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ABSTRACT 
 This paper considers a movement problem that minimizes the maximum movement 

of  pebbles on a graph to form a path from source vertex 𝑠𝑠  to destination vertex 𝑡𝑡 . The best 
known algorithm for this problem is a 7-approximation algorithm developed by Berman, 
Demaine, and Zadimoghaddam in 2011. We refine the analysis of  Berman et. al. to obtain an 
(3 + 𝜖𝜖)- -approximation algorithm for any constant 𝜖𝜖 > 0 . This problem is a subroutine used by 
Berman et. al. for finding a solution to the connectivity movement problem. Using our improved 
algorithm as a subroutine, the approximation ratio for the connectivity movement problem 
improves from 136 to 104 + 𝜖𝜖 . 

Keywords: movement problems, approximation algorithm, graph algorithm

1. INTRODUCTION
This paper considers a class of  problems 

called movement problems first introduced in 
Demaine et. al. [1]. Movement problems consist 
of  problems that involve planning the motion 
of  a set of  movable objects such that their 
final positions satisfy some property and their 
motions were measured under some criteria.

The movement problems have many 
practical applications. As an example, consider 
a group of  firefighters surrounding a forest fire 
where each firefighter has a walkie-talkie with 
limited range connectivity. One problem arising 
from this situation is to arrange the firefighters 
in locations such that they can communicate 
with each other (directly or indirectly through 

message relaying by other firefighters). Thus, the 
goal of  this problem is finding the minimum 
distance required for each firefighter to move so 
that they can form a communication network. 
In graph theoretical terms, if  we have a graph 
representing all locations and their proximity, 
we want the subgraph induced by firefighter 
locations to be connected. 

In this paper, we consider the s-t path 
movement problem. In this problem, we are given 
a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  with 𝑛𝑛  vertices, 𝑚𝑚  movable 
objects, called pebbles, which are placed on 
a subset of  𝑉𝑉 , the starting vertex s, and the 
ending vertex t. The pebbles are objects that 
can be moved along the edges of  the graph. 
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The movement of  a pebble is the distance for 
which the pebble moves. We say that vertex 𝑣𝑣  
is occupied by pebble 𝑝𝑝  if  pebble 𝑝𝑝  is placed on 
vertex 𝑣𝑣 . The goal is to move a set of  pebbles 
so that the graph induced by vertices occupied 
by some pebble contains a path from s to t. 
The objective of  this movement is to minimize 
the maximum movement of  any pebbles. This 
problem is referred to in Demaine et. al. [1] as 
PathMax, where it is shown that this problem 
cannot be approximate better than a factor 
of  2− 𝜖𝜖 , unless P = NP. The best known 
result for this problem is due to Berman, 
Demaine and Zadimoghaddam [2] who gave 
a 7-approximation algorithm. In this paper, 
we refine the analysis of  [2] to yield a (3 + 𝜖𝜖)- 
-approximation algorithm.

1.1 Previous Results
The s-t path movement problem is one 

of  the movement problems defined under 
the framework of  Demaine, Hajiaghayi, 
Mahini, Sayedi-Roshkhar, Oveisgharan, and 
Zadimoghaddam [1] where many approximation 
algorithms for movement problems are 
presented. (See Section 2 for a more complete 
review of  movement problems.) They showed 
an 𝑂𝑂(√𝑚𝑚/𝑂𝑂𝑂𝑂𝑂𝑂) -approximation algorithm for 
the s-t path movement problem where OPT is a 
maximum movement of  an optimal solution. In 
2011, Berman, Demaine and Zadimoghaddam 
[2] gave the first constant-factor approximation 
algorithm to the s-t path movement problem. 
This algorithm is a crucial subroutine they use 
to obtain the first constant-factor approximation 
algorithm to the connectivity movement problem 
that minimizes the maximum movement. In that 
paper, a 7-approximation algorithm for the s-t 
path movement problem is presented. They also 
show that given a γ-approximation to PathMax, 

one can obtain a (8γ+80)-approximation to the 
connectivity movement problem.

If  the objective of  the problem is to 
minimize the sum of  the movements, a problem 
referred to under the movement framework as 
PathSum, the best approximation ratio is O(n), 
presented in [1]. Improving this algorithm 
remains an open problem.

