
AU J.T. 16(1): 35-40 (Jul. 2012)

Review Article 35

The Theory of Software Testing

Adtha Lawanna

Department of Information Technology, Faculty of Science and Technology

Assumption University, Bangkok, Thailand

E-mail: <adtha@scitech.au.edu>

Abstract

Software testing is the process of testing bugs in lines of code of a program that

can be performed by manual or automation testing. The theory of software testing

involves problem definitions of testing such as test team, failure after testing, manual

testing, uncertainty principle, participation, and incorrect test case selection. This

article shows the details of a critical part of software testing, which is how to test the

performance of new software and the entire system. The outcome of this article is the

whole picture of three phases for software testing as follows: preliminary testing,

testing and user acceptance testing.

Keywords: Automation testing, verification, validation, user acceptance testing.

1. Introduction

Software testing in the Software

Development Life Cycle (SDLC) is the process

of executing and evaluating a program with the

intent of finding faults (Myers 1979). In

general, it focuses on any activity aimed at

evaluating an attribute or capability of a

program or system and finding that it meets its

specification requirements (Hetzel 1988). In

fact, a software system is not unlike other

physical systems where inputs are received and

outputs are produced (Pan 1999). However,

software does not suffer from physical changes.

Generally, it will not change until

modifications, upgrades, or user requirement

changes take place (Pan 1999). Therefore, once

the software is released, the design faults or

bugs will be buried in and remain latent until

activation (Pan 1999). All the possible values

are required to be verified and tested, but

perfect testing is impossible to be made

(Humphrey 1995). If a testing failure occurs

during a preliminary step and the code is

released, the program may now work for a test

case that it may not have been intended to work

for previously (Pan 1999). But its behavior on

pre-debugging test cases that it dealt with

before can no longer be trusted (Pan 1999). To

respond to this possibility, the testing has to be

restarted. The expense of this step often tends

to be discouraging (Pan 1999). In response to

this, verification can be used to test or check

items, including code, for consistency and

conformance by evaluating the results against

pre-specified requirements. Debugging implies

that testing should intentionally aim to make

things go wrong to find if things occur when

they should not or things do not occur when

they should. The validation involves the system

correctness e.g., it is the process of checking

whether the requirement that should be

specified is what the user really wants. This

means that the validation process checks

whether the invented system is what the

customer wants and needs to be included in it,

while the verification process checks whether

that system is invented correctly (Fischer

1977). Therefore, both verification and

validation are necessary as distinct elements of

any testing activity. This article shows three

phases of software testing in order to consider

possible requirements which can affect the

abilities of the whole system.

2. The Theory of Software Testing

2.1 Problems in Software Testing

This article is concerned with five

problems found in software testing as follows.

The first problem is concerned with the

limitations of the testing team. Insufficiency

may be the result of limited resources, lack of

AU J.T. 16(1): 35-40 (Jul. 2012)

Review Article 36

training of the individual team members, or

issues with the leadership. Also, suitable

testing means may not be available to the team.

The second problem is failure of the test

maintenance. This is because the specification

changes of the requirements result in

abnormally long reverse times. The third

problem is with manual testing. The software

testing team is busy making manual testing

instead of building new test specifications, or

modifying old ones to fit a new or changed

requirement. The forth problem is about the

uncertainty principle. Sometimes, the

uncertainty is in the exact testing conditions as

well as how to view the condition for

replication. The fifth problem is in selecting the

right tests. The software testing cannot address

some of the essential aspects of the software

testing application or system when testing only

some part of the required functions or choosing

only the expected interactions when executing

a fault-tolerant application.

2.2 Processes in Software Testing

The processes of verification and

validation are discussed below. Briefly,

verification makes the product right, but

validation makes the right product. Many

testers use white-box testing in these processes.

