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Abstract 
 
The main purpose of discriminant analysis is to enable classification of new observations into one of g classes or 

populations. Discriminant methods suffer when applied to high dimensional data because the sample covariance matrix is 

singular. In this study, we propose two new discriminant methods for high dimensional data under the multivariate normal 

population with a block diagonal covariance matrix structure. As the first method, we approximate the sample covariance matrix 

as a singular matrix based on the idea of reducing the dimensionality of the observations to get a well-conditioned covariance 

matrix. As the second method, we use a block diagonal sample covariance matrix instead. The performances of these two 

methods are compared with some of the existing methods in a simulation study. The results show that both proposed methods 

outperform other comparative methods in various situations. In addition, the two new proposed methods for discriminant analysis 

are applied to a real dataset. 
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1. Introduction 
 

Discriminant analysis is a multivariate technique for 

sample classification. The objective of discriminant analysis is 

to construct appropriate rules for assigning new observations 

to one of g classes or populations. Assume that there are g 

different classes,
1 2, ,..., ,g    each with a multivariate 

normal distribution with mean vectors 
h  and covariance 

matrices , 1, 2,...,h h g   in p p  dimensions. In this 

study, we are only interested in the population covariance 

matrices that have this block diagonal structure  
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1 2

,

h h mh
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m h m h mmh

   
 
   

 
 
     

 
 

where 
iih  is a 

i ip p  submatrix and 
ijh  is a 

i jp p  zero 

matrix, , 1,2,...,i j m . 

Now, suppose that 
1 2( , ,..., )

jh

T

jh jh pjhx x x x , 

1,2,..., ,h hj n n p  , is a random sample of 
hn  observations 

that are collected from 
h . The basic method for classifying 

new observations x  to one of the g classes is as follows: 

Assign x  to 
h  if ( ) ( )h lD x D x  for all 1,2,...,h l g  , 

where 1( ) ( ) ( ) ln 2lnT

h h h h h hD x x x p         is called 
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the “discriminant score” and 
hp  is the prior probability of  

h . 

The 
h  and 

h  are unknown, but the unbiased estimators of these parameters are 

1

1 hn

h jh

jh

x x
n 

   and 

1

1
( )( ) .

1

hn
T

h jh h jh h

jh

S x x x x
n 

  

  When the covariance matrices are equal, that is 

h    for all h , their common covariance 

matrix   is estimated by 

1

1
( 1)

( )

g

pooled h h

h

S n S
N g 

 


 , where 
pooledS  is the pooled sample covariance matrix  and 

1

g

h

h

N n


 . In this study, we are interested in the case of common covariance matrix. Thus, the estimate of discriminant score is 

1ˆ ( ) ( ) ( ) 2 lnT

h h pooled h hD x x x S x x p    .  

 

Discriminant analysis is widely used in many 

scientific domains, such as medical research, financial 

analysis, computer vision, etc. These sources provide high 

dimensional data, which means that the number of 

observations is less than the dimensionality of the 

observations. In high dimensional data, discriminant analysis 

cannot be applied directly because the sample covariance 

matrix is singular, i.e. the inverse of the sample covariance 

matrix does not exist. Di Pillo (1976) stated that the 

performance of discriminant analysis in high dimensional data 

is far from optimal. The generalized inverse substitutes for the 

inverse of a singular sample covariance matrix. While simple, 

this method might have poor performance since the 

generalized inverse may be very unstable (Guo, Hastie, & 

Tibshirani, 2007). 

In this situation, the cause of the problem with 

discriminant analysis is singularity of the sample covariance 

matrix. There are two often used ways to address this 

problem. The first is a subspace approach. For example, the 

well-known Fisherfaces method (Belhumeur, Hespanha, & 

Kriegman, 1997) and Chen, Liao, Ko, Lin, and Yu (2000) 

presented direct linear discriminant analysis (D-LDA). Lu, 

Plataniotis, and Venetsanopoulos (2003) proposed a new 

discriminant analysis method called regularized direct 

quadratic discriminant analysis (RD-QDA) by combining the 

D-LDA method with regularized discriminant analysis 

(RDA), previously proposed by Friedman (1989). The second 

is to apply linear algebra to solve the singularity problem. For 

example, Tian, Barbero, Gu, and Lee (1986) utilized the 

pseudoinverse as estimate of inverse of the sample covariance 

matrix. Additionally, Dudoit, Fridlyand, and Speed (2002) 

used a diagonal covariance matrix, and Srivastava and 

Kubokawa (2007) used an empirical Bayes estimator instead 

of the sample covariance matrix. 

