
Chiang Mai J. Sci. 2017; 44(1) : 279-286
http://epg.science.cmu.ac.th/ejournal/
Contributed Paper

An Improved Approximation Algorithm for the s-t
Path Movement Problem
Wattana Jindaluang [a], Jakarin Chawachat [b], Varin Chouvatut [b],
Jittat Fakcharoenphol*[a] and Sanpawat Kantabutra [c]
[a] Department of Computer Engineering, Kasetsart University, Bangkok, Thailand.
[b] Department of Computer Science, Chiang Mai University, Chiang Mai, Thailand.
[c] Department of Computer Engineering, Chiang Mai University, Chiang Mai, Thailand.
*Author for correspondence; e-mail: jittat@gmail.com

Received: 20 March 2015
Accepted: 3 July 2015

ABSTRACT
 This paper considers a movement problem that minimizes the maximum movement

of pebbles on a graph to form a path from source vertex 𝑠𝑠 to destination vertex 𝑡𝑡 . The best
known algorithm for this problem is a 7-approximation algorithm developed by Berman,
Demaine, and Zadimoghaddam in 2011. We refine the analysis of Berman et. al. to obtain an
(3 + 𝜖𝜖)- -approximation algorithm for any constant 𝜖𝜖 > 0 . This problem is a subroutine used by
Berman et. al. for finding a solution to the connectivity movement problem. Using our improved
algorithm as a subroutine, the approximation ratio for the connectivity movement problem
improves from 136 to 104 + 𝜖𝜖 .

Keywords: movement problems, approximation algorithm, graph algorithm

1. INTRODUCTION
This paper considers a class of problems

called movement problems first introduced in
Demaine et. al. [1]. Movement problems consist
of problems that involve planning the motion
of a set of movable objects such that their
final positions satisfy some property and their
motions were measured under some criteria.

The movement problems have many
practical applications. As an example, consider
a group of firefighters surrounding a forest fire
where each firefighter has a walkie-talkie with
limited range connectivity. One problem arising
from this situation is to arrange the firefighters
in locations such that they can communicate
with each other (directly or indirectly through

message relaying by other firefighters). Thus, the
goal of this problem is finding the minimum
distance required for each firefighter to move so
that they can form a communication network.
In graph theoretical terms, if we have a graph
representing all locations and their proximity,
we want the subgraph induced by firefighter
locations to be connected.

In this paper, we consider the s-t path
movement problem. In this problem, we are given
a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with 𝑛𝑛 vertices, 𝑚𝑚 movable
objects, called pebbles, which are placed on
a subset of 𝑉𝑉 , the starting vertex s, and the
ending vertex t. The pebbles are objects that
can be moved along the edges of the graph.

 Chiang Mai J. Sci. 2017; 44(1)280

The movement of a pebble is the distance for
which the pebble moves. We say that vertex 𝑣𝑣
is occupied by pebble 𝑝𝑝 if pebble 𝑝𝑝 is placed on
vertex 𝑣𝑣 . The goal is to move a set of pebbles
so that the graph induced by vertices occupied
by some pebble contains a path from s to t.
The objective of this movement is to minimize
the maximum movement of any pebbles. This
problem is referred to in Demaine et. al. [1] as
PathMax, where it is shown that this problem
cannot be approximate better than a factor
of 2− 𝜖𝜖 , unless P = NP. The best known
result for this problem is due to Berman,
Demaine and Zadimoghaddam [2] who gave
a 7-approximation algorithm. In this paper,
we refine the analysis of [2] to yield a (3 + 𝜖𝜖)-
-approximation algorithm.

1.1 Previous Results
The s-t path movement problem is one

of the movement problems defined under
the framework of Demaine, Hajiaghayi,
Mahini, Sayedi-Roshkhar, Oveisgharan, and
Zadimoghaddam [1] where many approximation
algorithms for movement problems are
presented. (See Section 2 for a more complete
review of movement problems.) They showed
an 𝑂𝑂(√𝑚𝑚/𝑂𝑂𝑂𝑂𝑂𝑂) -approximation algorithm for
the s-t path movement problem where OPT is a
maximum movement of an optimal solution. In
2011, Berman, Demaine and Zadimoghaddam
[2] gave the first constant-factor approximation
algorithm to the s-t path movement problem.
This algorithm is a crucial subroutine they use
to obtain the first constant-factor approximation
algorithm to the connectivity movement problem
that minimizes the maximum movement. In that
paper, a 7-approximation algorithm for the s-t
path movement problem is presented. They also
show that given a γ-approximation to PathMax,

one can obtain a (8γ+80)-approximation to the
connectivity movement problem.

