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Abstract 
 

In this paper, we present numerical method for solving integro-differential equations of fractional order based on a 

hybrid of block-pulse functions and Taylor polynomials. Fractional derivative is described in the Caputo sense. Some numerical 

examples are presented to demonstrate the theoretical results. 
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1. Introduction 
 

The fractional calculus is important in Science and 

Engineering, including earthquake engineering, biomedical 

engineering, and fluid mechanics. Some numerical algorithms 

for solving integro-differential equation of fractional order can 

be summarized, such as sinc-collocation method (Altan, 

2017), Taylor expansion method (Huang, Xian-Fang, Zhao, & 

Xiang-Yang,   2011), Adomian decomposition method (Mittal 

& Nigam, 2008), Least Squares Method and Bernstein 

Polynomials (Oyedepo, Taiwo, Abubakar, & Ogunwobi, 

2016), and Second kind Chebyshev wavelets (Setia, Liu, & 

Vatsala, 2014).  

 In this paper, we present a numerical method for 

solving integro-differential equations of fractional order based 

on a hybrid of block-pulse function and Taylor polynomials. 

Our study focuses on a class of integro-differential equation of 

fractional order, of the type    
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}0{Ni  where )(D  is Caputo’s fractional derivative, 

  is the order of the fractional derivative, ),( stk  is a 

smooth function, t and s  are real variables and )(ty  is a 

given function. This type of equations arise in the mathe-

matical modeling of various physical phenomena, such as heat 

conduction in materials with memory. Moreover, these 

equations are encountered in combined conduction, convec-

tion and radiation problems. 

 

2. Basic Definitions 
  

In this section, we present the definitions of 

fractional calculus theory and some of its basics.  

 

Definition 1.   Let Rbaf ],[:  be a function,   a 

positive real number, and   the gamma function. The 

Riemann-Liouville fractional integral of order  is defined by 
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Definition 2.   Let Rbaf ],[:  be a function,   a 

positive real number, n  the integer satisfying nn  1 , 

and   the gamma function. The Caputo’s fractional 

derivative of order  is defined by  
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Riemann-Liouville fractional integral and Caputo’s 

fractional differentiation are linear operators, similar to integer 

order differentiation, i.e.,   )()()()( tgItfItgtfI     

  )()()()( tgItfItgtfI     and   )()()()( tgDtfDtgtfD     

where   and   are constants. 

Next, we mention properties of the operators 
I  

and 
D  as follows 
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for any positive real number   such that nn  1  and 

Nn . 

 

Definition 3.   The second kind Fredholm integral equation is 

defined by  



b
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where   is a constant and ),( xtk  is a function of variables 

x  and t . 

 

3. Hybrid of Block-Pulse Functions and Taylor  

    Polynomials  
   

 The hybrid function denoted by )(tb
nm  is defined 

by  
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where n  is the order of  block-pulse functions, Nn ,...,3,2,1  

and 1,...,2,1,0  Mm . The Taylor polynomial of order m   

in (7)  is defined by 
m

m ttT )( . We  approximate )(tf  by 
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Next, we will introduce operator 
I on a hybrid 

function given by 
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Similary, operator 
D  is given by 

                                                 

  0,),(),( tBtBD .                       (11) 

 

4. Numerical Method 
  

 Consider  (1)  where )(D  are operators defined as 

in (3). We assume that    is the smallest integer greater than 

or equal to   and expand )(tfD
 with a hybrid of block-

pulse functions and Taylor polynomials as  
 

).()( tBCtfD T
                                                           (12) 

 

Operating with 
I  on both sides of the (12) by using (4) and 

(10). Thus, the approximate solution is given by  
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Calculating )(tfD
 from (13), we get  
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Applying  (13) and (14) in (1), we get 
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We obtain an MN    system of equations in 

MN  unknown constants
nm

c .  The system of equations is 

then solved by substituting ( 15)  with ,
2

1

NM

i
t

i


  where  
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12,,1,0  NMi  .  The gained values of initially unknown 

constants are substituted in ( 13)  in order to get the required 

approximate solution.  

 

5. Numerical  Examples 
 

Example 1. Consider the following fractional integro-

differential equation  
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subject to   00 f , with the known exact solution 

  tttf  2
. 

