
486 Chiang Mai J. Sci. 2012; 39(3)

Chiang Mai J. Sci. 2012; 39(3) : 486-497
http://it.science.cmu.ac.th/ejournal/
Contributed Papers

Multi-Faceted Measurement Framework for Test Case
Classification and Fitness Evaluation using Fuzzy
Logic Based Approach
Manoj Kumar*[a], Arun Sharma[b], Rajesh Kumar[c]
[a] Department of Computer Application, Galgotias University, Gr. Noida- India.
[b] Dept of CSE, Krishna Institute of Engineering & Technology, Ghaziabad- India.
[c] School of Mathematics & Computer Application, Thapar University, Patiala- India.
*Author for correspondence; e-mail: m_pachariya1@yahoo.com

Received: 19 August 2011
Accepted: 9 February 2012

ABSTRACT
The target of software engineering is to produce high quality software product

at low cost. Software testing consists of three main activities: selecting tests cases, execution
of test cases on the software under test, and evaluating the correctness of the outputs.
The first and third of these activities are labour-intensive, ambiguous and error prone.
How to provide cost-effective strategies for software test cases classification, minimization
and selection has been one of the research focuses in software testing for a long time.
Many researchers and academicians have addressed the effectiveness/fitness, selection,
classification, minimization of software test cases, and obtained many interesting results.
Quality of software testing is low due to uncertainty & inadequate techniques for estimating
the fitness, classification, selection of test cases and requires improvement. Test cases
fitness depends on several parameters. Vagueness of fitness of test cases and their fitness
parameters have created the uncertainty in classification and selection of test cases.
However, one issue of paramount importance in software testing i.e. the intrinsic imprecise
and uncertainty of test cases fitness, fitness parameters, multi-objective classification and
selection, is left unaddressed. However, by applying appropriate test case classification,
selection techniques, testing efforts can be reduced considerably. Moreover, by using the
multi-faceted classification, selection of test cases with test data adequacy criteria will help in
improving the overall quality of the software. Fuzzy logic based multi-faceted measurement
framework will be the solution to the problem of test cases fitness evaluation on multiple
parameters, and multi-objective test case classification, selection problem. Present paper
gives two contributions to software testing research first uncertainty in software testing
and secondly insight into multi-faceted measurement framework for test cases classification
and fitness evaluation using fuzzy logic based approach.

Keywords: fuzzy synthesis evaluation, multi-faceted classification, test cases, test data
adequacy criteria, test case fitness, uncertainty.

Chiang Mai J. Sci. 2012; 39(3) 487

1. INTRODUCTION
Software has been a major enabling

technology for advancing modern society,
and is now an indispensable part of daily life.
Complexity, difficulty risks and fuzziness
grows day by day in software testing. Because
of the increased complexity of these
software systems, more effective software
testing technologies were needed. Coming
in to next generation, mankind society
development has already entered into age
of intelligent, soft computing and cloud
computing techniques. Test cases fitness
evaluation, multi-objective test cases
classification and selection may be crucial
problem for next generation software testing
sorority. It requires to device an intelligent
and soft computing techniques and methods
continuously in long term of research to
improve quality of software testing gradually.
Software testing plays a vital role in high
quality software development. Although
software testing is a very time consuming
activity and itself an expensive activity, yet
launching of software without proper testing
may lead to cost potentially much higher
than that of testing, specially in systems
where human safety is involved [1,2]. The
effectiveness of this verification and
validation process depends upon the number
of errors found and rectified before releasing
the system. This, in turn, depends upon the
fitness and number of test cases exercised.
Test cases are the inputs to the program
under test. A test case is a set of conditions or
variables under which a tester will determine
whether an application or software system is
working correctly or not. Test cases pool may
contain some redundant, irrelevant and unfit
test cases. Since, testing is very expensive
process, unnecessary execution of redundant,
irrelevant and unfit test cases will increase
unnecessary burden of cost. The solution is
to choose only the fit test cases and

removing the unfit, redundant unnecessary
ones, which in turn leads to test cases
classification and selection [3-5]. So, test
cases classification and selection is required
to improve the software testing. Measuring
fitness of test cases is always a daunting
task. The term “fitness” refers to the
appropriateness of test cases to check the
quality of software.