In this paper, two new discriminant methods are 

proposed to deal with high dimensional data. In the first 

proposed method, we reduce the dimensionality of the 

observations by taking linear combinations of jhx  to create 

T

jh jhy H x , where H  is the matrix obtained from the RD-

QDA method (Lu et al., 2003), and find a well-conditioned 

estimator for the high dimensional covariance matrix by the 

expression given by Schäfer and Strimmer (2005). In the 

second proposed method, we use a block diagonal sample 

covariance matrix 
11 22( , ,..., )block mmS diag S S S  where 

, 1,...,hhS h m  are submatrices of the pooled sample 

covariance matrix in the discriminant score. We also review 

the method proposed by Dudoit et al. (2002), labeled DI, and 

the method proposed by Srivastava and Kubokawa (2007), 

labeled SK. Our two proposed methods are compared with the 

DI and SK methods in a simulation study.  

 

 Dudoit et al. (2002) in the DI method assumed 

independent variables and replaced every off-diagonal 

element in the sample covariance matrix with zero. 

Specifically, they replaced the pooled sample covariance 
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matrix in the discriminant score by 
11( ,..., )DI ppS diag s s  for , 1, 2,...,iis i p , i.e., the diagonal part of the pooled sample 

covariance matrix 
pooledS  , and this gave the DI classification rule:  

Assign x  to 
h  if 

ˆ ˆ( ) ( )h lD x D x
 for all l h , where 

1ˆ ( ) ( ) ( ) 2 lnT

h h DI h hD x x x S x x p   
. 

Since 
DIS  above uses only the diagonal elements of 

pooledS , the information represented by the off-diagonal elements 

was modified and lost. 

 Srivastava and Kubokawa (2007) derived the empi-rical Bayes estimator of 1  as 
1

1
( )

min( , )

pooled

SK pooled

tr S
S S I

n p



  
  
 

and gave 

the SK classification rule:  

Assign x  to 
h  if 

ˆ ˆ( ) ( )h lD x D x
 for all l h , where 

1ˆ ( ) ( ) ( ) 2 lnT

h h DI h hD x x x S x x p   
. 

It may be noted that 1

SKS   exists irrespective of whether n p  or n p  and this method performed the best in their 

study. 
 

The remainder of this paper is organized as follows. 

Two new discriminant methods for high dimensional data 

from a multivariate normal population with a block diagonal 

covariance matrix are proposed in Section 2. In Section 3, we 

assess the performance of the proposed methods and compare 

them with other methods in a simulation study and with real 

data. Section 4 is the conclusions and future work is described 

in Section 5.  

 

2. The Proposed Methods 

 

In this section, two new discriminant methods are 

proposed for dealing with high dimensional data. We consider 

only binary classification to two classes, on the condition that 

the population covariances of the classes are equal (two 

blocks on the diagonal). 

 

2.1 The first proposed method 

 

We reduce the dimensionality of the observations 

from p  to q  by taking linear combinations of jhx  to create 

T

jh jhy H x , where H  is the matrix obtained from the RD-

QDA method proposed by Lu et al. (2003). To obtain the 

matrix H , let 
1 2( , ,..., )qU u u u  be the q  eigenvectors of  

1

( )( )
g

T

b h h h

h

S n x x x x


   , where 

1 1

hng

jh

h j

x x N
 

 , 

corresponding to the q  nonzero eigenvalues 
1 2, ,..., q   . 

 

The matrix H  is given by 
1

2H U


    where 

1 2( , ,..., )qdiag     . The linear combination T

jh jhy H x  

has a multivariate normal distribution with mean vectors 

T

hH   and covariance matrices 
TH H    in q q  

dimensions. Instead of finding the regularized sample 

covariance matrix (Friedman, 1989), which was used by Lu et 

al. (2003) in their classification rule, we use a well-

conditioned estimator for high dimensional covariance 

matrices, namely the minimum mean squared error estimator 

defined by Ledoit and Wolf (2003). This it is always positive 

definite, even for high dimensional data (Schäfer & Strimmer, 

2005). 

 

  Schäfer and Strimmer (2005) suggested using the 

linear shrinkage approach to obtain a well-conditioned 

covariance matrix 
*  using a weighted average of the pooled 

sample covariance matrix and the shrinkage target matrix 

[ ]ij q qT t  :  

 

*

,(1 ) y pooledT S    
,
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where 
,

1 1

( )( )
hng

T

y pooled jh h jh h

h j

S y y y y N g
 

    ,   is the shrinkage intensity, and 

1

hn

h jh h

j

y y n


 . After that, they chose 

  by optimising  

 2 2
*

,

2

,

1 1

min min (1 )

min ( (1 ) ) ,

y pooled

q q

ij y ij ij

i j

E E T S

E t s

 



 

  
 

     

 
    

 


 

where ij  represents the element at the 
thi  row and 

thj  column of  . Schäfer and Strimmer (2005) showed that the optimal 

shrinkage intensity 
*  is given by   

, ,

1 1*

2

,

1 1

( ) ov( , )

( )

q q

y ij y ij ij

i j

q q

ij y ij

i j

Var s C s t

E t s


 

 

  


  




. 