1.2 Our Contributions
By refining the analysis of  Berman et. al. 

[2], we obtain a (3 + 𝜖𝜖)- -approximation algorithm 
for the s-t path movement problem. This can 
be compared to a 7-approximation algorithm 
by [2].

Our main theorem is the following.

Theorem 1. For any 𝜖𝜖 > 0 , there exists a polynomial-
time (3 + 𝜖𝜖)- -approximation algorithm for the s-t path 
movement problem. That is, if  there is a solution such 
that each pebble moves along a path of  at most M 
edges to form an s-t path, the algorithm finds a solution 
such that each pebble moves along a path of  at most 
(3 + 𝜖𝜖)-  M edges.

Using this algorithm, we obtain a(104 + 𝜖𝜖 ) 
-approximation algorithm for the connectivity 
movement problem, an improvement from a 
136-approximation algorithm in [2].

Our paper is organized as follows. Other 
related work is shown in section 2. Section 3 
presents an overview of  Berman, Demaine and 
Zadimoghaddam’s approach. Section 4 presents 
our algorithm which is our main contribution, 
constructing the path from an (𝐿𝐿,𝑘𝑘) -locally 
consistent solutions. 

2. RELATED WORK
In this section, we provide short reviews 

on movement problems. Motivated by many 
practical movement problems (see, e.g., [3], 

  *In [2], the researchers claim that there exists an 7- approximation algorithm for the s-t path movement problem which 
runs in polynomial time. However the full proofs of  the main results and the running time of  this algorithm were not showed in 
the manuscript.

104 + 𝜖𝜖 
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[4], [5], [6], [7] and [8]), Demaine, Hajiaghayi, 
Mahini, Sayedi-Roshkhar, Oveisgharan, and 
Zadimoghaddam [1] defined a class of  movement 
problems as the problems that plan to move 
a subset of  movable objects to satisfy some 
property 𝑃𝑃 . For example, property 𝑃𝑃  can be 
that the set of  vertices occupied by pebbles 
form a connected component, or the set of  
occupied vertices form a path from a particular 
vertex s to vertex t. For a specific property, 
there can be many objectives. Demaine et. al. 
[1] considered three possible objectives: (1) 
to minimize the maximum movement, (2) to 
minimize the total movement, or (3) to minimize 
the number of  the objects are moved. In this 
pioneering paper, for the objective that aims to 
minimizes the maximum movement, Demaine 
et. al. presented an algorithm that finds solutions 
whose maximum movement is 𝑂𝑂(√𝑚𝑚/𝑂𝑂𝑂𝑂𝑂𝑂)  
if  𝑂𝑂(√𝑚𝑚/𝑂𝑂𝑂𝑂𝑂𝑂)  is the optimal maximum movement 
for the connectivity movement problem. They 
also obtained an approximation algorithm 
with the same approximation ratio for the s-t 
path movement problem. Later on, Berman, 
Demaine and Zadimoghaddam [2] gave the 
first constant-factor approximation algorithm 
for the s-t path movement problem and the 
connectivity problem as we mentioned above. 

3. OVERVIEW OF THE APPROACH BY BERMAN, 
DEMAINE AND ZADIMOGHADDAM

Our technique is based on the same technique 
which Berman, Demaine and Zadimoghaddam 
[2] used for the s-t path movement algorithm 
(later called BDZ algorithm). This section gives 
an overview of  their algorithm.

The main ingredient of  the BDZ algorithm 
is an intermediate solution of  the s-t path 
movement called a locally consistent solution. 
This solution is intuitively a relaxed solution, 
for which a pebble can be used many times, 
but only at the positions which are far from 
each other. This relaxed constraint allows the 
use of  dynamic programming to deal with the 

problem. After a locally consistent solution is 
found, a procedure based on a structural lemma 
works on the solution to remove multiple 
appearances of  pebbles on the solution to 
obtain a feasible solution to the original s-t 
path movement problem. 