We solve this problem by using the hybrid functions 

with 2N  and 2M . We let  
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From (12) and (13), we have  
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From (18), we get 
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Next, applying (18) and (19) in (16) we have 
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Calculating )5.0,(tBCT
 by using (2), we have 
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We substitute in ( 21)  
8

3
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8

2
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1057083.1 c . Hence we get )(1057083.1)( 2162 tttttf     

)(1057083.1)( 2162 tttttf   . Figure 1 shows the exact solution and the 

approximate solution and Figure 2 shows the absolute error in 

]1,0[ . 

 

Example 2. Consider the following fractional integro-

differential equation         
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subject to   00 f , with the known exact solution 

  3tttf  . 

Here, we solve this problem by using the hybrid 

functions with 1N  and 3M . We let  
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Figure 1. Numerical results of Example 1. 
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Figure 2.   Absolute error of Example 1. 
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Calculating )5.0,(tBCT  by using (2), we have 
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We substitute in (27)  
3
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The constants obtained are 
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312 c . Hence we get   32151056593.2 ttttf   . 

Figure 3 shows the exact solution and the approximate 
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Figure 3. Numerical results of Example 2. 

 

solution in ]1,0[ , Figure 4 shows the absolute error in ]1,0[ , 

and Table 1 shows the absolute error of Example 2. 

 

Example 3. Consider the following fractional integro-

differential equation       
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subject to   0)0('0  ff , with the known exact solution 

  2ttf  .  

Here, we solve this problem by using the hybrid 

functions with 1N  and 1M . We let 
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Table 1. Absolute error of Example 2. 

 

t  
Absolute error of standard least squares 

method (SLM) 

Absolute error of perturbed least squares 

method (PLM) 

Absolute error of the present 

method 

    

0.0 3.478 x 10-5 1.0800 x 10-4 0 
0.1 1.6795 x 10-5 9.1044 x 10-5 2.14142 x 10-17 

0.2 2.7842 x 10-6 7.8855 x 10-5 7.49707 x 10-18 

0.3 7.2646 x 10-6 7.1358 x 10-5 2.57642 x 10-17 
0.4 1.3243 x 10-5 6.8475 x 10-5 6.23823 x 10-17 

0.5 1.5190 x 10-5 7.0128 x 10-5 8.63701 x 10-17 

0.6 1.3106 x 10-5 7.6237 x 10-5 8.17404 x 10-17 
0.7 6.9911 x 10-6 8.6724 x 10-5 3.25059 x 10-17 

0.8 3.1530 x 10-6 1.0151 x 10-4 7.73205 x 10-17 

0.9 1.7325 x 10-5 1.2052 x 10-4 2.63726 x 10-16 

1.0 3.5224 x 10-5 1.4367 x 10-4 5.42698 x 10-16 
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Figure 4. Absolute error of Example 2. 

 

From (30), we get 
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We substitute in (32) 
2

1
0 t . The constant obtained 

is 210 c . Hence we get   2ttf  . Figure 5 shows the exact 

solution and the approximate solution in ]1,0[ . 
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Figure 5. Numerical results of Example 3. 

 

Example 4. Consider the following fractional integro-

differential equation         
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subject to   00 f , with the known exact solution 
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From (35), we get 
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Next, we substitute (35) and (36) in (33), then 
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get the approximate solution as   32 t0.48243t1.24669t 1.23137 )( tf  

32 t0.48243t1.24669t 1.23137 )( tf . Figure 6 shows the exact solution and the 

approximate solution in ]1,0[  and Table 2 shows a comparison 

of exact solution with approximate solution. 
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Figure 6. Numerical results of Example 4 

 
6. Conclusions 
 

 In this work, we presented numerical solutions to 

four examples by using a hybrid of block-pulse function and 

Taylor polynomials. We compared the approximate results 

with the exact solutions, and it was seen that our method 

provides better approximate solutions than SLM and PLM. 



132 N. Khongnual & W. Thadee / Songklanakarin J. Sci. Technol. 43 (1), 127-132, 2021 

 
 
 

Table 2. Comparison of exact solution with approximate solution 
 

t  Exact solution Chebyshev wavelet solution with 2,4  Mk  Approximate solution of the present method 

    

0.1 0.1316 0.1360 0.1351 

0.2 0.2894 0.2955 0.2922 

0.3 0.4643 0.4705 0.4685 
0.4 0.6530 0.6587 0.6611 

0.5 0.8536 0.8584 0.8670 

0.6 1.0648 1.0713 1.0834 
0.7 1.2857 1.2931 1.3073 

0.8 1.5155 1.5233 1.5359 

0.9 1.7538 1.7614 1.7663 
1.0 2.0000 2.0070 1.9956 
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