We need to estimate 
* , and Schäfer and Strimmer (2005) emphasized the need to compute the optimal shrinkage 

intensity estimator 
*̂  by replacing all expectations, variances, and covariances in 

*  with their unbiased estimates. 

In this study, we use the three shrinkage target matrices for 
,y pooledS  that were compiled by Schäfer and Strimmer 

(2005) and the respective 
*̂   are as follows: 

1) T = A: "Diagonal unit variance". In this case, we do not need to estimate the parameter because T  is the identity 

matrix. Thus, 

1

0
ij

if i j
t

if i j


 

  

 and  

, ,

1

2 2
, ,

1

( ) ( )

*

( 1)

ˆ

q

y ij y ii

i j i

q

y ij y ii

i j i

Var s Var s

s s

  

 



 

 


 
, 

2) T = B: "Diagonal common variance". Now we need to estimate the diagonal element of T  (i.e., the common 

variance  ).  

,

1
0

q

y ii

iij

s q if i j
t

if i j




  
   

   




  and   
, ,

1

2 2
, ,

1

( ) ( )

*

( )

ˆ

q

y ij y ii

i j i

q

y ij y ii

i j i

Var s Var s

s s 

  

 



 

 


 

, and 
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3) T = C: "Diagonal common variance and common covariance". The shrinkage target matrix is provided by two 

parameters, namely the common variance   and the common covariance  , and we need to estimate both parameters. Thus, 

,

1

, ( 1)

q

y ii

i

ij

y ij

i j

s q if i j

t

s q q if i j









  
   
 

 
     
 





 and   

, ,

1

2 2
, ,

1

( ) ( )

*

( ) ( )

ˆ

q

y ij y ii

i j i

q

y ij y ii

i j i

Var s Var s

s s 

  

 



  

 

 

. 

When 
*̂  is computed, a well-conditioned estimator of the covariance matrix is given by 

* * *

,
ˆ ˆ(1 ) y pooledS T S   

, 

where *S  is always positive definite, even for high-dimensional data, and has minimum mean squared error (Schäfer & 

Strimmer, 2005). 

The first proposed classification rule is: 

Assign x  to h  if ˆ ˆ( ) ( )h lD x D x  for all l h , where 

* 1ˆ ( ) ( ) ( ) 2 lnT T T T T

h h h hD x H x H x S H x H x p   
.  

From here on, we use symbols TA, TB, and TC for the classification rules that use the shrinkage targets A, B, and C, 

respectively. 

 

2.2 The second proposed method 

 

Recall that the population covariance matrices are assumed to be block diagonal, and the proposed method is based on 

constructing sample covariance matrices of similar pattern. The pooled sample covariance matrix 
pooledS  is partitioned as 

11 12 1

21 22 2

1 2

[ ]

m

m

pooled ij p p

m m mm

S S S

S S S
S S

S S S



 
 
  
 
 
  , 

where 
ijS  are submatrices of 

pooledS , for , 1,2,...,i j m , and the dimensions of 
ijS  are 

i jp p and  

1

m

i

i

p p


 .  
pooledS  

is partitioned in the same manner as   so that the block sizes of 
ijS  and 

ij  are equal. Now, define the block diagonal matrix 

blockS  as 

11 12 1

21 22 2

11 22

1 2

( , ,..., )

m

m

block mm

m m mm p p

S

S
S diag S S S

S


  
 
   

 
 
  

. 
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For classifying two classes, the pooled sample covariance matrix is nonsingular when p   where   is the degrees 

of freedom. The 
pooledS  has 

1 2 2n n   degrees of freedom, and , 1, 2,...,iiS i m  are submatrices of 
ip  dimensions with   

degrees of freedom. If we specify that 
ip  , then , 1, 2,...,iiS i m  are all invertible (Dempster, 1958). As a result, 

blockS  has 

the inverse  

1

11 12 1

1

1 1 1 1 21 22 2

11 22

1

1 2

( , ,..., )

m

m

block mm block

m m mm p p

S

S
S diag S S S S

S





   





  
 
    

 
    

. 

Now, 1

blockS   is used instead of 
1

pooledS 
 because the latter does not exist for high dimensional data. 