To formally define a locally consistent solution, 
we first need a few definitions. Let 𝑑𝑑(𝑢𝑢, 𝑣𝑣)  be 
the shortest distance from vertex 𝑑𝑑(𝑢𝑢, 𝑣𝑣)  to vertex 

𝑑𝑑(𝑢𝑢, 𝑣𝑣)  in the graph, disk 𝐷𝐷(𝑢𝑢,𝑅𝑅)  be the set of  
vertices of  distance at most 𝐷𝐷(𝑢𝑢,𝑅𝑅)  from 𝑑𝑑(𝑢𝑢, 𝑣𝑣) , i.e., 
𝐷𝐷(𝑢𝑢,𝑅𝑅) = {𝑣𝑣 ∈ 𝑉𝑉 | 𝑑𝑑(𝑢𝑢, 𝑣𝑣) ≤ 𝑅𝑅} , and a disk 
set 𝑃𝑃𝑃𝑃𝑃𝑃(𝑢𝑢,𝑅𝑅)  be the set of  pebbles with their 
initial positions within 𝐷𝐷(𝑢𝑢,𝑅𝑅) . 

We assume that we know the value 𝑀𝑀  
of  the maximum movement of  the optimal 
solution, since there are only 𝑛𝑛  possible values 
to remove this assumption we can perform 
binary search over all the possible values. 

While our solution is a path, the BDZ 
algorithm will not work directly with the 
whole path. A set of  vertices (including also 
𝑠𝑠 𝑡𝑡  and 𝑠𝑠 𝑡𝑡 ) in the path are denoted as milestones, 
which are equally spread out over the path. A 
locally consistent solution is defined in terms 
of  milestones and pebbles needed to connect 
these milestones. The following definition is 
a generalization of  the one in [2] where they 
set 𝐿𝐿 = 𝑀𝑀  and 𝑘𝑘 = 7 . Formally, an (𝐿𝐿,𝑘𝑘) 
-locally consistent solution consists of  the milestones 
𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑥𝑥  and set of  pebbles 𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝑥𝑥   
where 

1. 𝑑𝑑(𝑣𝑣1, 𝑠𝑠) = 𝐿𝐿 − 1  and 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖+1) = 2𝐿𝐿 − 1  
for all 1 ≤ 𝑖𝑖 ≤ 𝑥𝑥 − 2; 

2. either 𝑑𝑑(𝑣𝑣𝑥𝑥−1,𝑣𝑣𝑥𝑥) = 2𝐿𝐿 − 1  and 𝑑𝑑(𝑣𝑣𝑥𝑥, 𝑡𝑡) < 𝐿𝐿  
or 𝑣𝑣𝑥𝑥 = 𝑡𝑡  and 𝑑𝑑(𝑣𝑣𝑥𝑥−1, 𝑡𝑡) < 2𝐿𝐿; 

3. 𝑟𝑟𝑖𝑖 = 2𝐿𝐿 − 1  for all 1 ≤ 𝑖𝑖 ≤ 𝑥𝑥 − 1  and 
𝑟𝑟𝑥𝑥 = 𝑑𝑑(𝑣𝑣𝑥𝑥−1,𝑣𝑣𝑥𝑥) + 𝑑𝑑(𝑣𝑣𝑥𝑥 , 𝑡𝑡) − 𝐿𝐿 + 1 ;

4. 𝑆𝑆𝑖𝑖 ⊂ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖 ,𝑀𝑀 + 𝐿𝐿 − 1)  and |𝑆𝑆𝑖𝑖| = 𝑟𝑟𝑖𝑖 ;
5. 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅  for 𝑖𝑖 ≠ 𝑗𝑗  where 𝑖𝑖 < 𝑗𝑗 < 𝑖𝑖 + 𝑘𝑘 .
Note that the constraint (5) is the relaxed 

constraint; it allows pebbles to be used many 
times if  they appear far enough on the path. 

In [2] Berman et. al. proved that there 
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exists an (𝐿𝐿,𝑘𝑘) -locally consistent solution as 
Lemma 5 below.

Lemma 5. There exists an (𝐿𝐿,𝑘𝑘) -locally-consistent 
solution.

Note that Lemma 5 here appears as 
Lemma 2 in [2]. 

To obtain the solution to the original s-t 
path movement problem, Berman et. al. showed 
how to construct a consistent solution defined 
in the same way with a stronger guarantee that 
no pebbles can be used more than once (a new 
property 5, below):

5. 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅  for all 𝑖𝑖 ≠ 𝑗𝑗 .
Lemma 6 below is a parameterized version 

of  a lemma proved by Berman et. al. for 𝐿𝐿 = 𝑀𝑀  
and 𝑘𝑘 = 7 ; it shows that an (𝐿𝐿,𝑘𝑘) -locally 
consistent solution can be constructed in 
polynomial time using dynamic programming.

