to remain pumpable for a sufficient time to 

ensure proper placement in the well bore, and ability to build 

and maintain sufficient mechanical strength to provide 

adequate support for the casing. 

Ordinary Portland Cements (OPCs) have been used 

as oil well cements for many years. However, OPCs are 

reported to undergo strength loss with increased porosity and 

severe loss of durability at elevated temperatures, in acid rich, 

geothermal and deep oil well environments (Ma, Chen, & 

Chen, 2014; Won, Lee, Na, Lee, & Choi, 2015). Thus a  

special  class  of  cements,  the  oil  well  cements      (OWCs), 
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emerged. OWCs are classified into grades depending on their 

C3A (Tricalcium Aluminate) contents. The details of this 

classification are available elsewhere (API Specification 10A, 

2010). Of all these classes, the classes A, G and H are the  

three most commonly used for cementing oil and gas wells. 

While class A is used in milder, less demanding well con- 

ditions, classes G and H are usually specified for  deeper, 

hotter and higher pressure well conditions (Eric, Joel, & 

Grace, 2016). 

The use of supplementary cementitious materials 

(SCMs) for class G cements has received increased attention 

over the last few decades. These materials react with Ca(OH)2 

released during cement hydration and convert it into high 

crystallinity calcium silicate hydrates (Yuhuan, Jiapei, Sheng 

lai, Huajie, & Chenxing, 2016). Buntoro & Rubiandini, (2000) 

studied the mechanical properties of cement slurry with 35 

wt.% silica flour. The results after 3 days of curing show 

higher shear bond strength and compressive strength. Li, Sun, 

and Li, (2010) compared the mechanical properties of MK 

cement with alkali-treated slag cement; the results obtained 

showed that cement pastes containing MK exhibited better CS 

at elevated temperatures. The behavior of blended cement 

mortars containing nano-MK at elevated temperatures was 

investigated by Morsy, Al-Salloum, Abbas, and Alsayed, 

(2012). Their conclusion was that at the low temperature of 25 
oC, 5 wt% nano-MK gave optimal mortar; and at a tem- 

perature of 80 oC, 15 wt% nano-Mk produced better CS. 

Shatat (2013) studied the hydration behavior and mechanical 

properties of blended cement containing various amounts of 

rice husk ash in the presence of MK. They recorded better 

mechanical behavior than that of OPC with ternary blends of 

cement containing 5–10 wt% rice husk ash and 15–20 wt% 

MK. Nadeem, Memon, and Lo, (2014) evaluated fly ash and 

MK containing concrete at elevated temperatures using stif- 

fness damage test. The hardened cement blend showed better 

mechanical behavior than OPC. 

Mechanical properties of OWCs depend also on the 

slurry density. The various weighing agents and extenders 

control the compressive strength and the time after initial 

mixing when the cement can no longer be pumped. High 

specific gravity and finely divided solid materials such as 

barites, bentonites and micro-sands are used to increase the 

density (Halliburton, 2009). Micro-sands, according to 

Chenevert and Shrestha, (1991) are capable of reducing the 

total chemical shrinkage thereby reduce gas leakage, while 

reducing the free water and preventing environmental pro- 

blems. For field applications, it is expected that an additive 

should influence only that property for control of which it is 

added. Experimental Design has been successfully employed 

to resolve how components interact in mixtures and has 

assisted in solving many engineering problems (Arinkoola & 

Ogbe, 2015; Salam, Arinkoola, Oke, & Adeleye, 2014). 

Additives with multiple and conflicting effects pose serious 

challenges, as improvement of one property of the slurry  

could result in negative effects on another one. The objective 

of this present study was to investigate and optimize the 

coupled effects on CS and TT properties in ternary blends of 

class G cement with 5–15wt% MK and 5–15wt% NC, by 

using experimental design and response surface methodology. 