The second proposed classification rule is:  

Assign x  to 
h  if  ˆ ˆ( ) ( )h lD x D x  for all l h , where 

1ˆ ( ) ( ) ( ) 2 lnT

h h block h hD x x x S x x p   
.  

From here on, the symbol BD is used for a classification rule that uses a block diagonal sample covariance matrix. 

 

3. Simulation Study 

 

In this section, the performances of the two proposed methods are compared with the DI (Dudoit et al., 2002) and the 

SK (Srivastava & Kubokawa, 2007) methods in a simulation study, by considering their misclassification rates with 1000 

iterations. The misclassification rate (M) is defined as  

number of correct classification
M 1

number of allobservations
 

. 

Its value ranges from 0 to 1. For M=0 all the observations were assigned correct classes, while for M=1 all cases were 

called incorrectly. Therefore, the higher the misclassification rate the poorer the method. 

 

3.1 The generated datasets 

 

The datasets were generated as follows:
1 1~ . . . ( , )j px i i d N    and 

2 2~ . . . ( , ), 1, 2,...,j px i i d N j n   , where, 

1 (0,0,...,0)T  , 
2 ( ,0,...,0)Tm  , m  is a r -dimensional vector generated from Uniform(-1.5,1.5), 0.05r p . We study 

only the binary classification to two classes with equal prior probabilities 
1  and 

2 , i.e. each observation has equal 

probabilities to represent 
1  or 

2 . 

Two different forms of the population covariance matrix are used as follows: 

1) The first form of covariance matrix is 
1 11 22( , ,..., )mmdiag      and (1 ) ,

i iii p pI J      

0.1,0.5,0.9, 1,2,..., ,i m    in which J  is a matrix where all elements are 1’s and the dimensions of 
ii  are 

i ip p  and 

1

.
m

i

i

p p


  
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2) The second form of covariance matrix is 
2 11 22( , ,..., )mmdiag      and  ,ii kl     ,

k l

kl 


  0.9,   

1,2,..., ,i m  and , 1,2,..., ,ik l p  in which the dimensions of 
ii  are 

i ip p  and 

1

.
m

i

i

p p


  

The simulations were conducted for {100,200,300,400}p  with  35,70n . Each experiment consisted of a 

training dataset with 25, 50 observations, and the testing datasets had 10, 20 observations from each class. The classification rules 

had their parameters estimated using the training dataset, after which the classification rules were tested on the testing dataset. 

For each ( , )p n  
combination, both equal and mixed block sizes were considered. In the equal block size case, all the 

ii  are of 

size 5,10,25ip   with 
ip p  blocks, and in the mixed block size case there are two different block sizes in the matrix. The two 

block sizes of submatrix 
ii  are chosen from , 5,10, 25i jp p  , in which size 

ip  has 2 ip p  blocks and size 
jp  has 2 jp p  

blocks. The number of blocks rather than block size is considered in order to assess trends.   

In each simulation, 1,000 iterations were done, and the performance of each method was evaluated based on misclassi-

fication rate. 

 

3.2 Simulation study results 

 

The misclassification rates (M) are reported in Tables 1-8. When 
1  , the values of M are shown in Tables 1-6. For 

any ,  when p  and n  increase, the values of M for TA, TB, TC, and BD methods decrease. For fixed p  and n , when ,  

increases, the TA, TB, and TC methods get higher (poorer) values of M than the BD method.  

When 0.1   and ,p n  are fixed with a decrease in the number of blocks, M for the BD method increased while 

those for TA, TB, and TC increased slightly and are stable in the mixed block sizes case. On comparing the two proposed 

methods with the DI and SK methods, all of these obtain similar values of M except for BD, which has slightly higher M than the 

others when the number of blocks decreases. 

Table 1. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
1   and 0.1   with equal block sizes. 

n  p  
ip  TA, TB, TC BD DI SK 

       