An optimization problem is the problem
of finding the best solution from all feasible
solutions. Multi-Objective optimization
(MO) also known as multi-criteria or
multi-faceted or multi-attribute optimization
is the process of simultaneously optimizing
two or more conflicting objectives subject
to certain constraints. The objective of MO
optimization is to find the set of acceptable
solutions and present them to the decision
maker to take decision. Test cases classification
and selection is the problem of finding the
best subset (class) of test cases from a pool
of the test case to be audited. It will meet
all the objectives of testing concurrently.
Most of the researchers evaluated the fitness
of test cases only on single parameter fault
detecting capability. Though, the fitness of test
case depends on several parameters but
consideration of only one parameter is not
appropriate. The role of the fitness function
is to capture coveragebility of multiple
test objectives, when achieved, makes a
contribution to the desired test adequacy
criterion. Using the fitness function as a
guide, the multi-objective classification and
selection approach seeks test cases that
maximize the achievement of all test
objectives. Test cases should be classified
in such a way that it will achieve maximum
of code coverage, maximum of client
requirements coverage, high fault detecting
capability, maximum mutant killing score.
Though, there are several objectives of test
case classification and selection, discussed in

488 Chiang Mai J. Sci. 2012; 39(3)

details in section 3. However most of test
cases classification and selection approaches
found in the literature are single objective.
Some objectives of test cases classification
and selection are conflicting in nature,
coveragebility of one objective will suffer
other objective like cost, fitness of test cases
and number of test cases in class while
considering all objectives concurrently. It is
not appropriate to estimate fitness of test
cases just on single parameter and classify
and select the test cases on single objective.
It is not meeting the objectives of testing.
The objective of test case classification and
selection is to reduce the number of test
cases in classes to be audited and improve
the effectiveness of testing process by
reducing the efforts, cost, and uncertainty.
So, test cases fitness evaluation, classification
and selection of test cases should be treated
as multi-faceted concept [6,7]. Proposed
framework will surely reduce the cost &
efforts, uncertainty of software testing and
reduce the number of test cases to be
exercised also.

Fuzziness of test case fitness, vague
nature of fitness parameters, multi-faceted
classification, and selection of test cases,
error tracing, human involvements and
quality of estimation have created uncertainty
in software testing, discussed in details
in section 2. Fuzzy logic is a powerful
problem-solving methodology and provides
a remarkably simple way to draw definite
conclusions from vague, ambiguous or
imprecise information. It helps in taking
decision from approximate data and
finds precise solutions. It provides a
mathematical framework where vague,
conceptual phenomena can be rigorously
studied. Therefore, fuzziness as a means of
modeling linguistic uncertainty can be very
well used to model software testing
problems. So, we decided to use fuzzy

multi-faceted measurement framework for
evaluating the fitness, classification and
selection of test cases. This paper is organized
as follows: In Section 2, we discuss the
uncertainty in software testing relevant to the
material presented in this paper. Section 3
brings out the fuzzy logic base multi-faceted
measurement framework for fitness
evaluation, classification and selection of
test cases. The final conclusions that we can
draw from proposed framework are
presented in Section 4.

2. UNCERTAINTY IN SOFTWARE TESTING
Uncertainty is present in our everyday

lives. It is also present in software testing.
Uncertainty in the problem domain,
uncertainty in the solution domain and
human participation are three main sources
of uncertainty in software testing. Uncertainty
in software testing is available due to
uncertainty of fitness of test cases, fitness
parameters, conflicting multi-objective, test
execution, host environment of testing, multi-
objective test cases selection, classification,
prioritization, test schedules, early test
planning, artifacts (SRS, SDD, Source Codes)
error checking, quality of estimation and other
testing activities. The intrinsic imprecision in
fitness of test cases, fitness parameters, quality
of estimation, multi-objective classification
and selection have been identified as the
paramount issues of software testing. Tester
has to answer the following questions with
economic criteria: What test cases shall
tester use to exercise the program?, How to
select the test cases with maximum coverage
ability?, When and how to determine
whether testing has been conducted
adequately?, When to stop testing and
whether to continue the testing?, When to
stop optimization and whether to continue
the optimization?, How to determine
that whether generate optimized test cases

Chiang Mai J. Sci. 2012; 39(3) 489

or optimize the randomly generated test
cases, which one is the better approach?,
How to determine the quality/fitness of
test cases?, What will be the probability of
test case failure? and others [7-9]. Because
of the lack of known strategies and precise
information, decisions like these are made
on the basis of the experience, intuitive
assessments and heuristic rules.

