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ABSTRACT
	 A	grid	computing	system	allows	a	large	complex	computing	task	to	efficiently	utilize	

high computing resources by splitting the task into many compute processes to be distributed 
and executed in parallel at many grid nodes. Under such paradigm, the system fault tolerance 
is the major issue as the failure of  one grid node results in the task failure. Most fault tolerance 
techniques for a grid computing system are based on periodic savings of  checkpoint data, 
which is used to roll back the system to the last good operating state when the failure occurs. 
In this paper, the fault tolerance technique based on peer-to-peer replication of  checkpoint 
data	is	designed	and	analyzed.	The	idea	is	to	allow	chunks	of 	checkpoint	data	to	be	replicated	
at	different	backup	nodes	to	facilitate	faster	recovery	time	in	the	failure	recovery	process.	The	
replication	time	under	the	peer-to-peer	replication	procedure	is	analyzed	to	obtain	proper	choices	
of 	chunk	size	and	backup	group	size.	A	significant	reduction	in	the	recovery	time	compared	to	
the traditional client-server approach is also gained by using the peer-to-peer replication.

Keywords: fault tolerance, grid computing, peer-to-peer replication, replication time, peer-to-
peer fault tolerance 

1. INTRODUCTION
A grid computing system is a group 

of  heterogeneous nodes at geographically 
dispersed sites, which together can provide 
high performance computing power and 
large storage space to running applications. 
For example, an application that involves a 
large	complex	computing	task	may	utilize	the	
computing	power	of 	several	nodes	to	finish	
the	task	in	a	much	smaller	time.	The	original	
task is divided into many subtasks or compute 
processes.	These	compute	processes	are	then	
distributed to a group of  nodes, referred to 

as a working group that collaboratively execute 
the subtasks to accomplish the desired goal.

Under this grid computing paradigm, the 
node reliability is a major issue because even 
a single working node failure results in the 
application	failure.	The	type	of 	failure	treated	in	
this paper is the hardware failure, where the node 
becomes	completely	dead.	Therefore,	it	is	vital	
that a grid computing system be fault-tolerant, 
which can be achieved by either forward recovery 
[1, 2, 3] or backward recovery [4, 5, 6, 7, 8, 9]. In 
forward recovery, a process in a working node 
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is duplicated at many backup nodes and those 
duplicated process run in parallel. If  the working 
node fails, the system can restore the process 
from the next good states at one of  the backup 
nodes.	The	approach	results	in	fast	recovery	
time but requires high resource consumption 
as the number of  compute processes increases. 
Therefore,	forward	recovery	is	not	practical	for	
a large number of  compute processes.

Backward recovery, also known as checkpoint/
restart model [6], uses the last good state before 
the failure occurrence to restore the operation. 
In this approach, several mechanisms are 
needed, including Checkpointing, Replication, 
and Recovery [8, 10, 11, 12, 13–15, 16].

Checkpointing All running processes on 
the working group are periodically suspended 
simultaneously and the current states of  those 
running processes in the memory, referred to 
as checkpoint data, are saved to local hard drives. 
Checkpoint data is essentially a snapshot of  the 
operation states that can be used in the failure 
recovery process.

Replication For an application requiring 
high reliability, checkpoint data may be 
duplicated from the local disk to backup nodes. 
The	replication	time	results	from	the	data	
transfer from a working node to backup nodes 
over the network.

Failure Recovery When a working node 
failure occurs, each node rolls back to the 
checkpoint data to recover from the failure.

The	main	focus	in	this	work	is	the	replication	
technique.	Traditional	replication	techniques	in	
a grid computing system are based on a client-
server approach, where the checkpoint data of  
a working node is replicated as a whole copy to 
one or more backup nodes depending on the 
reliability requirement. When a working node 
fails, its operation state is restored from the 
checkpoint data in one of  the backup nodes. 
The	backup	locations	can	be	a	local	node,	
a	shared	file	system,	or	distributed	over	the	
network [17]. Using a local host for backup 

