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Abstract 
 
This study investigated the effect of aged garlic extract (AGE) on spatial learning and memory ability using Morris 

water maze (MWM) test in amyloid- (A) induced-neurotoxicity rats. Pretreatment of AGE at oral doses of 125, 250 and 500 

mg/kg for 8 weeks significantly prevented the learning and short-term memory impairment in A-induced neurotoxicity rats. 

Histological analysis has shown that pretreatment of AGE reversed the neuron loss in the CA1 and CA2 regions of hippocampus 

of A-induced neurotoxicity in a comparable effect of ascorbic acid. By DPPH and FRAP determination, AGE had high 

antioxidative activity. Pretreatment of AGE caused significant increases of superoxide dismutase (SOD) and glutathione 

peroxidase (GPx) activities, no significant change in catalase (CAT) activity, and a significant decrease of malondialdehyde 

(MDA) level of the A-induced rat brain homogenate. The results suggest that AGE ameliorates the cognitive dysfunction in A-

induced neurotoxicity rats via its antioxidative effect. 
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1. Introduction 
 

The hippocampus, as a key structure in forming 

cognitive maps and the primary region that mediates the 

spatial abilities is affected in the initial stages of Alzheimer’s 

disease (AD) (Moodley et al., 2015). Amyloid-β (Aβ), is a 

major component of neuritic plaques in the brain tissue of AD 

patients (Choi et al., 2014). The accumulation of Aβ induces 

an increase in intracellular reactive oxygen species (ROS),

 
which are usually removed by the protective endogenous 

antioxidant systems. However, the overproduction of ROS can 

lead to a damaging cycle of lipid peroxidation, depletion of 

natural antioxidants, and disruption of normal cellular 

metabolism (Shishehbor and Hazen, 2004). Aβ-induced 

oxidative stress and neuronal death have been reported in AD 

brains (Harris, Hensley, Butterfield, Leedle, & Carney, 

1995).With high oxygen demand and abundance of 

peroxidation-susceptible lipid cells, the brain is vulnerable to 

the effects of ROS(Kim et al., 2015) and the hippocampus is 

most sensitive to oxidative stress (Candelario-Jalil, Mhadu, 

Al-Dalain, Martínez, & León, 2001). Following oxidative 

stress and accumulation of ROS, there are hippocampal cell 

death and impairment of learning and memory, especially of 
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the spatial type (Yang, Park, & Song, 2013). Morris water 

maze (MWM) test was commonly used for assessment of the 

impairment of hippocampus-dependent spatial memory in 

animal models (Frisch, Kudin, Elger, Kunz, & Helmstaedter, 

2007). Dietary supplements containing antioxidant-rich plant 

extracts have been shown to improve cognitive function in 

both humans and animals (Casadesus et al., 2004; Cohen-

Salmon et al., 1997). Furthermore, antioxidant enzymes and 

malondialdehyde are currently considered to be the most 

important markers of oxidative stress (Dalle-Donne, Rossi, 

Colombo, Giustarini, & Milzani, 2006). Antioxidant-enriched 

diets were shown to increase spatial memory scores in the 

MWM test and activity of antioxidant enzymes, including 

superoxide dismutase (SOD),catalase (CAT),and glutathione 

peroxidase (GPx), in aging animals (Rasoolijazi et al., 2015). 

Therefore, antioxidants may attenuate Aβ-induced neuro-

toxicity and cell death, leading to the amelioration of 

AD-induced impairment of spatial memory. 

Aged garlic extract (AGE), prepared through the 

prolonged aging of garlic in an organic solvent, is a functional 

product of garlic (Allium sativum L.) and is rich in stable 

organosulfur compounds such as S-allyl cysteine (SAC), S-

allylmercaptocysteine (SAM), and other substances with 

important biological activity(Amagase, Petesch, Matsuura, 

Kasuga & Itakura, 2001). Multiple components present in 

AGE are known to exert protective effects, as has been 

demonstrated in both in vitro and in vivo systems (Chauhan, 

2006; Nishiyama, Moriguchi, & Saito, 1997). Aged garlic 

extract and SAC have been reported to be neuroprotective 

against Aβ-induced memory impairment in ICR mice, as 

evaluated by a Y-maze test and a passive avoidance task 

(Jeong et al., 2013). Although previous studies have 

demonstrated that SAC and AGE have anti-amnesic and 

neuroprotective effects (Hermawati, Sari, & Partadiredja, 

2015; Jeong etal., 2013), little is known about the spatial 

learning and memory effects that result from the antioxidant 

activities of AGE in Aβ-induced animal models. The present 

study, thus, examines the effects of AGE in various doses on 

spatial learning and memory performance in rats. Moreover, 

we also investigated the effects of AGE on the alteration of 

malondialdehyde (MDA) and three antioxidant enzymes in the 

cerebral cortex, including SOD, CAT, and GPx. 