2. Materials and Methods 

2.1 Materials 

The class G oil well OPC used was obtained from 

SOWSCO Oil Well Service (Nig.) Ltd,  Port  Harcourt, 

Nigeria. Table 1 shows the various oxides in and physical 

properties of the cement. The kaolin clay from which MK was 

synthesized was locally sourced from a clay deposit site in 

Okpella,  Etsako  East  LGA  of  Edo  state,  Nigeria   (latitude 

7.120 N, longitude 6.280 E). The Nanoclay (1.31 ps) used was 

a product of Nanocor, Inc. purchased from SIGMA  

ALDRICH (M) Sdn. Bhd, Malaysia. It was made up of 

montmorillonite clay that was surface modified with 15 – 

35wt% octadecylamine and 0.5 - 5 wt% aminopropyl- 

triethoxysilane. Other chemical additives, such as fluid loss 

control additive (FLA-001), dispersing agent (polynapthalene 

sulfate), retarder, gas block additive (SWLGX3) and antifoam 

were provided by SOWSCO, Nigeria. 

 

2.2 Synthesis of Metakaolin 

The oven dried kaolin clay sample was ground using 

an electric grinder (Marlex Appliances PVT Limited) and 

screened to fine powder (~20 µm) before it was subjected to 

calcination in a muffle furnace (NYC-12 model) at 750 oC for 

2 h. The chemical composition of MK produced is shown in 

Table 2. 

 

2.3 Cement slurry design 

Slurry formulation was done according to API 

standard RP 10B-2012. The NC and MK contents in the 

cement slurry were randomized within the range 5-15 wt.%. 

While the dosage of MK was determined by weight of cement 

(BWOC), the NC dosages were relative to the weight of MK 

(BWOMK). Table 3 shows the fixed concentrations of addi- 

tives and matrix for nine pastes randomized according to BBD 

(Start Ease Design Expert Version 11). The fluid loss control 

additive (12-18 wt%), retarder and dispersing agent (7 wt%) 

were dissolved in 380 ml of water and transferred into the cup 

of waring blender. Then, the blended cement was added  

within 15 s to the aqueous solution with a stirring rate of 4000 

rpm and mixed for 35 s at 12000 rpm. After this the cement 

slurry was placed in 5 cm cube molds for CS test and a 

pressurized consistometer was used for consistency measure- 

ment. 

 

2.4 Compressive strength test 

The test conditions and well specifications for CS 

test are presented in Table 4. The CS of different pastes was 

measured using an Ultrasonic Compressive Analyzer 

(Chandler Engineering model 4265 UCA). The cement slurry 

was placed in an autoclave unit in the UCA at BHST of 80 oC 

and pressure of 3500 psi, then a sonic wave was transmitted 

through it. The CS developed after 24 h for two samples was 

recorded automatically and transferred to data acquisition 

software (Chandler Engineering Model 5270). The average 

value of the CS was recorded. 
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Table 1. Chemical composition and physical properties of Class G 

cement 
 

Oxides Wt% 

CaO 64.2 
SiO2 19.4 
Al2O3 5.5 
Fe2O3 4.5 
MgO 2 
SO3 2.8 
P2O5 0.1 
K2O 0.6 
Ignition loss 0.19 
Density (g/cm3) 3.16 
Specific surface area (M2/kg) 335.3 

 

Table 2.     x-Ray Fluorescence (XRF) Analysis of MK 
 

Oxides Wt% 

CaO 0.27 
SiO2 53.68 
Al2O3 37.39 
Fe2O3 4.94 
MnO 0.06 
SO3 0.40 
P2O5 1.19 
K2O 1.25 
Ignition loss 1.20 

 

Table 4.     Test specifications 

(Bc). For each run, the test was terminated when the slurry 

achieves a consistency of 100 Bc. The slurry container which 

is equipped with a stationary paddle assembly is rotated at a 

speed of 150 rpm. The experiment was repeated twice  for  

each run and the average values recorded are shown in Table 

4. 
 