may not produce a high tolerance to failure. If  
the local node fails, the backup data could be 
damaged, preventing the full recovery of  the 
system states. In order to increase the level of  
resiliency, backup data should be stored at the 
central	shared	file	storage	instead	of 	a	local	host.	
However, if  multiple replications are performed, 
the bottleneck problem may occur at the central 
system.	To	alleviate	such	a	problem,	a	shared	
file	system	along	with	multiple	local	storages	
can	be	utilized	for	backups.	Backup	files	can	be	
split into smaller pieces and then distributed to 
multiple	nodes	[17,	18].	The	method	is	referred	
to as ”distributed checkpointing” or distributed 
replication. While this method can eliminate a 
single point of  failure problem, it consumes 
a higher bandwidth because sending multiple 
small	files	to	multiple	locations	generally	creates	
more	network	traffic	than	sending	one	large	
file	to	one	location.	Currently,	variations	of 	the	
distributed replication method were implemented 
on many systems and many studies have been 
performed to tackle the overhead problem.

This	paper	proposes	the	peer-to-peer	
fault-tolerance approach in a grid computing 
system. We substantially extend the work in [19] 
by	refining	the	protocol	details,	developing	the	
mathematical analysis of  the replication time, 
and conducting comprehensive performance 
evaluation.	The	main	concept	is	to	create	
a group of  compute processes that share 
backup data in such a way that the replication 
time and the recovery time become smaller. 
Detailed procedures of  how checkpoint 
data are distributed among backup compute 
processes as well as the operation under failure 
recovery	are	explained.	The	replication	time	is	
also	mathematically	analyzed	to	obtain	proper	
choices of  the system parameters, and the result 
is validated against simulation. 

The	paper	is	organized	as	follows.	Section	
2 presents the system environment, notations, 
and assumptions on which our work is based, 
as well as the key components in our proposed 
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work. It also describes the procedures of  group 
forming, peer-to-peer replication, and failure 
recovery.	The	replication	time	is	analyzed	
in Section 3 under a star topology and the 
proper choices of  system parameter values are 
identified,	and	the	analytical	result	is	validated	
against	simulation.	The	conclusion	is	offered	
in Section 4.

2. MATERIALS AND METHODS
2.1 Grid Computing Environment

We consider a homogeneous grid computing 
environment that consists of  many grid nodes 
connected	via	a	TCP/IP	network.	The	system	
consists of  many grid nodes and one front-end 
node running as the grid proxy. Figure 1 shows 
how various pieces of  software components and 
compute processes inside a grid site interact. 
All grid nodes and the front-end node run 
Globus	Toolkit	[20].	The	front-end	node	also	
runs Condor [21] as a grid scheduler and acts 
as the grid proxy to which a user submits a job. 
The	system	works	as	follows.	After	accepting	a	
user job, the grid proxy contacts Grid Resources 
Allocation and Management (GRAM) within 
Globus toolkit, which is responsible for creating 
Compute Processes (CPs) based on the submitted 
job and distributing them to the grid nodes 
(assuming	one	CP	per	node).	The	CPs	of 	a	
single user job are said to be in the same working 
group, denoted by W. Note that the working 
group W of  each user job is determined by 

Condor, which handles the data dependency 
among CPs in the task allocation. Since all CPs 
in a working group belongs to the same user 
job, no irrelevant nodes are involved to incur 
unnecessarily energy consumption.

Each CP contains two components – (i) 
User application thread and (ii) the Peer-to-Peer 
fault-tolerant	service.	The	timing	at	which	these	
threads	execute	is	depicted	in	Figure	2.	The	
Peer-to-Peer fault-tolerance service comprises 
the following threads:

Group Forming This	thread	is	executed	
only once at the beginning to create a backup 
group for each CP.

Checkpointing This	thread	is	regularly	
executed	in	every	checkpoint	interval.	It	notifies	
Condor at the front-end node to invoke the 
checkpointing process for each user application 
thread via the grid middleware. In each CP, 
the user application thread will be suspended 
while the operating states are saved to the 
checkpoint data.

Replication After the checkpointing thread 
finishes,	the	replication	thread	replicates	the	
checkpoint data to other CPs in its backup group 
by using the proposed replication mechanism. 
All data transfers among CPs are carried out 
over	TCP	connections.