If the objective of the problem is to
minimize the sum of the movements, a problem
referred to under the movement framework as
PathSum, the best approximation ratio is O(n),
presented in [1]. Improving this algorithm
remains an open problem.

1.2 Our Contributions
By refining the analysis of Berman et. al.

[2], we obtain a (3 + 𝜖𝜖)- -approximation algorithm
for the s-t path movement problem. This can
be compared to a 7-approximation algorithm
by [2].

Our main theorem is the following.

Theorem 1. For any 𝜖𝜖 > 0 , there exists a polynomial-
time (3 + 𝜖𝜖)- -approximation algorithm for the s-t path
movement problem. That is, if there is a solution such
that each pebble moves along a path of at most M
edges to form an s-t path, the algorithm finds a solution
such that each pebble moves along a path of at most
(3 + 𝜖𝜖)- M edges.

Using this algorithm, we obtain a(104 + 𝜖𝜖)
-approximation algorithm for the connectivity
movement problem, an improvement from a
136-approximation algorithm in [2].

Our paper is organized as follows. Other
related work is shown in section 2. Section 3
presents an overview of Berman, Demaine and
Zadimoghaddam’s approach. Section 4 presents
our algorithm which is our main contribution,
constructing the path from an (𝐿𝐿,𝑘𝑘) -locally
consistent solutions.

2. RELATED WORK
In this section, we provide short reviews

on movement problems. Motivated by many
practical movement problems (see, e.g., [3],

 *In [2], the researchers claim that there exists an 7- approximation algorithm for the s-t path movement problem which
runs in polynomial time. However the full proofs of the main results and the running time of this algorithm were not showed in
the manuscript.

104 + 𝜖𝜖

Chiang Mai J. Sci. 2017; 44(1) 281

[4], [5], [6], [7] and [8]), Demaine, Hajiaghayi,
Mahini, Sayedi-Roshkhar, Oveisgharan, and
Zadimoghaddam [1] defined a class of movement
problems as the problems that plan to move
a subset of movable objects to satisfy some
property 𝑃𝑃 . For example, property 𝑃𝑃 can be
that the set of vertices occupied by pebbles
form a connected component, or the set of
occupied vertices form a path from a particular
vertex s to vertex t. For a specific property,
there can be many objectives. Demaine et. al.
[1] considered three possible objectives: (1)
to minimize the maximum movement, (2) to
minimize the total movement, or (3) to minimize
the number of the objects are moved. In this
pioneering paper, for the objective that aims to
minimizes the maximum movement, Demaine
et. al. presented an algorithm that finds solutions
whose maximum movement is 𝑂𝑂(√𝑚𝑚/𝑂𝑂𝑂𝑂𝑂𝑂)
if 𝑂𝑂(√𝑚𝑚/𝑂𝑂𝑂𝑂𝑂𝑂) is the optimal maximum movement
for the connectivity movement problem. They
also obtained an approximation algorithm
with the same approximation ratio for the s-t
path movement problem. Later on, Berman,
Demaine and Zadimoghaddam [2] gave the
first constant-factor approximation algorithm
for the s-t path movement problem and the
connectivity problem as we mentioned above.

3. OVERVIEW OF THE APPROACH BY BERMAN,
DEMAINE AND ZADIMOGHADDAM

Our technique is based on the same technique
which Berman, Demaine and Zadimoghaddam
[2] used for the s-t path movement algorithm
(later called BDZ algorithm). This section gives
an overview of their algorithm.

The main ingredient of the BDZ algorithm
is an intermediate solution of the s-t path
movement called a locally consistent solution.
This solution is intuitively a relaxed solution,
for which a pebble can be used many times,
but only at the positions which are far from
each other. This relaxed constraint allows the
use of dynamic programming to deal with the

problem. After a locally consistent solution is
found, a procedure based on a structural lemma
works on the solution to remove multiple
appearances of pebbles on the solution to
obtain a feasible solution to the original s-t
path movement problem.