Lemma 6. An (𝐿𝐿,𝑘𝑘) -locally consistent solution 
can be found in 𝑛𝑛𝑂𝑂(𝑘𝑘)  time where 𝑛𝑛𝑂𝑂(𝑘𝑘)  is a number of  
vertices in 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) .

The BDZ algorithm proceeds in 2 steps. 
First, it uses a dynamic programming algorithm 
to find an (M, 7)-locally consistent solution 
where each pebble moves from its initial position 
by at most 3M-2 steps. In the second step, the 
solution is converted to a consistent solution. 
To see that this should be possible, consider 
a pebble 𝑣𝑣  that appears in the solution more 
than once. Each vertex occupied by 𝑣𝑣  is not 
too far from the pebble initial position (at most 
3M-2 steps), however the distance between 
two vertices occupied by 𝑣𝑣  on the locally 
consistent solution is large (more than 14M 
steps). This means that if  we reroute the path 
to take a shortcut through 𝑣𝑣  we should have 
enough pebbles to fill the gap. Formally, in this 
conversion, it is guaranteed that each pebble 
will move additionally by at most 4M-2steps. 
This gives a solution where all pebble move 
by at most 7M-4 steps; hence, they obtain a 
7-approximation algorithm.

4. OUR ALGORITHM: CONSTRUCTING THE 
SOLUTION FROM AN (𝐿𝐿,𝑘𝑘) -LOCALLY 
CONSISTENT SOLUTION

We start with an observation on what 
contributes to an approximation factor of  
7 in Berman et. al.’s result. In the first step, 
the additional movement caused by the 
transformation is roughly 2M; this depends 
crucially on the distance between milestones. If  
we allow milestones to get closer, we can save 
this additional movement. In our algorithm, 
the distance between a pair of  consecutive 
milestones is 2L-1<2M-1.

In the second step, there is another 
dependency on the distance between milestones. 
Note that as we decrease the distance between 
consecutive milestones 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑖𝑖 +1, the number 
of  pebbles that we can use in the shortcut 
gets smaller, unless we increase the number 

(𝐿𝐿,𝑘𝑘) , the number of  consecutive sets 𝑆𝑆𝑖𝑖, … , 𝑆𝑆𝑖𝑖+𝑘𝑘  
that share no pebbles. We use the trade-off  
between (𝐿𝐿,𝑘𝑘)  and (𝐿𝐿,𝑘𝑘)  to obtain the improvement 
on the approximation ratio.

We continue in this section to describe 
an algorithm that converts a locally consistent 
solution to a feasible solution to the s-t path 
problem. This first part assumes that we can 
find an (𝐿𝐿,𝑘𝑘) -locally consistent solution by 
using the results of  Berman et. al. (Lemma 5 
and Lemma 6). 

In this paper, as in [2], we shall start by 
finding an (𝐿𝐿,𝑘𝑘) -locally consistent solution 
to the problem. However, the notion based on 
clusters and milestones are closely related to 
the dynamic programming algorithm used to 
find an (𝐿𝐿,𝑘𝑘) -locally consistent solution. We 
find it easier to work with another formulation 
based on the actual s-t path.

An (𝐿𝐿,𝑘𝑘) -locally consistent path from 𝑠𝑠 𝑡𝑡  to 𝑠𝑠 𝑡𝑡  is 
an 𝑠𝑠 𝑡𝑡 -𝑠𝑠 𝑡𝑡  path 𝒫𝒫 = 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑙𝑙  with a mapping 
𝑝𝑝:𝒫𝒫 → 𝑃𝑃𝑃𝑃𝑃𝑃  such that

1. 𝑢𝑢1 = 𝑠𝑠  and 𝑢𝑢𝑙𝑙 = 𝑡𝑡 ;
2. for every vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  is the 

pebble that moves to 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  in the solution, and
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3. if  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) =𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , i.e., the same pebble 
moves to two vertices, then |𝑖𝑖 − 𝑗𝑗| > 𝑘𝑘(2𝐿𝐿 − 1) .