 

2. Materials and Methods 
 

2.1 Plant materials and chemicals 
 

Aged garlic extract (AGE) was supplied by the 

Center for Research and Development of Herbal Health 

Products (CRD-HHP) at Khon Kaen University in Khon 

Kaen, Thailand. It was prepared by maceration fresh native 

garlic in 30% ethanol for 13 months in the dark at room 

temperature. After filtration and evaporation, a dried AGE 

powder was standardized to contain 30.96 mg/g of SAC and 

32 μg/g of allicin (Petty patent No. 3506, Thailand). All 

chemicals in this study were analytical grade.  

 

2.2 Antioxidant activity  
 

The modified 2,2-Diphenyl-1-Picrylhydrazyl radical 

(DPPH) scavenging capacity assay was used (Sripanidkulchai 

& Fangkrathok, 2014)and the capability to scavenge DPPH 

radicals was expressed as a concentration to give 50% 

inhibition (IC50) with vitamin C as a reference compound. The 

Ferric Reducing Antioxidant Power (FRAP) assay was used 

and the data were expressed as μmol Fe2+/g of crude extract 

(Benzie & Strain, 1996). 

 

2.3 Experimental animals  
 

All experiments were conducted in accordance with 

the National Institute of Health (NIH) Guide for the Care and 

Use of Laboratory Animals, which were approved by the 

Ethics Committee of Khon Kaen University (Approval No. 

0514.1.12.2/81). The animals obtained from the National 

Animal Center at Mahidol University (Bangkok, Thailand), 

were kept at 25±2°C with a relative humidity of 50-70% and 

maintained on a 12-h light /dark cycle (06:00–18:00 h) with 

ad libitum of food and water. A total of forty-eight male 

Wistar rats (180-220 g and 8-week age) were used in this 

study. After one week of familiarization with the sur-

roundings, the animals were subjected to a five-day MWM 

training period. They were then housed at four rats per cage 

and classified into six groups (n=8) as follows:    

Group 1 (V+ACSF) received distilled water and was 

injected with artificial cerebrospinal fluid (ACSF) into the 

lateral ventricle.  

Group 2(V+Aβ) received distilled water and was 

injected with Aβ (1-42) into the lateral ventricle.  

Group 3 (Vit C+Aβ) received Vitamin C (Black-

mores, Australia) at 250 mg/kg BW.  

Groups 4, 5 and 6 (A125+Aβ, A250+Aβ, A500+Aβ) 

received aged garlic extract at doses of 125, 250 and 500 

mg/kg BW, respectively. 

The animals were gastrically gavaged with bio-

medical needles at 8.00 to 9.00 a.m. for 64 consecutive days. 

At day 56, the rats in groups 2-6 were injected with amyloid- 

(A1-42) into both sides of the lateral ventricle, whereas the 

rats in group 1received sham injections of ACSF. An MWM 

task was performed as a behavioral test for spatial learning 

and memory after seven days of A injection. A probe test 

was conducted 24 h after each MWM test (Figure 1).  

 

 
 
Figure 1. Schematic diagram of drug treatment and behavioral tests. 

(MWM: Morris water maze test, A: amyloid- (1-42), 

ACSF: artificial cerebrospinal fluid). 

 

All surgical procedures were conducted under 

aseptic conditions and sodium pentobarbital (35 mg/kg, i.p., 

Sigma-Aldrich, Germany) anesthesia. A1-42 or A (Enzo 

Life Science, Switzerland) was dissolved in glacial acetic acid 

at a concentration of 1 mg/ml and stored at −18°C in aliquot 

tubes. Before injection, A-aggregation was performed by 

incubation at 37 °C for 24 hrs (Nillert et al., 2017). Rats were 

restrained using a stereotaxic holder. A midline sagittal 

incision was made in the scalp and a hole was drilled in the 
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skull over the lateral ventricle using the following coordinates: 

0.8 mm posterior to Bregma and 1.5 mm lateral to the 

midline(Lin et al., 2009). All injections were made using a 10-

μl Hamilton syringe equipped with a 26-gauge needle. The 

dura was perforated with the needle of the micro syringe, 

which was inserted 3.8 mm beneath the dura mater. Animals 

were injected with 1 μl of aggregated A into each side of the 

lateral ventricles at a rate of 1μl/min. The sham-operated rats 

were injected with ACSF. The syringe was left in place for 5 

min after injection before being slowly removed.  