To formally define a locally consistent solution,
we first need a few definitions. Let 𝑑𝑑(𝑢𝑢, 𝑣𝑣) be
the shortest distance from vertex 𝑑𝑑(𝑢𝑢, 𝑣𝑣) to vertex

𝑑𝑑(𝑢𝑢, 𝑣𝑣) in the graph, disk 𝐷𝐷(𝑢𝑢,𝑅𝑅) be the set of
vertices of distance at most 𝐷𝐷(𝑢𝑢,𝑅𝑅) from 𝑑𝑑(𝑢𝑢, 𝑣𝑣) , i.e.,
𝐷𝐷(𝑢𝑢,𝑅𝑅) = {𝑣𝑣 ∈ 𝑉𝑉 | 𝑑𝑑(𝑢𝑢, 𝑣𝑣) ≤ 𝑅𝑅} , and a disk
set 𝑃𝑃𝑃𝑃𝑃𝑃(𝑢𝑢,𝑅𝑅) be the set of pebbles with their
initial positions within 𝐷𝐷(𝑢𝑢,𝑅𝑅) .

We assume that we know the value 𝑀𝑀
of the maximum movement of the optimal
solution, since there are only 𝑛𝑛 possible values
to remove this assumption we can perform
binary search over all the possible values.

While our solution is a path, the BDZ
algorithm will not work directly with the
whole path. A set of vertices (including also
𝑠𝑠 𝑡𝑡 and 𝑠𝑠 𝑡𝑡) in the path are denoted as milestones,
which are equally spread out over the path. A
locally consistent solution is defined in terms
of milestones and pebbles needed to connect
these milestones. The following definition is
a generalization of the one in [2] where they
set 𝐿𝐿 = 𝑀𝑀 and 𝑘𝑘 = 7 . Formally, an (𝐿𝐿,𝑘𝑘)
-locally consistent solution consists of the milestones
𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑥𝑥 and set of pebbles 𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝑥𝑥
where

1. 𝑑𝑑(𝑣𝑣1, 𝑠𝑠) = 𝐿𝐿 − 1 and 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖+1) = 2𝐿𝐿 − 1
for all 1 ≤ 𝑖𝑖 ≤ 𝑥𝑥 − 2;

2. either 𝑑𝑑(𝑣𝑣𝑥𝑥−1,𝑣𝑣𝑥𝑥) = 2𝐿𝐿 − 1 and 𝑑𝑑(𝑣𝑣𝑥𝑥, 𝑡𝑡) < 𝐿𝐿
or 𝑣𝑣𝑥𝑥 = 𝑡𝑡 and 𝑑𝑑(𝑣𝑣𝑥𝑥−1, 𝑡𝑡) < 2𝐿𝐿;

3. 𝑟𝑟𝑖𝑖 = 2𝐿𝐿 − 1 for all 1 ≤ 𝑖𝑖 ≤ 𝑥𝑥 − 1 and
𝑟𝑟𝑥𝑥 = 𝑑𝑑(𝑣𝑣𝑥𝑥−1,𝑣𝑣𝑥𝑥) + 𝑑𝑑(𝑣𝑣𝑥𝑥 , 𝑡𝑡) − 𝐿𝐿 + 1 ;

4. 𝑆𝑆𝑖𝑖 ⊂ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖 ,𝑀𝑀 + 𝐿𝐿 − 1) and |𝑆𝑆𝑖𝑖| = 𝑟𝑟𝑖𝑖 ;
5. 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅ for 𝑖𝑖 ≠ 𝑗𝑗 where 𝑖𝑖 < 𝑗𝑗 < 𝑖𝑖 + 𝑘𝑘 .
Note that the constraint (5) is the relaxed

constraint; it allows pebbles to be used many
times if they appear far enough on the path.

In [2] Berman et. al. proved that there

 Chiang Mai J. Sci. 2017; 44(1)282

exists an (𝐿𝐿,𝑘𝑘) -locally consistent solution as
Lemma 5 below.

Lemma 5. There exists an (𝐿𝐿,𝑘𝑘) -locally-consistent
solution.

Note that Lemma 5 here appears as
Lemma 2 in [2].

To obtain the solution to the original s-t
path movement problem, Berman et. al. showed
how to construct a consistent solution defined
in the same way with a stronger guarantee that
no pebbles can be used more than once (a new
property 5, below):

5. 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅ for all 𝑖𝑖 ≠ 𝑗𝑗 .
Lemma 6 below is a parameterized version

of a lemma proved by Berman et. al. for 𝐿𝐿 = 𝑀𝑀
and 𝑘𝑘 = 7 ; it shows that an (𝐿𝐿,𝑘𝑘) -locally
consistent solution can be constructed in
polynomial time using dynamic programming.