Fault Detection During the normal 
process execution, the fault detection thread 
monitors if  one of  the CPs in its backup group 
fails	and	notifies	the	grid	proxy.	

Fault Recovery The	grid	proxy	contacts	
GRAM to create the new replacement CP to 
resume	the	operation	of 	the	failed	CP.	The	
replacement CP gets a list of  backup CPs and 
retrieves the checkpoint data from them.

 

Figure 1. Grid Computing Environment. 
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Figure 2.	Timing	diagram	 for	 the	 thread	
execution in the fault tolerance service.
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2.2 Peer-to-Peer Fault Tolerance Approach
This	section	describes	group	forming,	

replication, and failure recovery procedures, 
which are the basis of  the proposed peer-to-peer 
fault	tolerance	approach.	Table	1	summarizes	
the	notation	used.	The	set	of 	backup	CPs	for	
a given CP is referred to as a backup group.	The	
number of  CPs in a backup group is called the 
backup group size, denoted by B.	To	balance	the	
resources among CPs, we enforce that each 
CP can belong to at most B backup groups at 
any time. CPs in the same backup group are 
said to be peers. So, there will be |W| backup 
groups for each working group, all of  which 
having	the	same	size	B, with B < |W|.

Initially, every CP s creates its own backup 
group Bs by executing the group forming 
procedure.	Then,	in	each	checkpointing	
interval, the replication procedure is executed 
to distribute the checkpoint data to backup 
CPs. In the context of  replication, the CP of  
interest acts as the source of  checkpoint data, 
referred to as the source CP.	The	group	forming	
and checkpoint data replication procedures 
are explained below. Because all CPs in the 
working group perform identical operations, 
the group forming and replication procedures 
will be explained from a viewpoint of  a single 
source CP.

2.2.1 Group forming procedure
The	group	forming	procedure	is	listed	in	

Figure	3.	To	form	a	backup	group,	a	source	CP	
sends Group-request messages with a unique ID 
(its compute process ID assigned by Condor) 
to all other CPs and waits for responses. Since 
we restrict that each CP joins at most B backup 
groups, only CPs that belong to less than B 
backup groups will acknowledge the Group-
Request	message	together	with	their	ID.	The	
source CP collects the responses and ranks 
the responding nodes by their response times 
as	candidates	for	its	backup	CPs.	The	source	
CP sends the Member-Request message to B 
candidate	CPs	and	waits	for	the	responses.	The	
source CP includes the CP that acknowledges 
its Member-Request message in its backup 
group. For each Group-Request and Member-
Request message sent, the timeout intervals 
Tg and Tm are respectively used to trigger 
the retransmission. In the absence of  the 
acknowledgment from a candidate backup 
CP for two retries, the source CP chooses the 
next backup CP in the candidate list to send 
the Member Request message. Since we restrict 
that each CP joins at most B backup groups 
with B < |W|, each CP always gets B backup 
CPs for its backup group.

Table 1. Notations for parameters.

Parameters Description

W A	set	of 	CPs	in	the	working	group	with	size	|W|

B Backup	group	size

Bs A set of  CPs in the backup group of  CP s with	size	|Bs| = B, B < |W|

Tg Timeout	interval	for	Group	request	message

Tm Timeout	interval	for	Member	request	message

Rl Replication level

Nc Number of  chunks in checkpoint data

∆ Checkpoint	data	size
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 Figure 3. Group forming procedure for source CP and backup CPs.
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After the source CP receives the 
acknowledgments for all its Member-Request 
messages, it sends the backup group member 
list	to	all	its	backup	CPs.	The	list	is	ranked	by	
the process IDs so that each backup CP knows 
both the backup group members as well as its 
successor in the backup group.

2.2.2 Replication procedure
The	replication	procedure	immediately	

follows the checkpointing procedure. Each 
source CP divides the checkpoint data into Nc 
chunks that are integral multiples of  B.	That	is,	
Nc = M ·B, M · Z+. Each chunk is numbered 
sequentially.

Denote Rl as the replication level, which 
is the number of  copies of  checkpoint data 
in addition to the source copy. At the end of  
the replication procedure, each chunk will be 
stored at Rl backup	CPs.	This	means	that	if 	
the application thread is recoverable if  a source 
CP fails and at most Rl − 1 backup CPs fail. 