It deals with the investigation of internal logic

and structure of the code. Some important

processes of white-box testing are briefly

described. Data Flow Testing is the process

that can define and use program variables

(Horgan and London 1991). Loop Testing

exclusively concerns the validity of loop

constructs. Branch Testing tests true and false

values given to compound conditions

appearing in different branch statements

(Jorgensen 2002). Control Flow Testing is a

structural testing that applies the program’s

control flow as a model and selects a set of test

paths through the program (Rapps and

Weyuker 1985). Basis Path Testing allows the

test suite designer to build a logical complexity

measure of procedural design and then applies

this measure for determining a basic set of

execution paths (Clarke et al. 1989). Besides

this, some testers use black-box testing instead

of white-box testing for the examination of the

fundamental aspects of a system with little

regard to its internal logical structure (Beizer

1995). There are several typical processes of

black-box testing. Equivalence Partitioning can

remove the number of test cases and divides a

software unit into partitions of data from which

test cases can be determined (Spillner et al.

2007). Boundary Value Analysis concerns the

testing at boundary values such as minimum,

maximum, just inside and outside boundaries,

error values and typical values. Cause-Effect

Graph creates a relation between the causes and

effects (Nursimulu and Probert 1995). Fuzz

Testing determines implementation bugs and

uses malformed data injection in an automated

session (Miller et al. 1990). There are also

other processes of black-box testing.

Regression Testing reruns some of the selected

test cases to ensure that the modified software

system still has the functionality as required

(Ball 1998). Pattern Testing is a new type of

automated testing which can verify the good

application for its design or architecture and

patterns (Glaser and Strauss 1967). Orthogonal

Array Testing is a systematic, statistical way of

software testing which can be applied in user

interface testing, system testing, regression

testing, configuration testing and performance

testing. Matrix Testing states the status report

of the project. With Manual Testing, a tester

defines manual test operations to test software

without the aim of test

automation. Accordingly, this testing is a

laborious activity that uses a tester possessing a

certain set of qualities e.g., to be smart, hard

working, observant, creative, speculative,

innovative, open-minded, resourceful, and

skillful. Automated Testing runs the program

being tested, using the proper input and

evaluating the output against the expectation

before testing. Automated Testing needs a test

suite which is generated by test case generator,

no human intervention is required. Examples of

Automated Testing Tools are regression

testing, unit testing, automated functional

testing and test management. Regression

Testing refers to retesting the unchanged parts

of the application. In the test suite, test cases

could be re-executed in order to check whether

new changes have not produced any new bugs

and the previous functionality of an application

is still preserved. This test can be constructed

in a new build when there are significant

AU J.T. 16(1): 35-40 (Jul. 2012)

Review Article 37

changes in original functionalities or even a

single debugging. This article focuses on three

main techniques which are described as

follows. Retest-All Testing is one of the

techniques for regression testing in which all

the tests in the existing functionality or test

suite could be re-executed. A drawback of this

technique is that it is very expensive as it needs

huge resources and time (Smith and Robson

1992). With Regression Test Selection, instead

of retesting the entire test suite, it is better to

choose some test cases to be run. One of the

advantages of this technique is that reusable

test cases can be used in succeeding regression

cycles. Prioritization of Test Case produces

scheduling over test cases in an order that

improves the ability of regression testing

(Elbaum et al. 2000). On the other hand, for

Manual Testing, testers use Unit Testing/

Module Testing instead of Automated Testing.

A unit is the smallest testable component in the

software system. Unit Testing is introduced to

verify that the lowest independent function in

the software is working fine. The testable unit

is tested to determine whether it works

correctly when isolated from the remainding

code (Rothermel and Kinneer 2004). In

addition, Integration Testing can: provide the

intended functionality when modules are built

to interact with each other; and validate such

modules. While individual classes can be

invented and tested correctly, bugs may occur

due to their faulty interaction. Unit Testing

concerns Integration Testing which involves

the consideration of: the states of multiple

modules concerned at the same time in an

interaction; and the state of a single object of a

module (Meyers 1979). The last strategy is

grey box testing, it combines the concepts of

white-box and black-box testing to test an

application having partial knowledge of the

internal structure and at the same time having

knowledge of fundamental aspects of the

system (Barnett et al. 2003).