Lemma 6. An (𝐿𝐿,𝑘𝑘) -locally consistent solution
can be found in 𝑛𝑛𝑂𝑂(𝑘𝑘) time where 𝑛𝑛𝑂𝑂(𝑘𝑘) is a number of
vertices in 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) .

The BDZ algorithm proceeds in 2 steps.
First, it uses a dynamic programming algorithm
to find an (M, 7)-locally consistent solution
where each pebble moves from its initial position
by at most 3M-2 steps. In the second step, the
solution is converted to a consistent solution.
To see that this should be possible, consider
a pebble 𝑣𝑣 that appears in the solution more
than once. Each vertex occupied by 𝑣𝑣 is not
too far from the pebble initial position (at most
3M-2 steps), however the distance between
two vertices occupied by 𝑣𝑣 on the locally
consistent solution is large (more than 14M
steps). This means that if we reroute the path
to take a shortcut through 𝑣𝑣 we should have
enough pebbles to fill the gap. Formally, in this
conversion, it is guaranteed that each pebble
will move additionally by at most 4M-2steps.
This gives a solution where all pebble move
by at most 7M-4 steps; hence, they obtain a
7-approximation algorithm.

4. OUR ALGORITHM: CONSTRUCTING THE
SOLUTION FROM AN (𝐿𝐿,𝑘𝑘) -LOCALLY
CONSISTENT SOLUTION

We start with an observation on what
contributes to an approximation factor of
7 in Berman et. al.’s result. In the first step,
the additional movement caused by the
transformation is roughly 2M; this depends
crucially on the distance between milestones. If
we allow milestones to get closer, we can save
this additional movement. In our algorithm,
the distance between a pair of consecutive
milestones is 2L-1<2M-1.

In the second step, there is another
dependency on the distance between milestones.
Note that as we decrease the distance between
consecutive milestones 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 +1, the number
of pebbles that we can use in the shortcut
gets smaller, unless we increase the number

(𝐿𝐿,𝑘𝑘) , the number of consecutive sets 𝑆𝑆𝑖𝑖, … , 𝑆𝑆𝑖𝑖+𝑘𝑘
that share no pebbles. We use the trade-off
between (𝐿𝐿,𝑘𝑘) and (𝐿𝐿,𝑘𝑘) to obtain the improvement
on the approximation ratio.

We continue in this section to describe
an algorithm that converts a locally consistent
solution to a feasible solution to the s-t path
problem. This first part assumes that we can
find an (𝐿𝐿,𝑘𝑘) -locally consistent solution by
using the results of Berman et. al. (Lemma 5
and Lemma 6).

In this paper, as in [2], we shall start by
finding an (𝐿𝐿,𝑘𝑘) -locally consistent solution
to the problem. However, the notion based on
clusters and milestones are closely related to
the dynamic programming algorithm used to
find an (𝐿𝐿,𝑘𝑘) -locally consistent solution. We
find it easier to work with another formulation
based on the actual s-t path.

An (𝐿𝐿,𝑘𝑘) -locally consistent path from 𝑠𝑠 𝑡𝑡 to 𝑠𝑠 𝑡𝑡 is
an 𝑠𝑠 𝑡𝑡 -𝑠𝑠 𝑡𝑡 path 𝒫𝒫 = 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑙𝑙 with a mapping
𝑝𝑝:𝒫𝒫 → 𝑃𝑃𝑃𝑃𝑃𝑃 such that

1. 𝑢𝑢1 = 𝑠𝑠 and 𝑢𝑢𝑙𝑙 = 𝑡𝑡 ;
2. for every vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) is the

pebble that moves to 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) in the solution, and

Chiang Mai J. Sci. 2017; 44(1) 283

3. if 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) =𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , i.e., the same pebble
moves to two vertices, then |𝑖𝑖 − 𝑗𝑗| > 𝑘𝑘(2𝐿𝐿 − 1) .

Note that this definition does not guarantee
the distance that a pebble has to move to some
vertex in the path. To obtain an (𝐿𝐿,𝑘𝑘) -locally
consistent path from an (𝐿𝐿,𝑘𝑘 + 1) -locally
consistent solution, we use pebbles in 𝑆𝑆𝑖𝑖 to
create paths between each consecutive pair
of milestones. The following lemma states the
property of this construction.

Lemma 1. Given an (𝐿𝐿,𝑘𝑘 + 1) -locally consistent
solution, one can construct an (𝐿𝐿,𝑘𝑘) -locally consistent
path whose maximum movement for any pebbles is at
most 𝑀𝑀 + 2𝐿𝐿 − 2 .