Software testing is also human intensive
and thus introduces uncertainty. Human
participation includes active role played by
humans in every stage of the software
lifecycle inevitably introduces uncertainty
and unpredictability into software testing.
Psychology and mood of human participated
in software testing is uncertain, unpredictable.
Psychology, knowledge and experience of
human have an impact on software testing.
Automation of testing process does not
require human intervention but it is not
necessarily free of uncertainties. Instead,
multiple factors or objectives exist; discussed
in subsection 3.1, introduce uncertainties to
test case fitness values. Fitness parameters,
objectives of test cases classification and
selection are fuzzy and vague in nature.
One objective is more important in one
domain or project may not be important
for other domain or project e.g. cost is
important for web application but it is not
so important for embedded software but it
requires correctness and precision. Uncertainty
is also found in the defect-detection abilities
of testing criteria. Since, only exhaustive
testing in an ideal environment guarantees
absolute confidence in the testing process
and its results. This ideal testing scenario is
infeasible for all but the most trivial software
systems. These uncertainties will certainly
affect the testing effort, quality, cost and
test cases optimization. So, software testing
techniques are outdated and require next
generation computing techniques.

3. MULTI-FACETED MEASUREMENT FRAME
WORK FOR TEST CASE CLASSIFICATION

Tester will desire to find the class of test
cases that accomplish multi-objectives
concurrently in order to maximize the value
obtained from inherently expansive process
of executing several test cases, investigate the
output produced by them. Fuzzy multi-faceted
approach for test cases classification and
selection will be new approach. It will provide
optimal or near optimal solution to the test
case classification and selection problem.
So, multi-faceted measurement framework
helps tester to take decision for selecting /
filtering/ prioritizing the test cases with highest
adequacy. Fuzzy synthesis evaluation algorithm
evaluated each test case on multiple criteria
at different level. Tester uses multi-faceted
measurement framework to get the fitness
score of the test cases. Subsequently, assign
grades to each test case on the basis of their
fitness score using student grading system.
Thereafter, test cases are classified into
different classes using final grades. Proposed
framework helps tester to select and exercise
the efficient test cases from various alternate
test cases. It will surely reduce the uncertainty,
cost & efforts of software testing and
improve the quality of software testing. The
grades shall be derived from fitness scores
of test cases. Test cases are finally awarded by
seven grade scales like Excellent (A), Better
(B), Good (C), Common/Average(D),
Bad (E), Worse (F) and Worst (G)[10].
After grading each test cases the tester might
develop a relation between grades and fitness
parameters by assigning fitness value using
Gaussian membership function.

Proposed framework requires identi
fication of parameters, sub-parameters for
test case fitness and weight distribution
approach. It also requires mathematical
model and calculation methods for weight
distribution, fitness evaluation. Result of

490 Chiang Mai J. Sci. 2012; 39(3)

quantitative measurement should be
analyzed and design concretely. We used
fuzzy feature weighting function to
calculate the weight value of each fitness
parameter and sub-parameter. In, test cases
evaluation systems, first of all determine
the evaluation index system according test
cases fitness parameters. Subsequently
inspection methods are used for measuring
the metric elements and getting the value
of these metric elements. Weight values of
these metrics elements belonging to
parameters/sub-parameters are calculated.
Same method can be used to evaluate the
measured value of every sub-parameters of
test cases fitness. The purpose of evaluation
is to measure the fitness of test cases on all
parameters concurrently, and compare
them with predefined evaluation rating/
grading system. Final assessment for test
cases fitness will be carried out for test cases
classification and selection [11]. Proposed
framework estimates the fitness of test cases
with consideration of several objectives/
parameters concurrently; classify the test
cases into two broad categories: Eligible
for Qualifying Certificate of Fitness/
Efficiency (EQCF) and Eligible for
Improvement of Fitness (EIOF). Tester
will assign the grades to each test case after
evaluating the fitness of test cases in numeric
score. Test cases are evaluated on several
parameters on seven point grading system.
Subsequently test cases are filtered in two
pools EQCF and EIOF. Tester executes
only those test cases having qualifying
certificate of fitness and chunk out the
test cases, those are eligible for fitness
improvement. Test cases belonging to EIOF
category are further divided into two sub
pools Most Eligible for Improvement
of Fitness (MEIOF) and Least Eligible for
Improvement of fitness (LEIOF). Some
objectives are conflicting in nature and do