35 100 5 0.3026 0.3082 0.3072 0.3089 

  10 0.3033 0.3173 0.3059 0.3091 

  25 0.3136 0.3529 0.3150 0.3118 

 200 5 0.2294 0.2358 0.2328 0.2333 

  10 0.2322 0.2472 0.2378 0.2359 

  25 0.2369 0.2958 0.2396 0.2323 
 300 5 0.1893 0.1966 0.1931 0.1908 

  10 0.1875 0.2070 0.1933 0.1859 

  25 0.1946 0.2607 0.2003 0.1921 
 400 5 0.1509 0.1552 0.1552 0.1519 

  10 0.1495 0.1643 0.1534 0.1495 
  25 0.1618 0.2293 0.1679 0.1582 

70 100 5 0.2649 0.2639 0.2659 0.2751 

  10 0.2629 0.2649 0.2662 0.2716 

  25 0.2713 0.2789 0.2724 0.2688 
 200 5 0.1856 0.1855 0.1880 0.1941 

  10 0.1816 0.1845 0.1839 0.1904 

  25 0.1943 0.2046 0.1968 0.1885 
 300 5 0.1329 0.1340 0.1359 0.1395 

  10 0.1361 0.1365 0.1387 0.1393 

  25 0.1416 0.1512 0.1436 0.1362 
 400 5 0.0984 0.0987 0.1002 0.1011 

  10 0.0991 0.1009 0.1016 0.1016 

  25 0.1075 0.1171 0.1105 0.1036 
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Table 2. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
1   and 0.1   with mixed block sizes. 

n  p  
ip  

jp  TA, TB, TC BD DI SK 

        

35 100 5 10 0.3069 0.3201 0.3097 0.3075 

  5 25 0.3082 0.3288 0.3130 0.3084 

  10 25 0.3066 0.3750 0.3080 0.3064 
 200 5 10 0.2312 0.2421 0.2352 0.2354 

  5 25 0.2370 0.3160 0.2415 0.2365 

  10 25 0.2380 0.3358 0.2426 0.2370 
 300 5 10 0.1873 0.2010 0.1931 0.1902 

  5 25 0.1878 0.2843 0.1926 0.1859 

  10 25 0.1850 0.2945 0.1912 0.1865 

 400 5 10 0.1504 0.1700 0.1555 0.1527 

  5 25 0.1589 0.2298 0.1656 0.1605 

  10 25 0.1594 0.2631 0.1658 0.1584 

70 100 5 10 0.2698 0.2716 0.2707 0.2761 

  5 25 0.2654 0.2829 0.2680 0.2741 

  10 25 0.2683 0.2864 0.2706 0.2723 
 200 5 10 0.1829 0.1790 0.1860 0.1903 

  5 25 0.1887 0.2011 0.1918 0.1942 

  10 25 0.1857 0.2113 0.1877 0.1858 
 300 5 10 0.1376 0.1363 0.1411 0.1432 

  5 25 0.1392 0.1483 0.1396 0.1395 

  10 25 0.1402 0.1520 0.1415 0.1392 
 400 5 10 0.0995 0.1020 0.1021 0.1040 

  5 25 0.1054 0.1150 0.1079 0.1039 

  10 25 0.1053 0.1141 0.1087 0.1055 
        

 

When 0.5   and ,p n  are fixed with a decrease in the number of blocks, M for the TA, TB, and TC methods 

increased, while for BD method it only increased when n  was small. For n  large, the BD method achieves similar M for any 

number of blocks. When the proposed methods are compared with the DI and SK methods, the BD method performs the best in 

this situation with the lowest M, while the SK method performs better than the DI, TA, TB, and TC methods, since these had the 

highest M and poorest performance. 

 

Table 3. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
1   and 0.5   with equal block sizes. 

n  p  
ip  TA, TB, TC BD DI SK 

       

35 100 5 0.3404 0.2374 0.3415 0.3056 
  10 0.3709 0.2371 0.3722 0.2942 

  25 0.3905 0.2806 0.3921 0.2603 

 200 5 0.2753 0.1538 0.2787 0.2538 
  10 0.3121 0.1593 0.3144 0.2580 

  25 0.3542 0.2048 0.3554 0.2308 

 300 5 0.2359 0.1082 0.2411 0.2200 
  10 0.2741 0.1071 0.2763 0.2287 

  25 0.3357 0.1545 0.3363 0.2280 

 400 5 0.2039 0.0732 0.2079 0.1911 
  10 0.2499 0.0735 0.2516 0.2103 

  25 0.3077 0.1190 0.3075 0.2153 

70 100 5 0.2994 0.1958 0.2997 0.2407 

  10 0.3225 0.1992 0.3241 0.2120 
  25 0.3571 0.1945 0.3582 0.1890 

 200 5 0.2214 0.1059 0.2231 0.1781 

  10 0.2566 0.1089 0.2589 0.1584 
  25 0.3110 0.1104 0.3116 0.1267 

 300 5 0.1794 0.0639 0.1814 0.1445 

  10 0.2191 0.0590 0.2197 0.1370 

  25 0.2716 0.0660 0.2726 0.1049 

 400 5 0.1458 0.0390 0.1479 0.1212 

  10 0.1783 0.0328 0.1794 0.1126 
  25 0.2521 0.0404 0.2528 0.0967 
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Table 4. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
1   and 0.5   with mixed block sizes. 