Proof: First note that the maximum distance
from each pebble to its associate milestones
in an (𝐿𝐿,𝑘𝑘 + 1) -locally consistent solution is
𝑀𝑀 + 𝐿𝐿 − 1 . To form a path connecting milestones,
a pebble might have to move additionally with
the maximum distance of 𝑀𝑀 + 𝐿𝐿 − 1 ; therefore,
the maximum movement is 𝑀𝑀 + 2𝐿𝐿 − 2 . To
see that condition 3 holds, first note that in an
(𝐿𝐿,𝑘𝑘 + 1) -locally consistent solution, a pebble
can move to two milestones whose indices differ
by at least (𝐿𝐿,𝑘𝑘 + 1) . This implies that milestones
are of distance at least (𝑘𝑘 + 1)(2𝐿𝐿 − 1)
apart. To create a locally consistent path, each
pebble may move for at most (𝑘𝑘 + 1)(2𝐿𝐿 − 1) steps.
Therefore the minimum distance between
two vertices sharing the same pebble is at least
(𝑘𝑘 + 1)(2𝐿𝐿 − 1)− 2(𝐿𝐿 − 1) = 𝑘𝑘(2𝐿𝐿 − 1) + 1 > 𝑘𝑘(2𝐿𝐿 − 1)

(𝑘𝑘 + 1)(2𝐿𝐿 − 1)− 2(𝐿𝐿 − 1) = 𝑘𝑘(2𝐿𝐿 − 1) + 1 > 𝑘𝑘(2𝐿𝐿 − 1) , as claimed.
Before we prove the main theorem,

we need a few definitions. At any point, we
maintain an (𝐿𝐿,𝑘𝑘) -locally consistent path
𝒫𝒫 = 𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑙𝑙 .

Vertex ordering. For any two vertices 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) and
𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) we say that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) appears before 𝑢𝑢𝑗𝑗 if i≤j, and
𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) appears after 𝑢𝑢𝑗𝑗 if i≥j. We say 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) appears
strictly before or after 𝑢𝑢𝑗𝑗 if i≠j.

Black and white vertices. A vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫
sharing a pebble with other vertices is colored
black. Other vertices in 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 are white.

Shortcut vertices. For any black vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , we
define a shortcut vertex of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) as vertex 𝑢𝑢𝑗𝑗 that
share some pebble with 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) with maximum index
j. Let pebble 𝑝𝑝 be the pebble shared between
𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) and 𝑢𝑢𝑗𝑗 . A shortcut path of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) is a shortest
path from 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) to 𝑝𝑝 and from𝑝𝑝 to 𝑢𝑢𝑗𝑗 , a shortcut
vertex of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) . Note that if 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) shares a pebble
with more than one vertices, its shortcut vertex
is the one that appears after all other vertices
sharing a pebble with 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) .

Usable vertices. Vertex 𝑢𝑢𝑙𝑙 is called a usable
vertex for 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) if 𝑢𝑢𝑙𝑙 is white or satisfies following
two conditions: (1) a shortcut vertex of 𝑢𝑢𝑙𝑙
appears before a shortcut vertex of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) or it
has the same shortcut vertex as 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , and (2)
vertex 𝑢𝑢𝑙𝑙 does not share any pebble with any
vertices which appear before it.

We are ready to consider the main technical
theorem. Given a locally consistent path 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 .
Let 𝑢𝑢𝑎𝑎 be the first black vertex which shares
some pebble with the other vertices where 𝑢𝑢𝑎𝑎 is
minimum. We call the prefix path 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑎𝑎−1
(which can be empty) a consistent prefix of path.

We shall maintain the following invariant
during our conversion algorithm:

• Invariant 1: Every pebble that moves to
the consistent prefix will not be moved again.

• Invariant 2: The distance that every pebble
moves to each vertex in the consistent prefix is
at most 3(𝑀𝑀 + 2𝐿𝐿 − 2) . The distance that
every pebble moves to other part of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 is at
most 3(𝑀𝑀 + 2𝐿𝐿 − 2) .

From Lemma 1, we know that both
invariants hold initially after we construct a
locally consistent path.

We shall modify the path so that the pebble
that moves to 𝑢𝑢𝑎𝑎 only moves to one vertex in
the path. Let 𝑢𝑢𝑧𝑧 be a shortcut vertex for 𝑢𝑢𝑎𝑎 .