The	replication	procedure	is	illustrated	by	
example as follows. Consider a group of  four 
working CPs with three backup CPs per backup 
group (|W| = 4, B = 3) as shown Figure 4. 
Suppose Nc = 9 and Rl = 2. Without loss of  
generality, let us denote a source CP of  interest 
by P0, and the backup CPs by P1, P2, and P3, 
ranked	by	their	process	ID.	The	replication	
procedure at the source CP and backup CPs 
work as follows:

Source CP: The	source	CP	transfers	Nc/B 
chunks	to	each	of 	its	backup	CP.	The	transfer	
is carried out sequentially for chunks to the 
same backup CP, and in parallel for chunks 

to different backup CPs. In the example, P0 
sequentially transfers chunks 1, 4, 7 to P1, 
chunks 2, 5, 8 to P2, and chunks 3, 6, 9 to P3. 
Generally, P0 transfers chunks i + (j − 1)B to 
CP i, where i ∈ {1, 2, . . . , B} and j ∈ {1, 2, 
. . . , M }.

Backup CP: For chunks received from 
the source CP, the backup CP is responsible for 
distributing them to other Rl − 1 backup CPs. 
For Rl = 1, the backup CP only keeps chunks 
to itself. For Rl = 2, the backup CP transfers 
each chunk to its successor. In general, there 
exists Rl copies of  each chunk at Rl backup CPs, 
which is done by each backup CP iteratively 
transferring a received chunk to its successor 
until Rl copies exist in Rl backup	CPs.	Thus,	
each backup CP eventually holds exactly M · 
Rl chunks. In this example of  Rl = 2, P1 will 
replicate chunks 1, 4, 7 received from the source 
CP to P2, and likewise for P2 and P3. At the end 
of  the replication procedure, P1 holds chunks 
1, 3, 4, 6, 7, 9, P2 holds chunks 1, 2, 4, 5, 7, 8, 
and P3 holds chunks 2, 3, 5, 6, 8, 9.

The	above	replication	procedure	enforces	
that Rl ≤ B. For Rl = B, all backup CPs will 
store the complete checkpoint data. In practice, 
Rl = 2 is commonly used (data is replicated 
at two sites), and higher values of  Rl is rare.

2.2.3 Failure recovery procedure
During the user application execution 

period, every CP monitors the liveliness of  
its backup CPs (e.g., by periodically issuing 
the ping command). Consider the case when 
a particular CP p fails. All CPs that has p as its 
backup will detect the failure and send a fault 
detection message to the grid proxy, and hence 
many fault detection messages can be received 
by the grid proxy. After the grid proxy has 
verified	the	node	failure,	it	requests	GRAM	to	
create a replacement CP at another grid node 
not in the current working group W.	Then,	
the	grid	proxy	notifies	the	monitoring	CPs	of 	
the replacement CP. Because the replacement 

 

(a) Stage 1 Replication       (b) Stage 2 Replication (c) Stage 3 Replication 

 Figure 4. Replication mechanism.
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CP needs to get the backup checkpoint data 
for the recovery, only monitoring CPs that are 
in the backup group of  p are	relevant.	Those	
CPs will send the backup group member list 
to the replacement CP, which in turn asks for 
chunks from backup CPs in the list. Once the 
complete checkpoint data has been acquired, the 
replacement CP calls Condor restore function 
to resume the user application execution thread.

3. RESULTS AND DISCUSSION
3.1 Analysis of  Replication Time

This	section	analyzes	the	replication	time	
under	a	TCP/IP	network	as	a	function	of 	
checkpoint	data	size,	chunk	size,	and	the	backup	
group	size.	The	major	difference	between	our	
proposed Peer-to-Peer replication approach 
and the client-server replication approach 
lies in the replication time, which is the time 
taken for the checkpoint data of  a source CP 
to be completely replicated at all of  its backup 
CPs. In the client-server replication, the whole 
checkpoint data is transferred from the source 
CP to backup CPs while in the Peer-to-Peer 
replication, different chunks from the source 
CP are transferred to different backup CPs, and 
those chunks are also replicated among backup 
CP. Because chunks are transferred over the 
network, the replication time strongly depends 
on the network topology of  the grid nodes 
and	the	flow	pattern,	i.e.,	how	many	flows	on	
each	network	link	at	a	given	time.	To	enable	
tractable analysis, we assume that the grid nodes 
are interconnected in a star topology as shown 
in Figure 5. For a more complex topology, 
the replication time could be determined by 
manually	constructing	the	flow	pattern	in	the	
network.	The	performance	on	more	complex	
topologies is left for future work.