n  p  
ip  

jp  TA, TB, TC BD DI SK 

        

35 100 5 10 0.3490 0.2509 0.3499 0.2968 

  5 25 0.3672 0.2974 0.3688 0.2919 

  10 25 0.3754 0.3282 0.3743 0.2737 
 200 5 10 0.3011 0.1460 0.3047 0.2573 

  5 25 0.3286 0.2381 0.3295 0.2485 

  10 25 0.3442 0.2489 0.3468 0.2541 
 300 5 10 0.2590 0.1059 0.2616 0.2255 

  5 25 0.2944 0.1597 0.2956 0.2183 

  10 25 0.3153 0.1714 0.3194 0.2399 

 400 5 10 0.2253 0.0717 0.2319 0.1982 

  5 25 0.2726 0.1543 0.2742 0.2093 
  10 25 0.2811 0.1860 0.2836 0.2116 

70 100 5 10 0.3110 0.1803 0.3118 0.2209 

  5 25 0.3306 0.1890 0.3321 0.2268 

  10 25 0.3404 0.1840 0.3412 0.1976 
 200 5 10 0.2450 0.1141 0.2473 0.1800 

  5 25 0.2761 0.1163 0.2762 0.1425 

  10 25 0.2846 0.1125 0.2859 0.1451 
 300 5 10 0.2049 0.0704 0.2056 0.1502 

  5 25 0.2396 0.0662 0.2410 0.1163 

  10 25 0.2481 0.0671 0.2502 0.1268 
 400 5 10 0.1665 0.0422 0.1675 0.1212 

  5 25 0.2041 0.0517 0.2064 0.1120 

  10 25 0.2209 0.0429 0.2207 0.1073 
        

 

When 0.9   and ,p n  are fixed with a decrease in the number of blocks, M for TA, TB, and TC methods increased 

while the BD method obtained the least values among the methods. In particular, the BD method is able to classify the test set 

nearly 100% correctly when ,p n  are large. The SK method performs better than the DI, TA, TB, and TC methods, and the TA, 

TB, and TC methods obtain the highest values of M (similar to the DI method). 

 

Table 5. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
1   and 0.9   with equal block sizes. 

n  p  
ip  

TA, TB, TC BD DI SK 

       

35 100 5 0.3720 0.0426 0.3802 0.2719 

  10 0.4060 0.0294 0.4067 0.2196 

  25 0.4343 0.0581 0.4349 0.1436 
 200 5 0.3356 0.0067 0.3384 0.2803 

  10 0.3714 0.0054 0.3763 0.2472 

  25 0.4156 0.0127 0.4160 0.1757 
 300 5 0.2931 0.0012 0.3011 0.2548 

  10 0.3501 0.0007 0.3545 0.2612 

  25 0.3954 0.0030 0.3957 0.1989 
 400 5 0.2738 0.0001 0.2760 0.2358 

  10 0.3304 0.0001 0.3315 0.2567 

  25 0.3828 0.0009 0.3834 0.2208 

70 100 5 0.3396 0.0303 0.3395 0.1459 

  10 0.3785 0.0182 0.3792 0.0811 

  25 0.4071 0.0207 0.4083 0.0344 
 200 5 0.2807 0.0037 0.2826 0.1445 

  10 0.3272 0.0015 0.3293 0.0829 

  25 0.3821 0.0016 0.3833 0.0303 
 300 5 0.2438 0.0003 0.2456 0.1383 

  10 0.2983 0.0002 0.2994 0.0971 

  25 0.3627 0.0001 0.3629 0.0342 

 400 5 0.2110 0.0001 0.2133 0.1312 

  10 0.2710 0.0000 0.2723 0.1046 

  25 0.3415 0.0000 0.3420 0.0440 
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Table 6. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
1   and 0.9   with mixed block sizes. 

p  
ip  

jp  TA, TB, TC BD DI SK 

       