 Chiang Mai J. Sci. 2017; 44(1)284

Let vertex 𝑢𝑢𝑦𝑦 , where 𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑦𝑦 , be a vertex
with minimum index 𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑦𝑦 that shares a pebble with
some vertex before it. (Note that it is possible
that 𝑦𝑦 = 𝑧𝑧 .) Let 𝑢𝑢𝑏𝑏 be a vertex on 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 whose
index is minimum that shares a pebble with
𝑢𝑢𝑦𝑦 . (Again, it is possible that 𝑏𝑏 = 𝑎𝑎 .) Finally,
let 𝑢𝑢𝑐𝑐 be a black vertex whose index satisfies
𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑦𝑦 that maximize the index 𝑟𝑟 of its
shortcut vertex 𝑢𝑢𝑟𝑟 ; i.e., the shortcut vertex of
𝑢𝑢𝑐𝑐 appears after the shortcut vertex of every
black vertex in the set {𝑢𝑢𝑎𝑎,𝑢𝑢𝑎𝑎+1, … ,𝑢𝑢𝑦𝑦} .

Note that vertices 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦 exist because
𝑢𝑢𝑎𝑎 and 𝑢𝑢𝑧𝑧 are feasible candidates for them.
We prove a few useful facts before proving
the main theorem.

Lemma 2. The following statements are true.
 1. 𝑎𝑎 ≤ 𝑏𝑏 < 𝑦𝑦 ≤ 𝑧𝑧 .
 2. Since 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 is locally consistent, we have that

𝑦𝑦 ≥ 𝑏𝑏 + 𝑘𝑘(2𝐿𝐿 − 1) .
 3. For every black vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) such that

𝑎𝑎 ≤ 𝑖𝑖 < 𝑦𝑦 , its shortcut vertex 𝑢𝑢𝑗𝑗 appears after 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦
but before 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦 .

Proof: Statement 1 is true from the choices
of 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦 and 𝑢𝑢𝑏𝑏 . We choose 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦 which appears
between vertex 𝑢𝑢𝑎𝑎 and 𝑢𝑢𝑧𝑧 , i.e., 𝑎𝑎 ≤ 𝑦𝑦 ≤ 𝑧𝑧 . To
see that 𝑎𝑎 ≤ 𝑏𝑏 < 𝑦𝑦 ≤ 𝑧𝑧 , note that, by definition, 𝑢𝑢𝑏𝑏
must be a black vertex and 𝑢𝑢𝑎𝑎 is the first black
vertex in 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 .

 Statement 2 is true from the definition
of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 .

 We shall show that statement 3 is true.
Consider vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) such that 𝑎𝑎 ≤ 𝑖𝑖 < 𝑦𝑦 , and
its shortcut vertex 𝑢𝑢𝑗𝑗 . Not that index 𝑗𝑗 ≥ 𝑦𝑦
from the choice of 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦 . Also, 𝑗𝑗 ≤ 𝑟𝑟 because 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)
is also a candidate for 𝑢𝑢𝑐𝑐 and we choose 𝑢𝑢𝑐𝑐 that
maximizes index 𝑟𝑟 of its shortcut vertex.

Lemma 3. Every vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) , such that 𝑐𝑐 < 𝑖𝑖 < 𝑦𝑦 , is
usable for 𝑢𝑢𝑐𝑐 .

Proof: If 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) is a white vertex, we are done.
Let’s assume that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) is a black vertex. Thus, we

must show that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) satisfy two conditions. The
first condition is that a shortcut vertex of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)
appears before a shortcut vertex 𝑢𝑢𝑟𝑟 of 𝑢𝑢𝑐𝑐 ; this
is true because of our choice for 𝑢𝑢𝑟𝑟 . Another
condition requires that 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) does not share a
pebble with any vertices before it. This is true
because 𝑢𝑢𝑦𝑦 is the first of such vertices.

Lemma 4. Consider vertices 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) and , both of which
are not in the consistent prefix of 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫 . If Invariant 2
holds and vertex 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) shares a pebble with vertex 𝑢𝑢𝑗𝑗 ,
there is a path of length at most 2(𝑀𝑀 + 2𝐿𝐿 − 2)
between 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) and 𝑢𝑢𝑗𝑗 .

Proof: Let pebble 𝑝𝑝 be the pebble that moves
to 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) and 𝑢𝑢𝑗𝑗 . The path from 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖) to 𝑝𝑝 to 𝑢𝑢𝑗𝑗 is
of length 2(𝑀𝑀 + 2𝐿𝐿 − 2) as required.

We are ready to state the main technical
theorem.