3. Results and Discussion 

3.1 Compressive strength 

The results obtained for the CS of all cement slur- 

ries tested with different dosages of MK and NC after 24 h are 

shown in Figure 1. For 5 wt% NC in the cement slurry, it took 

the cement paste to attain the minimum CS of 500 psi periods 

of 11:05 h, 15:48 h, 12:10 h and 10:04 h when 0, 5, 10 and 15 

wt% MK dosages were used, respectively. This indicates  that 

15 wt% MK substitution in the presence of 5wt% NC 

accelerated the attainment of minimum CS to about 1 hour 

earlier than for the control with 0 wt.% MK. A similar effect 

was observed when the NC dosage was increased to 10 and 15 

wt.%. The increment is attributed to the released of calcium 

hydroxide and silica for pozzolanic reaction (Nadeem,  

Memon, and Lo, 2013). After 24 h curing time, the maximum 

CS obtained for the various dosages of MK and NC ranged 

within 2560-3100 psi, while 1,997 psi was obtained for the 

control paste. The highest CS was recorded at 15 wt% of MK 

and NC each, while the lowest CS recorded was at 5 wt% MK 

and NC. However, CS increases non-uniformly with NC dose 

at a specific dose level of MK. For example, with 15 wt. % 

MK in the cement paste, as shown in Figure 1(a-c), CS of 

3045, 3090 and 3100 psi were recorded for 5, 10 and 15   wt% 

   NC, respectively. Similarly, for a fixed amount of NC in the 

mix, the cement samples with MK replacement were observed 

to acquire remarkably higher CS than the sample with no MK 

substitute. This observation could be attributed to the higher 

rate of dissolution and hydration of MK, which makes more 

silica available for the pozzolanic reaction. It was observed, 

therefore, that both MK and NC show positive effects on the 

CS of cement. 
 

2.5 Thickening time 

The thickening time is related to pumpability time 

under the well conditions of temperature and pressure (Salam 

et al., 2014). The test was performed using a High Pressure 

High Temperature (HPHT) consistometer (Chandler Engi- 

neering,  model  7720).  The  unit  of  consistency  is  Bearden 

3.2 Thickening time 

The results obtained for the TT measured at 70 Bc 

consistency for 10 cement slurries (including the control) that 

were tested, containing different doses of MK and NC, are 

shown in Figures 2–4. TT for MK and NC laden cements 

ranged in 334 – 492 minutes at 70 Bc. When this is  compared 

 

Table 3.    Box–Behnken design matrix for substitution of cement using MK and NC 

 

Run A:Metakaolin (wt.%) B:Nanoclay (wt.%) Fluid loss (ml) Dispersant (ml) CS (psi) TT (mins) 

1 -1 0 7 12 2651±1.12 463±2.10 
2 -1 1 7 12 2761±0.78 432±1.32 
3 0 1 7 12 3024±1.02 408±1.21 
4 -1 -1 7 12 2560±2.10 470±0.65 
5 0 0 7 12 2964±1.02 421±0.23 
6 0 -1 7 12 2779±0.87 428±0.05 
7 1 1 7 18 3100±0.67 334±0.04 
8 1 -1 7 18 3045±1.13 370±1.01 
9 1 0 7 18 3090±1.03 363±0.45 

Characteristics Test conditions 

Bottom Hole static Temperature 

(BHST) 
80 oC (176 oF) 

Bottom hole Circulation Temperature 

(BHCT) 
66 oC (150 oF) 

Bottom Hole pressure 2.41E7 pa. (3500 psi) 
Well depth 1524 m (5000 ft) 
Casing diameter 0.33m (13 3/8 in) 
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Figure 1.  Effects of MK dose on compressive strength of cement slurry in the presence of various amounts of nano-clay 
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Figure 2.   Time profiles of thickening of cement slurry with 5% MK, (a) 5 % NC, (b) 10 % NC, and (c) 15 % NC 
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Figure 3.   Time profiles of thickening of cement slurry with 10 % MK, (a) 5 % NC, (b) 10 % NC, and (c) 15 % NC 
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Figure 4.   Time profiles of thickening of cement slurry with 15 % MK, (a) 5 % NC, (b) 10 % NC, and (c) 15 % NC 
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with the control slurry with 408 minutes TT, it is clear that the 

addition of certain wt% of MK and NC increased the 

thickening time. This is desirable because there would be 

enough time for pumping of cement before it sets. It is 

expected that within the first 30 minutes of pumping, the 

consistency of cement should be below 30 Bc (API RP 10B, 

2012). A quick survey of Figures 2-4 shows a high degree of 

compliance below 30 Bc, including the control experiment. 