100 5 10 0.3886 0.0453 0.3902 0.2582 

 5 25 0.4116 0.0455 0.4113 0.2109 
 10 25 0.4211 0.0532 0.4215 0.1892 

200 5 10 0.3626 0.0053 0.3649 0.2692 

 5 25 0.3871 0.0052 0.3887 0.2464 
 10 25 0.4048 0.0080 0.4065 0.2192 

300 5 10 0.3250 0.0011 0.3300 0.2549 

 5 25 0.3663 0.0035 0.3675 0.2373 
 10 25 0.3752 0.0031 0.3796 0.2411 

400 5 10 0.3102 0.0001 0.3115 0.2514 

 5 25 0.3471 0.0009 0.3529 0.2351 
 10 25 0.3582 0.0004 0.3616 0.2369 

100 5 10 0.3615 0.0314 0.3632 0.1247 

 5 25 0.3773 0.0339 0.3761 0.1069 
 10 25 0.3928 0.0183 0.3948 0.0503 

200 5 10 0.3087 0.0022 0.3100 0.1116 

 5 25 0.3455 0.0013 0.3461 0.0665 
 10 25 0.3578 0.0020 0.3583 0.0598 

300 5 10 0.2739 0.0003 0.2735 0.1123 

 5 25 0.3146 0.0002 0.3150 0.0779 
 10 25 0.3318 0.0002 0.3318 0.0665 

400 5 10 0.2430 0.0000 0.2457 0.1162 

 5 25 0.2998 0.0000 0.3008 0.0965 
 10 25 0.3092 0.0000 0.3110 0.0811 
       

 

The results from simulation study when 
2    are given in Tables 7-8. As p  and n  increase, M for the proposed 

methods decreased. M for TA, TB, and TC methods increased when the number of blocks decreased with any .p  For the BD 

method, M increased when the number of blocks decreased and p  and n  are small. On comparing the proposed methods with 

the previously reported ones, the results are almost the same as from 
1   with 0.9  , for which the BD method performs 

the best with this form of the population covariance matrix. 

Table 7. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
2    with equal block sizes. 

n  p  
ip  

TA, TB, TC BD DI SK 

       

35 100 5 0.3753 0.0529 0.3753 0.2863 

  10 0.3914 0.0530 0.3918 0.2677 
  25 0.4004 0.0824 0.4008 0.2460 

 200 5 0.3252 0.0094 0.3261 0.2690 

  10 0.3496 0.0087 0.3507 0.2571 
  25 0.3609 0.0219 0.3628 0.2457 

 300 5 0.2836 0.0022 0.2873 0.2479 

  10 0.3247 0.0014 0.3281 0.2572 
  25 0.3451 0.0063 0.3467 0.2505 

 400 5 0.2603 0.0003 0.2629 0.2261 

  10 0.2952 0.0003 0.2973 0.2384 
  25 0.3202 0.0020 0.3239 0.2422 

70 100 5 0.3326 0.0406 0.3343 0.1659 

  10 0.3543 0.0324 0.3551 0.1403 
  25 0.3646 0.0429 0.3664 0.1327 

 200 5 0.2723 0.0048 0.2730 0.1528 

  10 0.2999 0.0041 0.3001 0.1289 
  25 0.3158 0.0043 0.3158 0.1095 

 300 5 0.2274 0.0007 0.2301 0.1413 

  10 0.2612 0.0005 0.2646 0.1235 

  25 0.2821 0.0005 0.2844 0.1013 

 400 5 0.2004 0.0002 0.2018 0.1336 

  10 0.2266 0.0001 0.2278 0.1115 
  25 0.2653 0.0001 0.2676 0.1077 
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Table 8. The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when 
2    with mixed block sizes. 

n  p  
ip  

jp  TA, TB, TC BD DI SK 

        

35 100 5 10 0.3860 0.0486 0.3878 0.2743 

  5 25 0.3856 0.0739 0.3879 0.2734 

  10 25 0.3947 0.0748 0.3965 0.2538 
 200 5 10 0.3354 0.0120 0.3364 0.2692 

  5 25 0.3490 0.0312 0.3537 0.2629 

  10 25 0.3596 0.0349 0.3615 0.2611 
 300 5 10 0.3055 0.0021 0.3044 0.2502 

  5 25 0.3201 0.0036 0.3231 0.2456 

  10 25 0.3319 0.0050 0.3350 0.2521 

 400 5 10 0.2859 0.0002 0.2889 0.2418 

  5 25 0.2986 0.0049 0.3014 0.2410 

  10 25 0.3077 0.0018 0.3121 0.2403 

70 100 5 10 0.3471 0.0397 0.3472 0.1592 

  5 25 0.3517 0.0477 0.3507 0.1537 

  10 25 0.3618 0.0404 0.3620 0.1349 
 200 5 10 0.2904 0.0047 0.2914 0.1431 

  5 25 0.2988 0.0064 0.2991 0.1338 

  10 25 0.3144 0.0045 0.3162 0.1224 
 300 5 10 0.2491 0.0006 0.2507 0.1349 

  5 25 0.2607 0.0010 0.2614 0.1284 

  10 25 0.2779 0.0009 0.2801 0.1177 
 400 5 10 0.2156 0.0001 0.2157 0.1265 

  5 25 0.2319 0.0003 0.2330 0.1227 

  10 25 0.2488 0.0002 0.2499 0.1141 
        

 

Note that M was similar for TA, TB and TC methods with the same combination of dimensionality p
 
and number of 

observations n , i.e. the choice of shrinkage target matrix in the first proposed method did not affect performance in this 

simulation study. 