Theorem 2. If k ≥ 6(𝑀𝑀 + 2𝐿𝐿 − 2)
2𝐿𝐿 − 1 , we can obtain 𝒫𝒫′

from 𝒫𝒫′ such that
(1) the consistent prefix of 𝒫𝒫′ is a proper subset

of the consistent prefix of 𝒫𝒫′ ,
(2) every pebble that moves for an additional

distance moves to the consistent prefix of 𝒫𝒫′ , and
(3) the maximum movement of every pebble

that moves to the consistent prefix of 𝒫𝒫′ is at most
3(𝑀𝑀 + 2𝐿𝐿 − 2) .

Proof: There are 2 cases to consider.
Case 1: When 𝑐𝑐 ≤ 𝑏𝑏 + 4(𝑀𝑀 + 2𝐿𝐿 − 2) In this

case, since 𝑦𝑦 − 𝑏𝑏 > 𝑘𝑘(2𝐿𝐿 − 1) ≥ 6(𝑀𝑀 + 2𝐿𝐿 − 2) ,
we have that 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) . From
Lemma 2, 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) has at least 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) usable
vertices. We can then use these pebbles to form
a shortcut path for 𝑢𝑢𝑐𝑐 and modify the solution
to obtain 𝒫𝒫′ . These pebbles have to move
extra distances of 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) ; therefore,
the distance that they move, in total, is at most
3(𝑀𝑀 + 2𝐿𝐿 − 2) , implying property (3).

In 𝒫𝒫′ , note that all vertices in its prefix
up to 𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑦𝑦 do not share any pebbles with other
vertices. This means that its consistent prefix

Chiang Mai J. Sci. 2017; 44(1) 285

includes vertex 𝑢𝑢𝑎𝑎 ; thus, it is a proper superset
of 𝒫𝒫′ ’s consistent prefix, proving property (1).
Also note that property (2) is true because
every pebble moved in this step appears in the
consistent prefix of 𝒫𝒫′ . This case is shown in
Figure 1.

Case 2: When 𝑐𝑐 > 𝑏𝑏 + 4(𝑀𝑀 + 2𝐿𝐿 − 2) .
Lemma 4 ensures that there is a path 𝒫𝒫𝑏𝑏𝑏𝑏 from
𝑢𝑢𝑏𝑏 to 𝑢𝑢𝑦𝑦 of length at most 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2)
and a path 𝒫𝒫𝑐𝑐𝑐𝑐 from 𝑢𝑢𝑐𝑐 to 𝑢𝑢𝑟𝑟 of length at
most 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) . Since all vertices 𝑢𝑢𝑖𝑖 ∈ 𝒫𝒫,𝑝𝑝(𝑢𝑢𝑖𝑖)
such that 𝑐𝑐 < 𝑖𝑖 < 𝑦𝑦 are usable from Lemma
3, we shall use pebbles that moves to vertices
𝑢𝑢𝑏𝑏+1,𝑢𝑢𝑏𝑏+2, … ,𝑢𝑢𝑏𝑏+2(𝑀𝑀+2𝐿𝐿−2) to form a shortcut
path for 𝑢𝑢𝑏𝑏 and use pebbles that moves to
vertices 𝑢𝑢𝑐𝑐−2(𝑀𝑀+2𝐿𝐿−2),𝑢𝑢𝑐𝑐−2(𝑀𝑀+2𝐿𝐿−2)+1, … ,𝑢𝑢𝑐𝑐−1
to form a shortcut path for 𝑢𝑢𝑐𝑐 . The
new path 𝒫𝒫′ consists of four subpaths

(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑏𝑏),𝒫𝒫𝑏𝑏𝑏𝑏 , (𝑢𝑢𝑏𝑏,𝑢𝑢𝑏𝑏−1,𝑢𝑢𝑏𝑏−2, … ,𝑢𝑢𝑐𝑐) and
𝒫𝒫𝑐𝑐𝑐𝑐 . This case is shown in Figure 2.

Since 𝑐𝑐 > 𝑏𝑏 + 4(𝑀𝑀 + 2𝐿𝐿 − 2) , we have
enough pebbles. The extra distance each pebbles
has to move is at most 𝑦𝑦 − 𝑐𝑐 > 2(𝑀𝑀 + 2𝐿𝐿 − 2) . This
means that the maximum distance each of these
pebbles has to move is at most 3(𝑀𝑀 + 2𝐿𝐿 − 2) ,
and property (3) is true. We can use the same
arguments as in Case 1 to prove that properties
(1) and (2) are also true.