However, noticeable is the inconsistency and initial fluctua- 

tions observed especially in Figure 3 (c) and Figure 4 (a) after 

the first 30 minutes. The initial fluctuations in Figure 2(b) and 

Figure 4 (c) can be due to calcium ion (Ca2+) chelation. 

According to Huajie, Yuhuan, Jay, and Zhonghou,  (2015), 

MK has the ability to chelate Ca2+ generated by the hydration 

of cement. The chelation of Ca2+ can cause  a  consistency 

wave at initial thickening stages. Comparing all the slurries 

with the control experiment, a longer TT is guaranteed even 

with minimal amounts of MK and NC. However, a much 

higher TT was recorded with 5wt% of MK and NC each. 

However, higher CS was obtained with values above 5 wt%. 

Thus, to ensure adequate CS and TT, the two variables need to 

be optimized. Similarly, the shortest TT was recorded with 15 

wt % of MK and NC each. For sustainable substitution of 

cement, accurate control of the TT is necessary. If the TT is 

too short, the cement fails to reach its required placement, 

while too long a TT leads to costly delays (Billingham, 

Francis, King, and Harrisson, 2005). 

 

4. Optimization Study 

4.1 Analysis of variance (ANOVA) 

For the optimization study, building an objective 

function by use of numerical models is necessary. The 

numerical modeling used Analysis of Variance (ANOVA), as 

presented in Table 5. The F-values 865.49 and 67.32 obtained 

for CS and TT indicate that the selected quadratic models are 

significant. There is only a 0.01% and 1.47% chances that 

these F-values could occur randomly. The value of P-statistic 

below 0.005 indicates high degree of significance of a model 

term. Since the response surface methodology was adopted, 

only terms that satisfy this condition were selected, and 

therefore MK, NC, MK*NC, MK² and NC2 are the significant 

model terms. 

For both responses, the predicted R² of 0.9911 for 

CS and 0.8793 for TT are in reasonable agreement with the 

Adjusted R² of 0.9980 for CS and 0.9793 for TT, since the 

difference is less than 0.2 in both cases. The  equations in 

terms of actual factors are presented in equations 1 and 2. 

 

CS(psi) = 1890.556+132.21111*MK+27.3111 

*NC-1.46*(MK*NC)-3.78*MK2 (1) 

 

TT(mins) = 497-2.91*MK-0.114*NC+0.206* 

(MK*NC)-0.423*MK2-0.2*NC2 (2) 

Table 5.     ANOVA for CS and TT model selection 

Equations 1 and 2 can be used to make predictions 

about the response for given levels of each manipulated factor. 

Here, the levels should be specified in the original units for 

each factor. 

 

4.2 Main effects of MK and NC on CS and TT 

Figure 5 shows the effects of different dosages of 

MK and NC on CS and TT of cement pastes. For each of the 

variables investigated, TT and CS exhibited distinct and 

opposite behaviors (i.e. TT decreased with MK, while CS 

increased with MK). It is obvious from Figure 5 that as MK or 

NC increases, the TT decreases. This reduction in TT is 

desirable since too long thickening time leads to costly delays 

and increases cementing costs. However, a very short 

thickening time leads to premature setting of cement in the 

casing or pumping equipment (Coveney, Fletcher, & Hughes, 

1996). The dominant effect of MK on TT was obvious with a 

sharp TT reduction when equal doses are used. MK and CS 

exhibit a non-linear relationship evidenced in Figure 5. As the 

MK dose increases, the CS of the cement increases dis- 

proportionately. On the other hand, NC shows a linear rela- 

tionship with CS. As NC dose increases, the CS of the cement 

increases almost linearly. The curved response to  MK 

indicates existence of an optimum. This may be the main 

reason why only 5-15wt% cement substitution is mostly 

reported in the literature. Beyond the optimum amount, further 

increase in MK could reduce CS and perhaps increase TT. As 

an exception, the use of MK up to 20wt% has also been 

reported (Yuhuan Jiapei, Shenglai, Huajie, & Chenxing,  

2016). 