 

2.4 Morris water maze test 
 

Spatial learning and memory were measured using 

the MWM task that tests the animal’s ability to learn the 

spatial location of a platform submerged below the surface of 

a pool of water. A large blue plastic circular pool, 180 cm in 

diameter and 60 cm in height, was placed in the center of the 

testing square room. The pool was divided into four equal 

quadrants and filled with water (25±2 °C) to a depth of 45 cm. 

A plastic circular platform (10 cm in diameter) was always 

positioned 30 cm from the wall of a quadrant and hidden 2 cm 

below the water surface. White talcum powder was then 

scattered on the water’s surface to make it opaque. Objects of 

various shapes (such as circular, triangular, square and 

hexagonal) and colors were hung on the wall in the testing 

room as visual spatial cues. The testing consisted of an 

acquisition (learning) phase and a probe (retention) phase. The 

acquisition phase was used to test the rats’ learning and short-

term memory abilities; whereas the probe phase was used to 

test the rats’ long-term memory. Each phase contained four 

trials with a 10-min interval between each trial. For the 

learning phase, the rats were given 60 s to find the hidden 

platform. When successful, the rat was allowed 15 s on the 

platform. If unsuccessful within 60 s, the rat was placed on the 

platform by the experimenter for 15 s and given a score of 60 

s. For the probe phase, four trials (60 s each) were conducted 

with no platform present 24 h after the last learning trial. The 

swimming activity of each rat was tracked via a camera linked 

to a computer monitoring system. A video camera was 

positioned directly above the center of the pool, where it could 

monitor the entire surface area of the pool. Latency to find the 

platform and time spent in the target quadrant were recorded 

and analyzed using the free track analyzer program (Wolfer & 

Lipp, 1992) to compare spatial memory and learning ability 

between groups. 

 

2.5 Tissue preparation 
 

At the end of the experiment, all rats were anesthe-

tized by injection with sodium pentobarbital (60 mg/kg, i.p.) 

and transcardially perfused with 0.9 % normal saline solution. 

The whole brain of each rat was then immediately cut into two 

hemispheres. The left hemisphere was cryopreserved in 

sucrose solution (30%) and fixed in ice-cold 4% paraformal-

dehyde solution for histological investigation. The cortical 

tissue from the right hemisphere of each brain was separated 

from the white matter on an ice-cold surface. The brain 

homogenate in an ice-cold 0.04 M sodium phosphate buffer 

(pH 7.4) was immediately prepared (Carrillo, Kanai, Nokubo, 

& Kitani,1991). The homogenate was centrifuged at 15,000 g 

at 4◦C for 10 min, then the protein content of the supernatant 

was determined (Lowry, Rosebrough, Farr,& Randall, 1951) 

and stored at –80 °C until further biochemical analysis.  

 

2.6 Histological procedure 
 

Serial coronal sections were cut on a freezing micro-

tome at 35μM, and every fifth section was stained with cresyl 

violet (Deitch & Moses, 1957). The brain sections were then 

rinsed in 0.01 M phosphate buffer and mounted on slides 

coated with 0.01% aqueous solution of high molecular weight 

poly-L-lysine. The slides of brain sections were stained with 

0.75% cresyl violet, dehydrated through graded alcohols, 

xylene and cover-slipped using DPX mountant (Sigma, St. 

Louis, MO). Slides were examined under a light microscope 

at 40X objective.  

 

2.7 Neurons quantification  
 

A Nikon Eclipse Ci Upright Microscope (Nikon 

Corp, Japan) equipped with Image Frame Work (Tarosoft, 

Inc, USA) was used with a Prosilica GT digital camera 

(Dynatech Inst, Thailand) connected to a computer. Neuron 

counts were derived from 15 histological sections spaced at 

245 µm intervals, through the entire rostrocaudal extent of one 

hippocampus from each brain. A systematic random sampling 

scheme was used for determination of the counting frame 

(Korbo et al., 1990; Royet, 1991). Cell counting was confined 

to small areas in each region of the hippocampus and began in 

the left part of the section. The neurons visualized inside the 

frame were quantified and those cells that touched the 

boundary line were eliminated (West, Slomianka, & Gunder 

sen, 1991). 