2.3. Integration Test Approaches

A mixture of the following approaches

can be applied to develop the integration test

plan. Big-Bang Integration Approach is a type

of integration testing in which software

elements and hardware elements are combined

all at once rather than in stages. In this

approach, individual modules of the programs

are not integrated until determination of

modules is made. This approach is not suitable

mostly for inexperienced programmers who

rely on running tests (Sage and Palmer 1990).

With Bottom-Up Integration Approach, each

subclass is invented and tested separately and

after this the entire program is tested. A

subclass may consist of many modules through

well-defined interfaces. The primary objective

of this approach is that each subclass needs to

test the interfaces among different modules

forming the subsystem. The test cases must be

carefully selected to exercise the interfaces in

all possible manners. Top-Down Integration

Approach is an incremental integration testing

that begins by testing the top level module.

After this, it adds in lower level modules one

by one. It uses stubs to simulate lower level

modules. A Stub is a special code arrangement

that can stimulate the behavior of a well-

designed and existing module which is not yet

constructed or developed (Cleve and Zeller

2005). Mixed Integration Approach

(sandwiched approach or hybrid approach)

combines top-down and bottom-up testing

approaches. In this approach, drivers (calling

programs) and stubs (called programs) are used

by testers wherever the programs are

incomplete.

2.4 Efficiency Testing

Testers concern performance testing

which provides information about their

application regarding stability, speed, and

scalability to stakeholders. The performance

testing will find whether or not their software

meets stability, speed, and scalability

requirements. Next, they concern recovery

testing which is defined as how well the system

should recover from system crashes, hardware

failures, and other catastrophic problems. Many

computer-based systems must recover from

bugs and resume operation within a pre-

specified time. A system can be fault tolerant,

which means that processing faults must not

cause the overall system function to cease.

However, a system failure needs to be

corrected within a specified period. The

program is verified under test stores of data

files in the correct directories. Accordingly,

sufficient space is handled and unexpected

AU J.T. 16(1): 35-40 (Jul. 2012)

Review Article 38

terminations resulting from lack of storage are

avoided. This is external storage as opposed to

internal storage. After this, procedure testing is

used to provide detailed instructions for

executing one or more test cases. The last

testing, User Acceptance Testing (UAT) is the

formal testing proposed to find whether a

software system meets its acceptance criteria. It

helps the buyer to find whether to reject the

system or not. Moreover, acceptance testing is

proposed to find whether software is suitable

for use or not. Beside this, it involves the

factors related to business environment. Alpha

Testing is conducted when any type of new

software or version of old software (called

alpha version) is released. In addition, alpha

versions are tested by some specific groups of

users, those who are chosen by the software

developer. They test and check whether all the

features that are provided work properly or not.

Beta Testing is conducted after alpha testing.

Versions of the software refer to beta versions

that are released to limited groups of people. It

can ensure the product has a few bugs or faults.

Sometimes, beta versions are produced to the

public to increase the feedback area and to

increase the number of future users.

Unfortunately, software testing is one of

the most difficult processes in SDLC. Testers

can test software with different testing

techniques. Therefore, this article proposes

software testing phases as an alternative option

for testers.

3. Design of Software Testing Phases

This section is the result of studying the

theory of software testing. Software testing can

be divided into three main phases: preliminary

testing, testing and user acceptance testing.

3.1 Preliminary Testing Phase

Preliminary testing phase is conducted

especially for testers to clarify the specification

requirements of the customer. According to

this, software testing can fulfill the needs of

both testers and customer. Fig. 1 describes the

preliminary testing phase as follows.

Review

Requirements

Specification

Prepare

Test Plan

Prepare

Software Tool

Prepare

Environment

Prepare

Test Case

Prepare

Test Automation Tool

Determine

Acceptance Test Tool

Fig.1. Preliminary testing.