Note that this definition does not guarantee 
the distance that a pebble has to move to some 
vertex in the path. To obtain an (𝐿𝐿,𝑘𝑘) -locally 
consistent path from an (𝐿𝐿,𝑘𝑘 + 1) -locally 
consistent solution, we use pebbles in 𝑆𝑆𝑖𝑖  to 
create paths between each consecutive pair 
of  milestones. The following lemma states the 
property of  this construction.

Lemma 1. Given an (𝐿𝐿,𝑘𝑘 + 1) -locally consistent 
solution, one can construct an (𝐿𝐿,𝑘𝑘) -locally consistent 
path whose maximum movement for any pebbles is at 
most 𝑀𝑀 + 2𝐿𝐿 − 2 . 

Proof: First note that the maximum distance 
from each pebble to its associate milestones 
in an (𝐿𝐿,𝑘𝑘 + 1) -locally consistent solution is 
𝑀𝑀 + 𝐿𝐿 − 1 . To form a path connecting milestones, 
a pebble might have to move additionally with 
the maximum distance of  𝑀𝑀 + 𝐿𝐿 − 1 ; therefore, 
the maximum movement is 𝑀𝑀 + 2𝐿𝐿 − 2 . To 
see that condition 3 holds, first note that in an 
(𝐿𝐿,𝑘𝑘 + 1) -locally consistent solution, a pebble 
can move to two milestones whose indices differ 
by at least (𝐿𝐿,𝑘𝑘 + 1) . This implies that milestones 
are of  distance at least (𝑘𝑘 + 1)(2𝐿𝐿 − 1)  
apart. To create a locally consistent path, each 
pebble may move for at most (𝑘𝑘 + 1)(2𝐿𝐿 − 1)  steps. 
Therefore the minimum distance between 
two vertices sharing the same pebble is at least 
(𝑘𝑘 + 1)(2𝐿𝐿 − 1)− 2(𝐿𝐿 − 1) = 𝑘𝑘(2𝐿𝐿 − 1) + 1 > 𝑘𝑘(2𝐿𝐿 − 1) 

(𝑘𝑘 + 1)(2𝐿𝐿 − 1)− 2(𝐿𝐿 − 1) = 𝑘𝑘(2𝐿𝐿 − 1) + 1 > 𝑘𝑘(2𝐿𝐿 − 1) , as claimed.   
Before we prove the main theorem, 

we need a few definitions. At any point, we 
maintain an (𝐿𝐿,𝑘𝑘) -locally consistent path 
𝒫𝒫 = 𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑙𝑙 .

Vertex ordering. For any two vertices 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  and 
𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  we say that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  appears before 𝑢𝑢𝑗𝑗  if  i≤j, and 
𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  appears after 𝑢𝑢𝑗𝑗  if  i≥j. We say 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  appears 
strictly before or after 𝑢𝑢𝑗𝑗  if  i≠j. 

Black and white vertices. A vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫  
sharing a pebble with other vertices is colored 
black. Other vertices in 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫  are white. 

Shortcut vertices. For any black vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , we 
define a shortcut vertex of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  as vertex 𝑢𝑢𝑗𝑗  that 
share some pebble with 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  with maximum index 
j. Let pebble 𝑝𝑝  be the pebble shared between 
𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  and 𝑢𝑢𝑗𝑗 . A shortcut path of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  is a shortest 
path from 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  to 𝑝𝑝  and from𝑝𝑝  to 𝑢𝑢𝑗𝑗 , a shortcut 
vertex of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) . Note that if  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  shares a pebble 
with more than one vertices, its shortcut vertex 
is the one that appears after all other vertices 
sharing a pebble with 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) .

Usable vertices. Vertex 𝑢𝑢𝑙𝑙  is called a usable 
vertex for 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  if  𝑢𝑢𝑙𝑙  is white or satisfies following 
two conditions: (1) a shortcut vertex of  𝑢𝑢𝑙𝑙  
appears before a shortcut vertex of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  or it 
has the same shortcut vertex as 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , and (2) 
vertex 𝑢𝑢𝑙𝑙  does not share any pebble with any 
vertices which appear before it.