Theorem 2 clearly implies that if Invariants
1 and 2 hold before we construct 𝒫𝒫′ , they
remain valid after the construction procedure.
We can obtain Theorem 1, our main result, by
repeated applications of Theorem 2.

Theorem 1. Assume that for any constant (𝐿𝐿,𝑘𝑘) , we can
find an (𝐿𝐿,𝑘𝑘) -locally consistent solution in polynomial

Figure 1. How to form a shortcut path in Case 1. Pebbles are moved from red vertices to form
a red shortcut path.

Figure 2. How to form shortcut paths in Case 2. Pebbles in green vertices form a green shortcut
path, while pebbles in red vertices form a red shortcut path.

 Chiang Mai J. Sci. 2017; 44(1)286

time. For any 𝜖𝜖 > 0 , there exists a polynomial-time
(3 + 𝜖𝜖)- -approximation algorithm for the s-t path
movement problem. That is, if there is a solution
such that each pebble moves along a path of at most
M edges to form an s-t path, the algorithm finds a
solution such that each pebble moves along a path of
at most (3 + 𝜖𝜖)- M edges.

Proof: Assume first that we have an (𝐿𝐿,𝑘𝑘)
-locally consistent path with the right parameters.
Since Invariants 1 and 2 hold throughout and
we make progress by increasing the consistent
prefix of the locally consistent path the algorithm
terminates and every pebble moves by the
distance at most 3(𝑀𝑀 + 2𝐿𝐿 − 2) .

We now verify the approximation
ratio. If we set 𝐿𝐿 = 𝜖𝜖𝜖𝜖/6 , we have that
3(𝑀𝑀 + 2𝐿𝐿 − 2) < (3 + 𝜖𝜖)𝑀𝑀 as required. This
implies that we have to start with an (𝐿𝐿, 𝑘𝑘 + 1)
-locally consistent solution where

𝑘𝑘 ≥
6 (𝑀𝑀 + 2𝜖𝜖𝑀𝑀6 − 2)

(2𝜖𝜖𝑀𝑀6)− 1

.
Assume that 𝜖𝜖𝜖𝜖/6 ≥ 1 , this is true when

𝑘𝑘 ≥ 18/𝜖𝜖 .
Regarding the running time, from the

assumption, since (𝐿𝐿, 𝑘𝑘 + 1) is a constant, we can obtain
the required (𝐿𝐿, 𝑘𝑘 + 1) -consistent solution
in polynomial time. The other steps in the
conversion algorithm clearly runs in polynomial
time. Therefore, we have an algorithm that runs
in polynomial time.

5. ACKNOWLEDGEMENT
This research is supported by Office of the

Higher Education Commission, Thailand. This
research has also been partially supported by the
Kasetsart University Research and Development
Institute, grant number: S-T(I) 69.54.

REFERENCES

[1] Demaine E., Hajiaghayi M., Mahini H.,
Sayedi-roshkhar A., Oveisgharan S. and
Zadimoghaddam M., ACM Transactions
on Algorithms, 2009; 5: 30:1-30:30.
DOI10.1145/1541885.1541891.

[2] Berman P., Demaine E. and Zadimoghaddam
M., Proceedings of the 14th International Workshop
on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX 2011),
Princeton, New Jersey, U.S., 17-19 August
2011; 62-74; DOI 10.1007/978-3-642-
22935-0_6.

[3] Croke P., Hrabar S., Peterson R., Rus D.,
Saripalli S. and Sukhatme G., Proceedings of
the 2004 International Conference on Robotics and
Automation, New Orleans, U.S., 2014; 3602-
3608; DOI 10.1109/ROBOT.2004.1308811.

[4] Atay N. and Bayazit B., Algorithmic
Foundations of Robotics, 2010; 8: 35-49. DOI
10.1007/978-3-642-00312-7_3.

[5] Ramanna P., Gaikwad P. and Vidyadharan
S., Proceedings of the 12 th International Conference
on Networks (ICN 2013), Seville, Sapin,
2013; 7-14.

[6] Khan M., Hasbullah H. and Nazir B.,
AASRI Procedia, 2013; 5: 85-91. DOI
10.1016/j.aasri.2013.10.062.

[7] Idoudi H., Houai dia C., Saidane L. and
Minet P., J. Network Technol., 2012; 3: 1-12.

[8] Fan G. and Jin S., J. Network, 2010; 5: 1033-
1040. DOI 10.4304/jnw.5.9.1033-1040.