 

2.8 Biochemical analysis 
 

The activity of SOD was determined based on 

inhibition of superoxide-dependent reactions (McCord & 

Fridovich, 1969).The data were expressed as units/mg protein. 

CAT activity was determined and the data were expressed as 

units/mg protein. (Goldblith & Proctor, 1950). The activity of 

GPx was determined by an indirect method and expressed as 

unit/mg protein (Gunzler & Flohe, 1985). MDA levels as an 

oxidative damage indicator (Gupta, Gigras, Mohapatra, 

Goswami, & Chauhan, 2003) were determined and the data 

were expressed as nmol/mg protein. 

 

2.9 Statistical analysis  
 

All data were expressed as standard error of the 

mean. Statistical analysis of the experimental data was carried 

out using SPSS (version 11.0). The significance of differences 

among groups was analyzed using a one-way ANOVA and a 

Newman-Keuls post hoc test. The criterion for statistical 

significance was P < 0.05. 

 

3. Results 
 

3.1 Antioxidant activity of AGE 
 

According to DPPH assay, AGE exhibited high 

activity compared to standard vitamin C (IC50 = 3.23 ± 

0.57versus 3.11 ± 0.02 μg/ml). With the calibration curve of 
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standard ferrous sulfate (y = 0.2307x + 0.0872, R2 = 0.9995), 

the reducing ability of the AGE was 119.44 ± 18.79 µmol 

Fe2+/g crude extract (Table 1). 

 
Table 1. Antioxidant activities of aged garlic extract. 

 

 FRAP 
µmol/g extract (in Fe2+) 

DPPH 

IC50(g/ml) 
   

Vit. C 
Aged Garlic Extract 

- 
119.44 ± 10.84 

3.11 ± 0.01 
3.23 ± 0.33 

 

 

3.2 Effects of AGE on spatial learning and memory  
 

When compared to the V+ACSF group, A 

induction caused significant deficits in both the spatial 

learning and probe phases (p  0.05). Pretreatment with AGE 

at doses of 250 and 500 mg/kg BW for 56 days significantly 

improved learning and prevented short-term memory loss. The 

rats received vitamin C or AGE at a dose of125 mg/kg BW 

had shorter times in reaching the platform than those in the 

V+A group without statistical significance. In contrast, in the 

probe phase, there was no significant difference in the time to 

spent among all treated groups of rats. However, all AGE-

treated rats displayed higher retention time than those in the 

V+Aβ group, similar to those in the positive control (Vit C-

treated) group (Figure 2). In addition, there was no significant 

difference in the average swimming speed among groups (data 

not shown).  

 

 
 

Figure 2. Effects of AGE on spatial learning and memory 

performance in A-induced rats as measured by latency 
time to reach the platform (A) and time to spent in the 

target quadrant (B) during the MWM task. Data are 

presented as mean  S.E.M. (n = 8/group), # = significant 
differences from V+ACSF group at p < 0.05; * = signi-

ficant differences from V+A group at p < 0.05. 

 

3.3 Neuroprotective effects of AGE  
 

In the V+ACSF group, most of the neurons were in 

fact having round or oval nuclei located in the center of the 

perikaryon surrounded by pale cytoplasm (Figures 3A, 3a and 

3g.). In contrast, the rats injected with A showed morpho-

logical alterations in most of their neurons, including irregular 

shape, some dark staining due to condensation of cytoplasm 

and nucleoplasm, and changes to their nuclear cell boundaries 

(Figures 3B, 3b. and 3h.). Moreover, neuronal cell loss was 

visualized as the absence of the Nissl staining, which showed 

that the A induced the loss of neurons in all regions of the 

hippocampus. Pretreatment with vitamin C and all doses of 

AGE showed significant restoration of neuronal density and 

reversal of morphological changes to neurons in the 

hippocampus, to the point where these features were similar to 

those observed in the ACSF control rats. This indicates that 

AGE had a neuroprotective effect against Aβ-induced 

neurotoxicity (Figures 3c.-f., 3i.-l., 3C., and 3D.). Counting of 

neurons revealed that the neuron densities in the CA1 and 

CA3 regions of A-induced rats were at 42.58% and 44.64%, 

respectively, of those of the control rats. Vitamin C and AGE 

at all doses are able to reverse the loss of neurons that had 

occurred due to A toxicity in the hippocampus (Figure 3C. 

and 3D.). 