Review Requirements Specification: This

step is important because many customers

initially provide insufficient information (e.g.,

size and cost of the project). Therefore, the

basic document that is needed is called a

requirements specification. It is a description of

what the system should do.

Prepare Test Plan: This step provides a

document describing the resources, schedule of

testing activities, scope, and testing approach

(e.g., items, features, tasks, environment, skills

of tester independence, design techniques

criteria, and risks)

Prepare Software Tool: This step must be

set up when the different modules in the

product, hardware, and operating system are

known.

Prepare Test Environment: This step

identifies production environment elements

that must be tested and creates a test

environment relevant to these elements (e.g.,

business applications, administrative tools,

computer hardware, databases, services,

security system, applications, and network

systems).

Prepare Test Case: This step provides a

document that explains an input and an

expected response of an application feature. A

AU J.T. 16(1): 35-40 (Jul. 2012)

Review Article 39

test case must contain particulars such as name

of test case, input data requirements, test case

identifier, objective, test setup, steps and

expected output.

Prepare Test Automation Tool: This step

provides planning of a test technique on how to

automate software testing. For instance, test

cases are executed for regression testing.

Determine Acceptance Test Tool: This

step can provide acceptance test tool for

software testing to meet the requirements

specification.

3.2. Testing Phase

The testing phase is a separate phase

which is conducted by a different test team

after the implementation is completed. The

testing technique is selected based on the

perspective of the test team. In this article, the

testing phase is divided into three steps as

shown in Fig. 2: independent verification,

independent validation and testing.

Verification

Validation

Testing

Fig. 2. Testing phase.

Verification: The verification activities

include technical reviews, software inspections,

walkthroughs, and efforts to: check the software

requirements (e.g., they are traceable to the

requirement specifications), check the design

components (they are traceable to the

software), check conduct requirements, perform

unit testing, perform integration testing,

perform system testing, check the acceptance

testing, and audit. One can say that it is to

determine the right thing, which concerns the

testing of the implementation of right process,

e.g., to determine whether the software is

properly made.

Validation: It checks whether the developed

software adheres to the user requirements.

Testing: It is a useful technique for both

verification and validation. Obviously, other

techniques useful for verification are: static

analysis, reviews, inspections and walkthroughs.

Other techniques useful for validation are

prototyping and early release.

3.3 User Acceptance Testing (UAT) Phase

It would be most important to complete

the UAT as shown in Fig. 3 to ensure that the

system, which is to be implemented, is working

correctly.

Check

Integration

Testing

Check

Test Strategy

Document

Check

Integration Testing

Signoff

Repair

Coordinate

Release

Fig. 3. User acceptance testing.

Check Integration Testing: When placing

several units together, one has to conduct

integration testing to ensure that the unit

integration has not produced any errors.

Check Test Strategy Document: This

document is prepared at the planning stage

when the user requirements are determined.

The strategy document is communicated to the

test team for testing the software release.

Check Integration Testing Signoff: This

step covers the acceptance for the whole of the

system testing. An agreement for the defects is

reached. This is a form, signed by the project

manager, which indicates that the

documentation, system testing, and training

materials have satisfied all tests within

acceptable margins.

Repair: This step is conducted to have

stable performance based on technical and

functional specifications.

Coordinate Release: This step is the last

step before the release of new software to the

market.

The three phases are designed to describe

all activities when dealing with software

AU J.T. 16(1): 35-40 (Jul. 2012)

Review Article 40

testing. According to this, software testers can

take the benefit of the design to implement the

ideas of software testing and address the

critical problems described in Section 2.

4. Conclusion

In summary, software testing is not only

the process of a team tester to: determine the

bugs and report the bugs to software

developers; and fix the bugs to develop new

quality software. The critical problems of

testing must also be considered, including the

structure of source codes and the whole

system. However, there is no one to guarantee

the use of best methods in software testing.