not have the equal importance. So, grading
range for different objective will be
different and also have the different
meaning. The test cases are eligible for
qualifying certificate of fitness, if they
obtain minimum common grade (D Grade)
on each parameter or objective and final
grade also. Though there are several
parameters and objectives for estimating
the fitness of the test cases but the author
evaluated the test cases from such
perspectives as number of defect detecting
capability, testing cost, testing efforts,
control and data flow based adequacy
criteria details in Table 1.

3.1 Objectives and Adequacy Criteria for
Test Cases Fitness Evaluation

The test problem specification includes
three main parts, the purpose of testing, test
coverage criteria and the test strategy that
will be employed. First step in multi-faceted
measurement framework is to identify
the fitness parameters and objectives of
classification and selection of test cases.
Software test adequacy criteria are the rules
to determine whether a software system
has been adequately tested, which points out
the central problem of software testing i.e.
“What is a test data adequacy criterion?”.
Number of test data adequacy criteria has
been proposed and investigated in the
literature like control flow based adequacy
criteria, data flow based adequacy criteria,
fault-based adequacy criteria, and error-based
criteria. Control flow based adequacy criteria
include statement coverage, branch coverage,
path coverage, Length-i path coverage, loop
coverage, relational operator coverage, and
table coverage. Data flow based adequacy
criteria include all definitions criterion, all
uses criterion. Fault based adequacy criteria
include error seeding and mutant coverage or
mutant killing score [13,14]. Execution time

Chiang Mai J. Sci. 2012; 39(3) 491

is one realistic measure of effort. Selection
and execution time are the important factors
for test cases classification [15,16]. Physical
execution time of test cases is hard to measure
accurately. Measurement is confounded by
many external factors; different hardware,
application software and operating system.
The fitness of the test cases is not only concern
but cost is also one of the apprehensions
of software industry, researcher and

Table 1. Software test cases fitness valuation index system.

So
ftw

ar
e T

es
t C

as
es

 F
itn

es
s E

va
lu

at
io

n
Pa

ra
m

et
er

s

Parameters/First
Layer Index

Sub-Parameters/Second
Layer Index

academicians. The whole purpose of test
case classification and selection is to achieve
more efficient testing in terms of the cost.
Review of existing literatures has brought
out several parameters for assessing the
fitness and objectives of test case
classification like maximum number of
defect detecting capability, minimum test
cases design efforts, minimum design cost,
minimum execution cost, maximum

Fault Detecting Capability
X1(0.2)

Control Flow Based
Adequacy X1(0.2)

Data Flow Based
Adequacy X3(0.15)

Efforts X4(0.15)

Cost X5 (0.15)

Requirement Coverage
Capability X6(0.15)

Error Seeding X11 (0.35)
Mutant Killing ability(Score) X12(0.35)
Fault Severity X13 (0.30)

Statement Coverage X21 (0.23)
Branch Coverage X22 (0.23)
Path Coverage X23 (0.20)
Loop Coverage X24 (0.14)
Relational Operator Coverage X25 (0.11)
Table Coverage(Array) X26 (.09)

All Definition Criteria X31 (0.50)
All Uses Criteria X32 (0.50)

Total Efforts X41 (0.15)
Design Efforts X42 (0.15)
Selection Efforts X43(0.3)
Execution Efforts X44 (0.2)
Efforts Benefits X45 (0.2)
Total Cost X51 (0.15)
Design Cost X52 (0.15)
Selection Cost X53 (0.3)
Execution Cost X54 (0.2)
Cost Benefits/Cost Saving X55 (0.2)
Critical Requirement Coverage X61 (0.36)
Rare Requirement Coverage X62(0.19)
Least Requirement Coverage X63 (0.45)

Error Seeding X11 (0.35)
Mutant Killing ability(Score) X12(0.35)
Fault Severity X13 (0.30)

Statement Coverage X21 (0.23)
Branch Coverage X22 (0.23)
Path Coverage X23 (0.20)
Loop Coverage X24 (0.14)
Relational Operator Coverage X25 (0.11)
Table Coverage(Array) X26 (.09)