We denote the replication time by T , the 
checkpoint	data	size	by	D (in MB), the chunk 
size	by	∆ (in	MB).	The	replication	level	Rl = 
2 is assumed. Recall that in the replication 
procedure, the checkpoint data is divided 

into chunks and individual chunks are then 
transferred	among	backup	peers	over	TCP	
connections. Consequently, the replication 
time	can	be	calculated	based	on	the	TCP	
connection throughput and how chunks are 
transferred	among	the	peers.	To	analyze	the	
replication time, consider the scenario of  one 
source CP (P0) with three backup CPs (P1, P2, 
and P3) in Figure 4 with one CP per grid node. 
The	corresponding	network	topology	for	this	
scenario	is	shown	in	Figure	5.	The	source	CP	
divides the checkpoint data into nine chunks, 
chunks 1, 4, 6 for P1, chunks 2, 5, 7 for P2, and 
chunks 3, 6, 9 for P3.	The	replication	time	can	
be	analyzed	in	three	stages	as	follows:

1st stage:	The	source	CP	transfers	the	first	
chunk of  each backup CP simultaneously over 
three	TCP	flows	as	shown	in	Figure	6(a),	which	
takes	T1	to	finish.	For	𝑛𝑛𝑏𝑏  backup CPs, B parallel 
flows	exist	in	the	link	between	the	source	CP	
and the switch, and one ow on all the other 
links. Because the transfer time is dictated by 
the	link	with	largest	number	of 	flows,	we	have

  
𝑇𝑇1 =

∆
𝑅𝑅(𝑛𝑛𝑏𝑏)

 

where 𝑇𝑇1 =
∆

𝑅𝑅(𝑛𝑛𝑏𝑏)
 	is	the	per-flow	TCP	throughput	

(in Mbps) over a single link having 𝑛𝑛𝑏𝑏 	flows.

 2nd stage: In the second stage, the source 
CP continues to send the remaining chunks to 
the backup CPs, while each backup CP starts 

 

 Figure 5. Network topology used for the 
analysis of  replication time. 
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replicating the completely received chunks to 
its successor. As shown in Figure 6(b), while 
receiving chunk 4 from the source CP, P1 
shares chunk 1 with P2.	Then,	it	shares	chunk	
4 with P2 while receiving chunk 7, and so on. 
This	stage	lasts	for	the	amount	of 	time	for	the	
source CP to transfer the remaining chunks to 
individual backup CPs. Denote the time taken 
in	the	second	stage	by	T2. With 𝑛𝑛𝑏𝑏  CPs per 
backup group, the number of  chunks left to 
be sent from the source CP to each backup CP 
is (𝐷𝐷/𝑁𝑁𝑏𝑏 ) - ∆ 	because	the	first	chunk	of 	each	
backup CP has already been transferred in the 
first	stage.	For	each	CP	𝑖𝑖 , let 𝑁𝑁𝑖𝑖 = {𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑖𝑖𝑖𝑖}  be 
a tuple representing the number of  outgoing 
parallel sessions to the switch and the number 
of  incoming parallel sessions from the switch. 
From Figure 6(b), at the source CPs, 𝑁𝑁𝑠𝑠 = {3, 0} 
, and all the other backup CPs have 𝑁𝑁𝑏𝑏 = {1, 2} . 
In general, the source CP will have 𝑁𝑁𝑠𝑠 = {𝑛𝑛𝑏𝑏 , 0}  
while each backup CP will have 𝑁𝑁𝑠𝑠 = {1, 2}  
because it has to send its chunks to its successor 
while receiving one chunk from the source CP 
and one chunk from its predecessor. Since 
there are |𝑊𝑊|  CPs in the working group, there 
must be |𝑊𝑊|  backup groups, one for each CP. 
As each CP belongs to 𝑁𝑁𝑏𝑏 = {1, 2}  backup groups, we 
have that for each CP 𝑖𝑖 , the number of  parallel 
flows	to	and	from	the	switch	is	given	by