 

4.3 Interaction effects of MK and NC on CS and TT 

Figure 6 shows effects of simultaneous increases in 

doses of MK and NC on TT and CS at test conditions. It is 

observed that increasing MK dose from 5 to 15  wt% 

decreased TT from 470 to 367 min when the NC was fixed  at 

5 wt% in the cement slurry. When the dose of NC was 

increased to 15 wt%, TT decreased from 435 to 353 when MK 

dosage was increased from 5 to 15 wt%. From the two curves 

on the TT plot (in red and black), it is inferred that a further 

increase of NC beyond 15 wt% could further reduce TT. 

However, the same could not be said of MK, as the two curves 

tend to approach each other at some MK dosage beyond the 

studied maximum limit of 15 wt%. The interaction of the two 

variables on CS indicates that both parameters contributed 

positively to the cement strength. Higher dosage of NC 

implies higher CS of cement. At maximum NC dosage of 15 

wt% (red color), varying the MK dosage from 5 to 14 wt% 

increased the CS from 2757 to 3103 psi. It is noted that an   

MK dosage beyond about 14 wt% produced no significant 

increase in CS, which is a very good motivation for opti- 

mization. 

 

Properties Model Adj. R-square Pred. R-square DF F-value p-value SSE MSE 

CS (psi) Quadratic 0.998 0.9911 4 865.49 <0.0001 3.13E+05 78311.11 
TT (mins) Quadratic 0.9793 0.8793 5 67.32 0.0147 10386.16 2077.23 
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Figure 5.   Factor effects on TT and CS of partially substituted cement 
 

Red colour-maximum, Black colour-minimum 

 
Figure 6.   The factor effects of MK and NC on TT and CS of partially substituted cement 

 

4.4 Optimization studies 

The numerical optimization using desirability func- 

tion as available in the Design Expert version 11 was 

employed to minimize TT and maximize CS of the cement 

slurry within the selected ranges of 5 – 15 wt% for MK and 

NC. After 100 iterations, the solution with desirability of 1  

was selected as optimum. The solution points are shown on a 

3-Dimensional plot in Figure 7. At this point, 10.78 wt% MK 

and 13.73 wt% NC that produced the optimum, CS and TT of 

3036 psi and 403 minutes were model predicted, respectively. 

The optimum point was also validated experimentally. The 

experiments were replicated twice with averages and standard 

deviations of 3029 ±2.65 psi and 410±1.25 minutes for  CS 

and TT, respectively. 

5. Conclusions 

The coupled effects in ternary blends of class G 

cement with MK and NC were investigated experimentally 

and blend ratio of the mixture was optimized for effective CS 

and TT using response surface methodology. Based on such 

analysis, the following conclusions are drawn: the  

compressive strength of cement paste increased with MK and 

NC dose levels. Although the CS increases linearly with NC 

dose, the effect is less pronounced when compared with  

effects of MK. MK effect on CS is hyperbolic and outstanding 

within some limits. Beyond 13 wt% dose, MK shows no 

significant increase of CS in the presence of NC. MK and NC 

are good reducers of TT and are therefore applicable 

cementing  if  strongly  elevated  temperatures  are   expected. 
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Figure 7. Surface plots showing interactions of factors at optimal TT 

and CS 

 
They both exhibited disproportionate relationship with TT. 

This reduction in TT is desirable, since too long thickening 

time delays the process and increases operating costs. The 

modeling of effects of MK and NC on CS and TT revealed a 

synergy between these manipulated variables. Since  MK  is 

not expensive, is readily available, and only very low doses of 

NC were tested in this present study, while they produced 

tremendous increases in CS with a reduction of TT, it is 

therefore recommended to investigate similar ternary blends at 

much higher temperatures and pressures. 
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