From this simulation study, we observe that the TA, TB, and TC methods perform well, similar to DI and SK methods 

when   is small. The BD method performs the best when   is greater than 0.5. 

 

3.3 A real data example 

  

In this section, we use a real dataset to assess the performances of the four methods: 1) SK; 2) DI; 3) TA, TB, and TC; 

and 4) BD. The Notterman Carcinoma dataset used for this study was taken from a gene expression project at Princeton 

University, New Jersey, by Notterman, Alon, Sierk, and Levine (2001). These data consist of p = 7,457 genes’ expression in 18 

paired colon tissue samples (18 tumor tissues 
1n  , and 18 normal tissues

 1n ).  

From the dataset, 100 genes for 10 tumor and normal tissues were selected for the training set, and 5 tumor and normal 

tissues for the testing set. These data were assumed to be multivariate normal. Recall that in the simulation study the BD method 

performed well when the correlation coefficient between variables in the same block was higher than 0.5. Thus, the variables of 

this dataset are arranged in block order so that the correlation coefficient between any two adjacent variables in the same block is 

greater than or equal to 0.5. The block sizes are mixed with a maximum of 17 and a minimum of 1, and the number of blocks is 

14. There are 6 blocks of dimension one.  

Before performing discriminant analysis on this dataset, the assumptions that the block diagonal covariance matrix 

structure and the equal covariances of both classes need to be checked. The test statistic proposed by Hyodo, Shutoh, Nishiyama, 

and Pavlenko (2015) was used to test the assumption of block diagonal covariance matrix for each class (tumor and normal 

tissues). The test statistics were: for tumor tissues 0.8479 (p-value   0.1983) and 0.5490 (p-value  0.2915) for normal tissues.
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It can be concluded that the covariance matrices are 

block diagonal. The equality of covariances for the classes can 

be checked by the test statistic proposed by Chaipitak and 

Chongcharoen (2013). The test statistic was -0.9383 (p-value 

  0.3481), which indicates that the covariances of the classes 

are equal.  

After checking for block diagonal covariance 

matrices and equality of covariances by class, the TA, TB, 

TC, BD, DI, and SK methods were applied to this dataset. The 

results show that the TA, TB, TC, DI, and SK methods gave 

zero M, i.e. 100% correct classification calls, while the BD 

method achieves M = 0.3, indicating that the TA, TB, TC, DI, 

and SK methods perform better than the BD method with this 

dataset. 

The above experimental results show that the BD 

method successfully produces the lowest misclassification rate 

when the population covariance matrix is block diagonal and 

the values of off-diagonal elements in the blocks are large, 

preferably larger than 0.5. When the off-diagonal elements in 

the blocks are small, then TA, TB, and TC methods are more 

suitable than BD. In the real-life dataset tested, the covariance 

matrix had many blocks of dimension one, and the 

misclassification rates for TA, TB, and TC methods were 

lower (better) than for the BD method.             

 

4. Conclusions 
 

In this paper, we proposed two new discriminant 

methods for the classification of high dimensional data. In the 

first method (TA, TB, and TC), we reduce the dimensionality 

of the observations and use a well-conditioned covariance 

matrix approximation guaranteeing minimum mean squared 

error. In the second method (BD), we use a block diagonal 

part of the sample covariance matrix in place of the sample 

covariance matrix. We compared our methods with the DI and 

SK methods proposed by Dudoit et al. (2002) and Srivastava 

and Kubokawa (2007) in a simulation study and with a real 

data set, based on misclassification rates. The simulation study 

showed that the TA, TB, and TC methods perform well when 

the correlations among variables in a block are weak, but is 

inappropriate for classification when these correlations are 

strong. The BD method was superior when the correlation 

among variables in a block were strong. Finally, the two 

proposed discriminant methods (TA, TB, TC, and BD) were 

applied to a real dataset, the Notterman Carcinoma dataset. 

 

5. Future Work 
 

In this study, two new discriminant methods were 

proposed for a binary classification problem with equal 

covariances, so in future work we could examine classi-

fication with 3 or more classes and/or an unequal covariances. 

Regarding the real-life dataset, when the number of variables 

is large, then it is quite hard to find the block size and the 

number of blocks in the population covariance matrix. Cluster 

analysis could be considered to arrange the variables into 

blocks, in order to find the block size and the number of 

blocks in the population covariance matrix. Finally, the 

proposed methods can be tested on further real datasets. 
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