𝑁𝑁𝑖𝑖 = {𝑛𝑛𝑖𝑖 +∑ 1, 2
𝑛𝑛𝑏𝑏

𝑗𝑗=1
∑ 1
𝑛𝑛𝑏𝑏

𝑗𝑗=1
} 

= {2𝑛𝑛𝑏𝑏 , 2𝑛𝑛𝑏𝑏} 

Therefore,	there	exists	= {2𝑛𝑛𝑏𝑏 , 2𝑛𝑛𝑏𝑏}  parallel flows 
between each grid node and the switch in both 
directions, and it follows that

𝑇𝑇2 =
(𝐷𝐷 𝑛𝑛𝑏𝑏⁄ ) − ∆
𝑅𝑅(2𝑛𝑛𝑏𝑏)

 

3rd stage:	The	third	stage	starts	when	the	
source	CP	finishes	transferring	the	remaining	
chunks to its backup CPs, and each backup CP 
replicates the last chunk with its successor. As 

shown in Figure 6(c), the source CP will have
 𝑁𝑁𝑠𝑠 = {0, 0} , while each backup CP will have
 𝑁𝑁𝑏𝑏 = {1, 1} , because it has to share its chunks 
to the successor while receiving one chunk 
from	its	predecessor.	Therefore,	there	exists	
𝑛𝑛𝑏𝑏 parallel	flows	between	each	node	and	the	
switch in both directions. It follows that the 
time taken in this 3rd stage is given by

𝑇𝑇1 =
∆

𝑅𝑅(𝑛𝑛𝑏𝑏)
 

Combining the replication time from the three 
stages above, we have
𝑇𝑇(𝐷𝐷,𝐶𝐶,𝑝𝑝) = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 

𝑇𝑇(𝐷𝐷,∆,𝑛𝑛𝑏𝑏) = ( ∆
𝑅𝑅(𝑛𝑛𝑏𝑏)

) + (
(𝐷𝐷 𝑁𝑁𝑏𝑏⁄ ) − ∆
𝑅𝑅(2𝑛𝑛𝑏𝑏)

)+ ( ∆
𝑅𝑅(𝑛𝑛𝑏𝑏)

) 

 
 

=  ( 2∆
𝑅𝑅(𝑛𝑛𝑏𝑏)) + (

(𝐷𝐷 𝑁𝑁𝑏𝑏⁄ ) − ∆
𝑅𝑅(2𝑛𝑛𝑏𝑏) ) 

  
(1)

where, p ≤ D
C   and 1 ≤ 𝑛𝑛𝑏𝑏 ≤ 𝑚𝑚𝑚𝑚𝑛𝑛 (|𝑊𝑊|, |𝐷𝐷∆|) 

 

(a) Stage 1 Replication     (b) Stage 2 Replication       (c) Stage 3 Replication 

 

Figure 6. Flow patterns in different stages of  
the replication procedure.

3.2 Choice of  Backup Group Size
From	(1),	our	goal	is	to	find	appropriate	

values of  𝑛𝑛𝑏𝑏  and ∆ 	that	minimizes	the	
replication time for a given checkpoint data 
size	D.	To	accomplish	so,	we	first	determine	
the	expression	of 	TCP	per-flow	throughput	
𝑅𝑅(. ) 	Essentially,	the	key	to	TCP	throughput	
is	that	TCP	uses	the	end-to-end	congestion	
control mechanism that keeps increasing the 
window	size	every	round-trip	time	until	reaching	
the	maximum	window	size	and	flows	sharing	
the same bottleneck link get approximately 
equal	throughputs.	The	TCP	throughput	is	
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proportional	to	the	window	size	divided	by	
the round-trip time. So, only after the window 
size	reaches	its	maximum	(65,535	bytes),	we	
will	get	the	maximum	TCP	throughput.	If 	the	
amount of  data transferred is too small, the 
TCP	session	may	finish	before	reaching	its	
maximum throughput. 