We are ready to consider the main technical 
theorem. Given a locally consistent path 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 . 
Let 𝑢𝑢𝑎𝑎  be the first black vertex which shares 
some pebble with the other vertices where 𝑢𝑢𝑎𝑎  is 
minimum. We call the prefix path 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑎𝑎−1  
(which can be empty) a consistent prefix of  path.

We shall maintain the following invariant 
during our conversion algorithm:

•  Invariant 1: Every pebble that moves to 
the consistent prefix will not be moved again.

•  Invariant 2: The distance that every pebble 
moves to each vertex in the consistent prefix is 
at most 3(𝑀𝑀 + 2𝐿𝐿 − 2) . The distance that 
every pebble moves to other part of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫  is at 
most 3(𝑀𝑀 + 2𝐿𝐿 − 2) .

From Lemma 1, we know that both 
invariants hold initially after we construct a 
locally consistent path.

We shall modify the path so that the pebble 
that moves to 𝑢𝑢𝑎𝑎  only moves to one vertex in 
the path. Let 𝑢𝑢𝑧𝑧  be a shortcut vertex for 𝑢𝑢𝑎𝑎 .
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Let vertex 𝑢𝑢𝑦𝑦  , where 𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑦𝑦 , be a vertex 
with minimum index 𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑦𝑦  that shares a pebble with 
some vertex before it. (Note that it is possible 
that 𝑦𝑦 = 𝑧𝑧 .) Let 𝑢𝑢𝑏𝑏   be a vertex on 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫  whose 
index is minimum that shares a pebble with 
𝑢𝑢𝑦𝑦  . (Again, it is possible that 𝑏𝑏 = 𝑎𝑎 .) Finally, 
let 𝑢𝑢𝑐𝑐   be a black vertex whose index satisfies 
𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑦𝑦  that maximize the index 𝑟𝑟  of  its 
shortcut vertex 𝑢𝑢𝑟𝑟  ; i.e., the shortcut vertex of  
𝑢𝑢𝑐𝑐   appears after the shortcut vertex of  every 
black vertex in the set {𝑢𝑢𝑎𝑎,𝑢𝑢𝑎𝑎+1, … ,𝑢𝑢𝑦𝑦} . 

Note that vertices 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦   exist because 
𝑢𝑢𝑎𝑎  and 𝑢𝑢𝑧𝑧  are feasible candidates for them. 
We prove a few useful facts before proving 
the main theorem.

Lemma 2. The following statements are true.
 1. 𝑎𝑎 ≤ 𝑏𝑏 < 𝑦𝑦 ≤ 𝑧𝑧 .
 2. Since 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫  is locally consistent, we have that 

𝑦𝑦 ≥ 𝑏𝑏 + 𝑘𝑘(2𝐿𝐿 − 1) .
 3. For every black vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  such that 

𝑎𝑎 ≤ 𝑖𝑖 < 𝑦𝑦 , its shortcut vertex 𝑢𝑢𝑗𝑗  appears after 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦   
but before 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦  .

Proof: Statement 1 is true from the choices 
of  𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦   and 𝑢𝑢𝑏𝑏  . We choose 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦   which appears 
between vertex 𝑢𝑢𝑎𝑎  and 𝑢𝑢𝑧𝑧 , i.e., 𝑎𝑎 ≤ 𝑦𝑦 ≤ 𝑧𝑧 . To 
see that 𝑎𝑎 ≤ 𝑏𝑏 < 𝑦𝑦 ≤ 𝑧𝑧 , note that, by definition, 𝑢𝑢𝑏𝑏   
must be a black vertex and 𝑢𝑢𝑎𝑎  is the first black 
vertex in 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 .

 Statement 2 is true from the definition 
of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 .

 We shall show that statement 3 is true. 
Consider vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  such that 𝑎𝑎 ≤ 𝑖𝑖 < 𝑦𝑦 , and 
its shortcut vertex 𝑢𝑢𝑗𝑗 . Not that index 𝑗𝑗 ≥ 𝑦𝑦  
from the choice of  𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦  . Also, 𝑗𝑗 ≤ 𝑟𝑟  because 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  
is also a candidate for 𝑢𝑢𝑐𝑐   and we choose 𝑢𝑢𝑐𝑐   that 
maximizes index 𝑟𝑟  of  its shortcut vertex. 