Therefore, many researchers are still working

on it. In future research, the focus will be on

software maintenance. This is because software

testing may result in high costs before feeding

into the maintenance system.

5. References

Ball, T. 1998. On the limit of control flow

analysis for regression test selection. Proc.

ACM SIGSOFT Int. Symp. on Software

Testing and Analysis (ISSTA), Clearwater

Beach, FL, USA, 2-5 March 1998, pp. 134-42.

Barnett, M.; Grieskamp, W.; Kerer, C.;

Schulte, W.; Szyperski, C.; Tilmann, N.; and

Watson, A. 2003. Serious specification for

composing components. Proc. 6
th

 ICSE

Workshop on Component-based Software

Engineering: Automated Reasoning and

Prediction, Portland, OR, USA, 3-4 May

2003. 6 pages.

Clarke, L.A.; Podgurski, A.; Richardson, D.J.;

and Zeil, S.J. 1989. A formal evaluation of

data flow path selection criteria. IEEE

Trans. Software Eng. 15(11): 1,318-32.

Cleve, H.; and Zeller, A. 2005. Locating causes

of program failures. Proc. 27th ACM Int.

Conf. Software Eng. (ICSE), St. Louis, MO,

USA, 15-21 May 2005, pp. 342-51.

Elbaum, S.; Malishevsky, A.G.; and Rothermel,

G. 2000. Prioritizing test cases for

regression testing. Proc. ACM SIGSOFT

Int. Symp. on Software Testing and

Analysis (ISSTA), Portland, OR, USA, 22-

25 August 2000, pp. 102-12.

Fischer, K.F. 1977. A test case selection

method for the validation of software

maintenance modifications. Proc. IEEE Int.

Computer Software and Application

Conference (COMPSAC), Chicago, IL,

USA, 8-11 November 1977, pp. 421-6.

Glaser, B.G.; and Strauss A.L. 1967. The

Discovery of Grounded Theory: Strategies

for Qualitative Research. Aldine, Chicago,

IL, USA.

Hetzel, W.C. 1988. The Complete Guide to

Software Testing. 2nd ed. QED Information

Sciences, Inc., Wellesley, MA, USA.

Horgan, J.R.; and London, S. 1991. Data flow

coverage and the C language. Proc. 4th

ACM Symp. on Testing, Analysis, and

Verification (TAV 4), Victoria, BC, Canada,

8-9 October 1991, pp. 87-97.

Humphrey, W. S. 1995. A Discipline for

Software Engineering. Addison Wesley,

New York, NY, USA.

Jorgensen, P.C. 2002. Software Testing: A

Craftsman’s Approach. 2nd ed. CRC Press,

New York, NY, USA. Chapter 6.

Miller, B.P.; Fredriksen, L.; and Bryan, S.

1990. An empirical study of the reliability of

UNIX utilities. Commun. ACM, 33(12): 32-

44.

Myers, G.J. 1979. The Art of Software Testing.

John Wiley & Sons, New York, NY, USA.

Nursimulu, K.; and Probert, R.L. 1995. Cause-

effect graphing analysis and validation of

requirements. Proc. Conf. of the Centre for

Advanced Studies on Collaborative

Research (CASCON), IBM Press, Toronto,

Ontario, Canada, 7-9 November 1995. p. 46.

Pan, J. 1999. Software testing. Student Report.

Available:<http://www.ece.cmu.edu/~koop

man/des_s99/sw_testing>.

Rapps, S.; and Weyuker, E.J. 1985. Selecting

software test data using data flow

information. IEEE Trans. Software Eng.

11(4): 367-75.

Sage, A.P.; and Palmer, J.D. 1990. Software

Systems Engineering. John Wiley & Sons,

New York, NY, USA.

Spillner, A.; Linz T.; and Schaefer, H. 2007.

Software Testing Foundations. A Study

Guide for the Certified Tester Exam.

Foundation Level, ISTQB compliant. Rocky

Nook Inc., Santa Barbara, CA, USA.