All Definition Criteria X31 (0.50)
All Uses Criteria X32 (0.50)

Total Efforts X41 (0.15)
Design Efforts X42 (0.15)
Selection Efforts X43(0.3)
Execution Efforts X44 (0.2)
Efforts Benefits X45 (0.2)
Total Cost X51 (0.15)
Design Cost X52 (0.15)
Selection Cost X53 (0.3)
Execution Cost X54 (0.2)
Cost Benefits/Cost Saving X55 (0.2)
Critical Requirement Coverage X61 (0.36)
Rare Requirement Coverage X62(0.19)
Least Requirement Coverage X63 (0.45)

492 Chiang Mai J. Sci. 2012; 39(3)

coveragebility of client requirements,
maximum code coveragebility, minimum
setup and data access cost, execution time/
effort, and maximum mutant killing score,
etc are objectives and contributing as
parameters for assessing the fitness of
test cases. These parameters are not
contributing at same level for assessing
fitness of test case. These parameters values
/scores may be maximum /minimum
according to the test objectives [7].

3.2 Weight Assigning Method
The weight is a statistical measure used

to evaluate how important a parameter or
objective is to a test case in a collection or
test cases repository. Second step in
multi-faceted measurement framework is to
identify the importance of fitness parameters
and objectives of classification and selection
of test cases. Thereafter weight distribution
calculation strategy will be employed.
Test cases fitness parameters and testing
objectives have been identified in previous
section. Some objectives are conflicting in
nature. Contribution of test case parameters
towards their fitness is vague and imprecise.
Importance of testing objectives is also fuzzy.
So, concurrent consideration of all fuzzy
parameters and testing objectives creates
uncertainty. So, there is a need to devise
fuzzy feature weighting approach. All fitness
parameters of test cases are not equally
important for each project. They are not
contributing equally to fitness of test cases.
Weight values for fitness parameters are
calculated by using Feature Weighting
Functions (FWF). A weighting function is used
to associate a weight wi , j to each fitness
parameter (factor) Pj of test cases. The classical
weighting function is used for relevance
computation in testing objectives. FWF,
whose details can be found in Ref. 17,18, leads
us to the following:

Definition 1. Let wi,k denote a weight of
k-th fitness parameter Pk with respect the i-th
module/component and ni,k is the frequency
of the k-th parameter Pk in i-th component/
module. N is the size of Test Cases
Repository(TCR), f is the total number of
parameters/ objectives and nk is the number
of TCR items showing Pk, then wi,k is as
follows :

(1)

Refinement of feature weight is the
fuzzy weight, whose characteristic function
wi,k,j is called the fuzzy weight of k-th
fitness parameter Pk with respect the i-th
module/components of j-th project. It
should be defuzzified by using Ordered
Weighting Techniques, which require
enhanced version of the fuzzy weight. The
values of wi,k,j are ordered in a decreasing
manner then component/module weight
cwi, is calculated.

Definition 2. Let cwi denote the
component/ module weight of a fitness
parameter Pk which depends on the ratio
between the number of steps of test case i
where Pk occurs and the total number of
occurrences of Pk in the components/module
test cases’s steps. as follows:

(2)

Where the stepi,Pk is the number of
test steps and Pk is relevant in the ith test
case. Decision maker will assign importance
to each module by supplying auxiliary values

 , default value is
0. Component weight and auxiliary weights
are used to calculate the effective fuzzy weight

, as follows:

Chiang Mai J. Sci. 2012; 39(3) 493

 (3)

Where is defined as:

 (4)
Lastly, we will estimate defuzzified

weight ∈as follows:

∈= Σi=1n i* CWi (5)

Where are in decreasing manner values
of ∈i

3.3 Fuzzy Synthetic Evaluation Approach
The term synthesis is used here to

predict the fitness of test cases and then
classify the test cases into broad class EQCF
and EIOF. Several individual elements are
evaluated and components of an evaluation
system are synthesized into an aggregate
form. The evaluation is usually described
in natural language terms, since a numerical
evaluation is often too complex, too
unacceptable, too ephemeral and too vague.
We used the index system of software test
cases fitness evaluation built in Table 1 to
carry out measurement. Obviously,
software test cases fitness evaluation belongs
to multilayer fuzzy synthesis evaluation,
idiographic steps for carrying out as
follows:

3.3.1 Ascertain valuation set:
Y= {Excellent, Better, Good,

Common, Bad, Worse, Worst}

3.3.2 Ascertain evaluation factor:
We used the index item of the test

cases evaluation index system for fitness
evaluation and classification built in Table
1. There are two layers, the names and serial
numbers of each layer index item have
given out. Fuzzy synthesis evaluation
factor set is composed by decompounding

and subdividing the subjection relation of
each layer index item layer by layer, for
example, the evaluation factor set of the
first layer index is {X1, X2, X3, X4, X5,
X6}. The evaluation factor set of X1 is
{X11, X12, X13}, and the evaluation factor
set of other layer index can be got from
Table 1 by using this method.

3.3.3. Ascertain the weight of each layer
evaluation index:

Here weight of each index item is
calculated by fuzzy feature weighting
function and classical weighting approach,
and discussed in subsection 3.2. Weight
coefficients are given in Table 1.

3.3.4 Ascertain fuzzy evaluation matrix:
According to multilayer fuzzy

synthesis evaluation process, first we need
to ascertain the fuzzy evaluation matrix,
which is correlative with the two layer
index items of software test cases fitness
evaluation index system (Table (1)). Fuzzy
evaluation matrix values are the
membership degree values of each factor
(comment) in comment set Y, which is
correlative with each index item. Ref. 19
leads us to adopt the factor evaluation
algorithm researched by USA RADC (Rome
Air Development Center). Factor evaluation
algorithm is used to measure the second layer
index items separately. These values are just
distributed in interval (0,1).Taking 0 means
worst and taking 1 means excellent. Limiting
to length, we just list out X11= Number of
predefined (seeded) errors detected /Total
number of errors seeded, X12 = k/ (g-n-q),
where k, g, n, q are the numbers of killed, all
generated mutants, anomalous and mutants
equivalent to original program. X13=
Number of severe faults detected /Total
number of severe faults. The measurement
of other second layer indexes can refer to

494 Chiang Mai J. Sci. 2012; 39(3)

testing metrics defined, and we doesn’t give
necessary details here. The second layer
index measurement value is only holistic
comment of software test cases fitness.
It is not acting as membership degree
value of different comment yi in the
valuation set Y. How do we take different
membership degree values for the different
comment yi in the valuation set Y?.
According to experience measured
software test cases fitness parameters and

sub-parameters, we firstly gave second
layer index taking value intervals for
different comment yi, shown as Table 2.

Generally speaking, the membership
degree values of the second layer indexes
(software metric elements) for different
comment yi in valuation set Y are all normal
distribution in different intervals shown in
Table 2. So, the membership function of the

second layer indexes for the valuation set
is, as follows:
 μ(x) = e-((x-m)|c))2 (6)

Where, m and c are constant. Note formula
(6), As x=m, μ(m)=1 is maximum. So, m
must be the middle point of the interval in
Table 2. For example, the interval for the
index X11 corresponding comment y1
(excellent) is (0.85,1), and then m=(0.85+1)/
2=0.925. The all interval middle point’s m

and c are shown in Table 3.
Furthermore, as x is a boundary point

of the tow neighbor intervals for same
second layer index taking value, and then
membership degree values is same for the
two intervals corresponding the two
comments, and u(x=boundary point) about
equal 0.5. Therefore, the constant c is the
root of equation e-{((xr-xl)|2c)}2 = 0.5 in

Table 2. Second layer indexes taking value intervals.

Second Layer
Indexes

Excellent Better Good Common Bad Worse Worst

X11

X12

X13

(0.85,1)

(0.86,1)

(0.84,1)

(0.75,
0.85)
(0.76,
0.86)
(0.74,
0.84)

(0.60,
0.75)
(0.61,
0.76)
(0.59,
0.74)

(0.50,
0.60)
(0.51,
0.61)
(0.49,
0.59)

(0.40,
0.50)
(0.41,
0.51)
(0.35,
0.49)

(0.30,
0.40)
(0.31,
0.41)
(0.20,
0.35)

(0.00,
0.3)

(0.00,
0.31)
(0.00,
0.20)

Table 3. Second layer indexes normal distribution parameters.