Lemma 3. Every vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , such that  𝑐𝑐 < 𝑖𝑖 < 𝑦𝑦 , is 
usable for 𝑢𝑢𝑐𝑐  .

Proof: If  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  is a white vertex, we are done. 
Let’s assume that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  is a black vertex. Thus, we 

must show that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  satisfy two conditions. The 
first condition is that a shortcut vertex of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  
appears before a shortcut vertex 𝑢𝑢𝑟𝑟   of  𝑢𝑢𝑐𝑐  ; this 
is true because of  our choice for 𝑢𝑢𝑟𝑟  . Another 
condition requires that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  does not share a 
pebble with any vertices before it. This is true 
because 𝑢𝑢𝑦𝑦   is the first of  such vertices. 

Lemma 4. Consider vertices 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  and , both of  which 
are not in the consistent prefix of  𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 . If  Invariant 2 
holds and vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  shares a pebble with vertex 𝑢𝑢𝑗𝑗 , 
there is a path of  length at most 2(𝑀𝑀 + 2𝐿𝐿 − 2)  
between 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  and 𝑢𝑢𝑗𝑗 .

Proof: Let pebble 𝑝𝑝  be the pebble that moves 
to 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  and 𝑢𝑢𝑗𝑗 . The path from 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  to 𝑝𝑝  to 𝑢𝑢𝑗𝑗  is 
of  length 2(𝑀𝑀 + 2𝐿𝐿 − 2)  as required. 

We are ready to state the main technical 
theorem.

Theorem 2. If  k ≥ 6(𝑀𝑀 + 2𝐿𝐿 − 2)
2𝐿𝐿 − 1   , we can obtain 𝒫𝒫′  

from 𝒫𝒫′  such that
(1) the consistent prefix of  𝒫𝒫′  is a proper subset 

of  the consistent prefix of  𝒫𝒫′ ,
(2) every pebble that moves for an additional 

distance moves to the consistent prefix of  𝒫𝒫′ , and 
(3) the maximum movement of  every pebble 

that moves to the consistent prefix of  𝒫𝒫′  is at most 
3(𝑀𝑀 + 2𝐿𝐿 − 2) .

Proof: There are 2 cases to consider.
Case 1: When 𝑐𝑐 ≤ 𝑏𝑏 + 4(𝑀𝑀 + 2𝐿𝐿 − 2)  In this 

case, since 𝑦𝑦 − 𝑏𝑏 > 𝑘𝑘(2𝐿𝐿 − 1) ≥ 6(𝑀𝑀 + 2𝐿𝐿 − 2) , 
we have that 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) . From 
Lemma 2, 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2)  has at least 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2)  usable 
vertices. We can then use these pebbles to form 
a shortcut path for 𝑢𝑢𝑐𝑐   and modify the solution 
to obtain 𝒫𝒫′ . These pebbles have to move 
extra distances of  𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) ; therefore, 
the distance that they move, in total, is at most 
3(𝑀𝑀 + 2𝐿𝐿 − 2) , implying property (3). 

In 𝒫𝒫′ , note that all vertices in its prefix 
up to 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦   do not share any pebbles with other 
vertices. This means that its consistent prefix 
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includes vertex 𝑢𝑢𝑎𝑎 ; thus, it is a proper superset 
of  𝒫𝒫′ ’s consistent prefix, proving property (1). 
Also note that property (2) is true because 
every pebble moved in this step appears in the 
consistent prefix of  𝒫𝒫′ . This case is shown in 
Figure 1.