 

 
 
Figure 3. A low-power micrograph of the hippocampal sections of 

an ACSF-induced rat (A) and an A-induced rat (B) 
showing the distribution of neurons in the regions of the 

hippocampus using Nissl staining with cresyl violet. The 

small square boxes in Figures 3A and 3B represent the 
CA1 and CA3 regions of the hippocampus. Figures 3a.- 3f. 

and Figure 3g. - 3l. represent the neurons in the region of 

CA1 and CA3 of the hippocampus of V+ACSF (3a, 3g), 

V+A (3b, 3h), Vit C+ A (3c, 3i),  AGE125+A (3d, 3j), 

AGE250+A (3e, 3k), AGE500+A (3f, 3l), respectively, 

under high magnification. Figures 3C and 3D show the 
neuron density in the CA1 and CA3 regions of the 

hippocampus.  Data are presented as means S.E.M. (n = 

8/group), ## = significant differences from V+ACSF group 
at p<0.01; *, ** = significant differences from V+Aβ 

group at p < 0.05 and 0.01, respectively. 

 

3.4 Biochemical analysis 
 

As shown in Figure 4A, A injection produced a 

significant increase in MDA levels (147.81% of the ACSF 

control group at p<0.05). The Aβ-treated rats that were 

pretreated with Vit C and AGE at all doses showed significant 

## 

## 
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reductions in MDA levels (p <0.05). The rats treated with A 

showed significant decreases in brain SOD and GPx activity(p 

< 0.05) as compared with ACSF animals (Figures 4B and 

4D). All doses of AGE pretreatment were able to protect 

against the neurotoxicity of Aβ as observed in that there were 

significant increases in SOD and GPx activity in the brain 

supernatant (p<0.05). Although all AGE doses tended to 

increase CAT activity in the Aβ-induced rat brain, these 

increases were not statistically significant (Figure4C). In 

contrast, pretreatment of the standard drug, Vit C, signi-

ficantly increased the activities of all antioxidant enzymes 

(p<0.05).  

 

 
 

Figure 4. The effect of AGE on MDA levels (A) and activation of 

antioxidant enzymes [SOD (B), CAT (C), and GPx (D] in 

the rat brain homogenates. Data are presented as mean  

S.E.M. (n = 8). # = significant differences from V+ACSF 

group at p < 0.05; *, ** = significant differences from 
V+Aβ group at p < 0.05 and 0.01, respectively. 

 
4. Discussion 

 

In this study, high antioxidant activities of AGE 

were confirmed in comparison with the activity of standard 

vitamin C as measured by the DPPH assay. The results on 

FRAP assay also showed high antioxidative of AGE activity 

as previous report (Wong et al., 2006). 

MWM task was chosen to evaluate the spatial 

memory performance of the AGE-treated rats in this study 

because it has proven to be a powerful and reliable test that is 

strongly correlated with hippocampal spatial function in 

rodents (Vorhees & Williams, 2006) and deficits in MWM 

performance may relate to the intellectual decline in human 

Alzheimer patients (D’Hooge & De Deyn, 2001). In animal 

models, several studies have focused on the effects of A 

peptides on the spatial memory and hippocampal neurons. The 

injection of A impaired memory performance in MWM tests 

in both mice (Yan et al., 2001) and rats (Yamada et al., 

1999)and caused neuronal degeneration in the hippocampus 

(Nitta, Fukuta, Hasegawa & Nabeshima, 1997). In this study, 

the impaired learning and memory, as well as loss of neurons 

in various hippocampal regions of the rats' brains were 

detected after bilateral Aβ injections. Pretreatment of AGE at 

doses of 250 and 500 mg/kg was able to protect against 

neurotoxicity caused by A induction, as demonstrated by 

improvements in short-term spatial memory. Although AGE 

did not enhance long-term spatial memory, it tended to restore 

it. We also evaluated swimming speed and locomotor be-

havior in the locomotor test, but there were no significant 

differences among groups (data not shown), indicating that 

AGE, especially at medium and high doses, may facilitate 

spatial learning and memory without any motor effects. The 

neuron density in the CA1 and CA3 regions of all AGE-

treated groups was significantly higher than that of the A-

treated group and did not differ from the V+ACSF group. 