Second Layer
Indexes

Excellent Better Good Common Bad Worse Worst

X11

X12

X13

(0.93,0.09)

(0.93,0.08)

(0.92,0.10)

(0.80,
0.06)
(0.81,
0.06)
(0.79,
0.06)

(0.68,
0.09)
(0.69,
0.09)
(0.67,
0.09)

(0.58,
0.09)
(0.56,
0.06)
(0.54,
0.06)

(0.45,
0.06)
(0.46,
0.06)
(0.42,
0.08)

(0.35,
0.06)
(0.36,
0.06)
(0.28,
0.09)

(0.15,
0.18)
(0.16,
0.19)
(0.10,
0.12)

m, c

Chiang Mai J. Sci. 2012; 39(3) 495

yi (in the set Y) and in different intervals
(in the Table 2). As an example, we only
gave the fuzzy membership degree values
for the index X11, X12 and X13
corresponding comment yi, and these values
are shown in Table 4.

Thereupon, the fuzzy valuation
matrixes of the second layer indexes are
built by the membership degree values. For
instance, the fuzzy valuation matrix which
is related the indexes X11, X12 and X13
corresponding with the first layer index X1
is (Table 4). Of course, we can also get all
fuzzy evaluation matrixes for the all second
layer indexes in Table 1 with the same
method.

3.3.5 Synthesis evaluation:
According to the improved model of

fuzzy synthesis evaluation algorithm, we
begin with the corresponding the fuzzy
evaluation matrixes (as R11) of the second
layer indexes, and compute the
corresponding evaluation values of the first
layer indexes in turn. It is the membership

degree for evaluation set Y of the first layer
index. For example, the fuzzy evaluation
matrix for the first layer index x1 can be
calculated from the below formula (7):

 (7)

=(0.28, 0.15, 0.37, 0.19, 0.01, 0.00, 0.00)

With above computing method, the
fuzzy evaluation matrix of the first layer
indexes are all ascertained by merging
interrelated fuzzy valuation matrixes of the
second layer indexes and associated weight
metrics via the unitary management. It is
the membership degree for evaluation set
Y of the first layer indexes, and so the fuzzy
evaluation matrix of the first layer indexes
is formed. Finally, we get the fuzzy
synthesis evaluation value of the evaluated
test cases. In order to measure and describe
the final evaluation result of the test cases
well and truly, we have to adapt the
measurement practice of daily evaluation.
We adjust the final fuzzy synthesis
evaluation value, and distributing them in
the interval [0, 100]. The test cases fitness

Table 4. Second layer indexes membership degree.

0.26
0.17
0.00

Second Layer
Indexes=ri,j,k

Excellent Better Good Common Bad Worse Worst

X11=0.73
X12=0.89
X13=0.58

0.01
0.80
0.00

0.69
0.01
0.41

0.00
0.00
0.64

0.00
0.00
0.03

0.00
0.00
0.00

0.00
0.00
0.00

μ(x)

which xr and xl are separately the right
endpoint and left endpoint of the intervals
in Table 2. Thus, all m and c constant values
in all intervals are computed and shown
in Table3.Subsequently, the measurement
values of all second layer indexes are

calculated with RADC measurement
algorithm. According to these values, the
Table 3 and the formula (6), we can
compute the fuzzy membership degree
values of the second class indexes (in the
Table 1) corresponding different comment

496 Chiang Mai J. Sci. 2012; 39(3)

evaluation need every comment in the
evaluation set. We divide the interval [0,
100] into seven subintervals which
correspond to the seven comments. Finally,
we give the corresponding evaluation
according to the subinterval which the
adjusted value of fuzzy synthesis evaluation
value is in.

4. CONCLUSION AND FUTURE SCOPE
Fuzzy logic based multi-faceted

measurement framework is a next
generation mathematical model and more
suitable for modern software testing
requirements. Proposed framework is very
useful and effective to software test cases
optimization and fitness evaluation
problem. It will certainly improve the
accuracy, practicability, reliability and
flexibility of software test cases fitness
evaluation and classification approach.
Multi-faceted measurement framework will
potentially provide significant benefits to
software testing. Proposed framework will
also reduce the efforts, cost and uncertainty
of software testing. Proposed framework
also classifies the test cases and helps testers
to select efficient test cases from various
alternative classes of fit test cases.