Case 2: When 𝑐𝑐 > 𝑏𝑏 + 4(𝑀𝑀 + 2𝐿𝐿 − 2) . 
Lemma 4 ensures that there is a path 𝒫𝒫𝑏𝑏𝑏𝑏   from 
𝑢𝑢𝑏𝑏   to 𝑢𝑢𝑦𝑦   of  length at most 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2)  
and a path 𝒫𝒫𝑐𝑐𝑐𝑐   from 𝑢𝑢𝑐𝑐   to 𝑢𝑢𝑟𝑟   of  length at 
most 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) . Since all vertices 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)  
such that 𝑐𝑐 < 𝑖𝑖 < 𝑦𝑦  are usable from Lemma 
3, we shall use pebbles that moves to vertices 
𝑢𝑢𝑏𝑏+1,𝑢𝑢𝑏𝑏+2, … ,𝑢𝑢𝑏𝑏+2(𝑀𝑀+2𝐿𝐿−2)  to form a shortcut 
path for 𝑢𝑢𝑏𝑏   and use pebbles that moves to 
vertices 𝑢𝑢𝑐𝑐−2(𝑀𝑀+2𝐿𝐿−2),𝑢𝑢𝑐𝑐−2(𝑀𝑀+2𝐿𝐿−2)+1, … ,𝑢𝑢𝑐𝑐−1 
to form a shortcut path for 𝑢𝑢𝑐𝑐  . The 
new path 𝒫𝒫′  consists of  four subpaths 

(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑏𝑏),𝒫𝒫𝑏𝑏𝑏𝑏 , (𝑢𝑢𝑏𝑏,𝑢𝑢𝑏𝑏−1,𝑢𝑢𝑏𝑏−2, … ,𝑢𝑢𝑐𝑐) and 
𝒫𝒫𝑐𝑐𝑐𝑐  . This case is shown in Figure 2.

Since 𝑐𝑐 > 𝑏𝑏 + 4(𝑀𝑀 + 2𝐿𝐿 − 2) , we have 
enough pebbles. The extra distance each pebbles 
has to move is at most 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) . This 
means that the maximum distance each of  these 
pebbles has to move is at most 3(𝑀𝑀 + 2𝐿𝐿 − 2) , 
and property (3) is true. We can use the same 
arguments as in Case 1 to prove that properties 
(1) and (2) are also true. 

Theorem 2 clearly implies that if  Invariants 
1 and 2 hold before we construct 𝒫𝒫′ , they 
remain valid after the construction procedure. 
We can obtain Theorem 1, our main result, by 
repeated applications of  Theorem 2. 

Theorem 1. Assume that for any constant (𝐿𝐿,𝑘𝑘) , we can 
find an (𝐿𝐿,𝑘𝑘) -locally consistent solution in polynomial 

Figure 1. How to form a shortcut path in Case 1. Pebbles are moved from red vertices to form 
a red shortcut path.

Figure 2. How to form shortcut paths in Case 2. Pebbles in green vertices form a green shortcut 
path, while pebbles in red vertices form a red shortcut path.
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time. For any 𝜖𝜖 > 0 , there exists a polynomial-time 
(3 + 𝜖𝜖)- -approximation algorithm for the s-t path 
movement problem. That is, if  there is a solution 
such that each pebble moves along a path of  at most 
M edges to form an s-t path, the algorithm finds a 
solution such that each pebble moves along a path of  
at most (3 + 𝜖𝜖)- M edges.

Proof: Assume first that we have an (𝐿𝐿,𝑘𝑘) 
-locally consistent path with the right parameters. 
Since Invariants 1 and 2 hold throughout and 
we make progress by increasing the consistent 
prefix of  the locally consistent path the algorithm 
terminates and every pebble moves by the 
distance at most 3(𝑀𝑀 + 2𝐿𝐿 − 2) .

We now verify the approximation 
ratio. If  we set 𝐿𝐿 = 𝜖𝜖𝜖𝜖/6 , we have that 
3(𝑀𝑀 + 2𝐿𝐿 − 2) < (3 + 𝜖𝜖)𝑀𝑀  as required. This 
implies that we have to start with an (𝐿𝐿, 𝑘𝑘 + 1) 
-locally consistent solution where 

𝑘𝑘 ≥
6 (𝑀𝑀 + 2𝜖𝜖𝑀𝑀6 − 2)

(2𝜖𝜖𝑀𝑀6 )− 1
 

.
Assume that 𝜖𝜖𝜖𝜖/6 ≥ 1 , this is true when 

𝑘𝑘 ≥ 18/𝜖𝜖 .    
Regarding the running time, from the 

assumption, since (𝐿𝐿, 𝑘𝑘 + 1)  is a constant, we can obtain 
the required (𝐿𝐿, 𝑘𝑘 + 1) -consistent solution 
in polynomial time. The other steps in the 
conversion algorithm clearly runs in polynomial 
time. Therefore, we have an algorithm that runs 
in polynomial time. 
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