Furthermore, the cell morphology of the A-induced rats was 

difficult to identify because most of the cells had dark staining 

and cell boundaries were not clear. This indicates that A both 

damaged and caused a reduction in the numbers of neurons in 

the CA1 and CA3 regions and that pretreatment with AGE can 

reverse this deficit.  

Recent studies have reported important differences 

in the function of the CA1 and CA3 regions of the 

hippocampus in spatial memory (Lee, Yoganarasimha, Rao & 

Knierim, 2004). The CA1 region plays a critical role in 

memory regarding sequences of events, in addition to its well-

described role in spatial navigation memory (Hunsaker, Lee & 

Kesner, 2008; MacDonald, Lepage, Eden & Eichenbaum, 

2011). In contrast, the CA3 region has been found to 

principally contribute to memory regarding the association of 

items with spatial information (Kesner & Warthen, 2010). 

Therefore, any damage to the CA1 or CA3 regions impair 

spatial learning and memory, which can be measured by the 

MWM task (Bartsch et al., 2010; Tsien et al., 1996). Although 

it has been argued that the CA3 region contributes to the 

retrieval of  memory using pattern completion rather than 

spatial memory acquisition (Nakazawa, McHugh, Wilson,& 

Tonegawa, 2004),many theoretical models of hippocampal 

function have proposed different roles for the hippocampal 

subfields in memory encoding and retrieval (Treves & Rolls, 

1994; Wiebe, Stäubli,& Ambros-Ingerson, 1997). In our 

study, all AGE-treated groups performed better than the 

V+A groups in the acquisition phase of the MWM test, but 

not in the retention phase, suggesting that this better 

performance may have been caused by alterations in the CA1 

and CA3 regions of the rats’ hippocampi. 

Prevention of memory and neuronal loss in the A-

induced rats may relate to antioxidant activity of AGE. Aβ has 

the potential to induce oxidative stress, including increased 

production of hydrogen peroxide and lipid peroxides in 

neurons (Behl, 1997; Varadarajan, Yatin, Aksenova, & 

Butterfield, 2000). SOD, GPx and CAT were reported to 

involve in cellular protection against damage caused by 

oxygen-derived free radicals (Crack, Cimdins, Ali, Hertzog, & 

Iannello, 2006) and malondialdehyde, an end product of lipid 

peroxidation, has been considered as a late biomarker of 

oxidative stress and cellular damage (Vaca, Wilhelm,& 

Harms-Ringdahl, 1988).To assess the effect of AGE on 

oxidative stress, these four parameters were monitored. In our 

study, the brain homogenates from A-induced rats elevated 

MDA levels and decreased SOD, CAT and GPx activity. The 

increase in MDA levels suggests that this event is necessary to 

scavenge the free radicals induced by A. A significant 

reduction of SOD activity in A-treated rats might be 

responsible for increased concentrations of superoxide 

radicals. A significant reduction in both CAT and GPx 
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activities can increase the production of highly deleterious 

H2O2. Therefore, the elevation of oxidative stress and 

reduction of antioxidant enzyme (SOD, GPx, and CAT) 

activities may cause neuronal loss and play a role in memory 

impairment. Furthermore, AGE at all doses was able to restore 

MDA levels and increase the SOD and GPx activity in the 

brain homogenates of A-treated rats. However, there was no 

increase in CAT activity. In term of phytochemicals, the 

process of macerating fresh garlic in 30% ethanol for 13 

months to obtain AGE caused a considerable increase in SAC 

and decrease in allicin (Seanthaweesak, 2006).However, other 

thiosulfinates, such as S-allylmercaptocysteine, have also been 

reported to exhibit significant antioxidant activity (Banerjee, 

Mukherjee,& Maulik, 2003). Therefore, antioxidant activity of 

AGE in the present study maybe resulted from not only SAC, 

but also other compounds or combination among various 

organ sulfides. 

 

5. Conclusions 
 

AGE provides beneficial effects in terms of both 

cognitive enhancement and neuroprotection, and these 

benefits can occur in A-induced cognitive deficit conditions. 

The mechanism may partially relate to the antioxidant 

properties of AGE, which can scavenge free radicals through 

SOD and GPx activity, allowing for the enhancement of 

spatial learning and memory performance and protection of 

neurons against damage caused by oxygen-derived free 

radicals. However, further studies are needed to investigate 

the molecular mechanisms underlying this phenomenon.    
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