Proposed framework uses an improved
fuzzy synthesis evaluation algorithm, which has
a good rate, accuracy and credibility for
software test cases fitness assessment and
classification. It is evident that the proposed
framework conducts not only the overall
evaluation of the fitness of software test cases,
but also can do sub-item or sub-parameters
assessment for different levels of evaluation
factors. This flexible measurement framework
is very useful in actual test cases fitness
evaluation, multi-objective classification and
selection work. However, implementation of
proposed framework is due. Unfit test cases
are ignored in proposed framework. These

outliers are very important. Fitness of these
outliers can be improved and can be
converted into fit category. These test cases
may outperform in future. Framework for
fitness improvement of unfit test cases and
conversion of unfit test cases to fit cases is
pending. Conversion framework will be
proposed in future.

REFERENCES

[1] Alberts D.S., The economics of
software, Proceedings of National
Computer Conference on Quality
Assurance, held at Montvale, N.J.,
1976; 45: 433-442.

[2] Berndt D.J. and Watkins A., High
volume software testing using genetic
algorithms, Proceedings of 38th IEEE
International Conference on System
Sciences, Hawaii, 2005; 8(5): 1-5.

[3] Yoo S. and Harman M., Pareto
efficient multi-objective test case
selection, Proceedings of the Inter-
national Symposium on Software
Testing and Analysis (ISSTA), held at
London, U.K., 2007: 140-150.

[4] Mala D.J., Mohan V., Quality
improvement and optimization of
test cases – a hybrid genetic algorithm
based approach, ACM SIGSOFT
Software Eng. Notes, 2010; 35(3): 1-14.

[5] Shihab A.H., Framework for Intelligent
Meaningful Test Data Generation
Model-IMTDG, WOO, 2000: 11-16.

[6] Kumar M., Sharma A. and Kumar R.,
Towards multi-faceted test cases
optimization, J. Software Eng. Appl.,
2011; 4(9): 550-557.

[7] Kumar M., Sharma A. and Kumar R.,
Soft computing-based software test
cases optimization: A survey, Int. Rev.
Comp. Software, 2011; 6(4): 512-526.

Chiang Mai J. Sci. 2012; 39(3) 497

[8] Mohanty R., Ravi V. and Patra M.R.,
The application of intelligent and soft-
computing techniques to software
engineering problems: A review, Int.
J. Information and Decision Sci., 2010;
2(3): 233-272.

[9] Mala D.J. and Mohan V., ABC tester
- artificial bee colony based software
test suite optimization approach, Int.
J. Software Eng., 2009; 2(2): 15-43.

[10] Yogesh S., Kaur A. and Suri B., Test
case prioritization using ant
colony optimization, ACM SIGSOFT
Software Eng. Notes, 2010; 35(4): 1-7.

[11] Ross Timothy J., Fuzzy Logic with
Engineering Applications, second
edition, John Willey & Sons, 2004.

[12] Law C-K., Using fuzzy numbers in
educational grading system, Fuzzy Sets
and Systems, 1996; 83: 311-323.

[13] Zhu H., Axiomatic assessment of
control flow-based software test
adequacy criteria, Software Eng. J.,
September 1995; 10(5): 194-204.

[14] Kim J.M. and Porter A., A history-
based test prioritization technique for
regression testing in resource constrained
environments, Proceedings of the 24th

International Conference on Software
Engineering, held at Orlando, FL,
2002: 119-129.

[15] Kumar V. and Kumar S.M., Test case
prioritization using fault severity, Int.
J. Comp. Sci. Technol., 2010; 1(1):
67-71.

[16] Leon D. and Podgurski A., A
comparison of coverage-based and
distribution-based techniques for
filtering and prioritizing test cases,
Proceedings of the 14th International
IEEE Symposium on Software
Reliability Engineering (ISSRE’03),
2003: 442-453.

[17] Salton G. and Buckley C., Term
weighting approaches in automatic
text retrieval, Inf. Proc. Manage., 1998;
24(5): 513-523.

[18] Yager R.R., On ordered weighted
averaging aggregation operators in
multi-criteria decision making, IEEE
Trans. Systems, Man and Cybernetics,
1998; 18(1): 183-190.

[19] Jianli D. and Ningguo S., Research and
improvement of the fuzzy synthesis
evaluation algorithm based on software
quality, Comp. Eng. Sci., 2007; 29(1):
66-69.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