The	behavior	of 	TCP	per-flow	throughput	
over a single 1 Gbps link is investigated by 
using	ns-2	simulation.	Figure	7(a)	plots	the	TCP	
per-flow	throughput	against	the	data	transfer	
size	(i.e.,	chunk	size)	at	different	numbers	of 	
TCP	flows	(𝑛𝑛𝑏𝑏 ).	For	a	given	number	of 	flows,	
TCP	per-flow	throughput	increases	with	the	
data	transfer	size	and	starts	to	converge	to	a	
constant	after	the	data	size	goes	beyond	MB	
regardless of  the number of  parallel sessions. 
The	chunk	size	∆  should thus be at least 1 MB 
to	achieve	the	maximum	TCP	throughput	in	
the	transfer,	and	the	TCP	throughput	becomes	
independent	of 	the	data	transfer	size.	To	derive	
the	form	of 	the	TCP	throughput	per	session,	
𝑅𝑅(. ) 𝑛𝑛𝑏𝑏 𝑅𝑅(. ) ,	we	simulate	the	TCP	throughput	per	
session as shown in Figure 7(b) under 1 MB 
data	size.	The	fitted	regression	model	of 	the	
throughput curve is given by

𝑅𝑅(𝑛𝑛) = 𝛼𝛼
𝛽𝛽 + 𝑛𝑛  Mbps,    (2)

𝛼𝛼 = 776.15,𝛽𝛽 = 0.92 

Substituting (2) in (3) and given D and ∆ , we 
have

𝑇𝑇(𝑛𝑛𝑏𝑏) = 𝑐𝑐1 + (𝑐𝑐2𝑛𝑛𝑏𝑏
) ,    (3)

where 𝑐𝑐1 =
𝛽𝛽∆ + 2𝐷𝐷

𝛼𝛼  , 𝑐𝑐2 =
𝐷𝐷𝐷𝐷
𝛼𝛼   

Another important observation from 
Figure 7(b) is that the aggregate throughput 
on	the	link	increases	with	the	number	of 	flows.	
For example, for two flows, the aggregate 
throughput is about 560 Mbps while for three 
flows,	the	aggregate	throughput	is	about	645	
Mbps.	This	behavior	benefits	the	recovery	time	
under Peer-to-Peer replication, which will be 
discussed later in Section 4.

 

(a) TCP per-flow throughput vs. transfer data size at different number of flows. 

 

(b) TCP per-flow throughput as a function of the number of flows  

 

Figure 7.	TCP	per-flow	throughput	under	a	
single 1 Gbps link.

From (3), we see that the replication is a 
decreasing function of  𝑛𝑛𝑏𝑏  that converges to 
2∆/𝑅𝑅(𝑛𝑛𝑏𝑏)   at 𝑛𝑛𝑏𝑏 = ⌊𝐷𝐷/∆⌋ . Because using a larger 
backup	group	size	means	more	resources,	we	
select 𝑛𝑛𝑏𝑏  at which 𝑇𝑇(𝑛𝑛𝑏𝑏) = 𝑐𝑐1 + (𝑐𝑐2𝑛𝑛𝑏𝑏

) 	no	longer	significantly	
decreases, say by some small ratio 𝑇𝑇(𝑛𝑛∗ + 1) − 𝑇𝑇(𝑛𝑛∗)

𝑇𝑇(𝑛𝑛∗) =
𝑐𝑐2 (

1
𝑛𝑛∗ + 1 − 1

𝑛𝑛∗) ,

𝑐𝑐1 + (𝑐𝑐2𝑛𝑛∗) ,
  = 𝛿𝛿 , as 𝑛𝑛𝑏𝑏  

increases.	Therefore,	our	goal	is	to	find	𝑛𝑛𝑏𝑏 * such 
that
  
 

𝑇𝑇(𝑛𝑛∗ + 1) − 𝑇𝑇(𝑛𝑛∗)
𝑇𝑇(𝑛𝑛∗) =

𝑐𝑐2 (
1

𝑛𝑛∗ + 1 − 1
𝑛𝑛∗) ,

𝑐𝑐1 + (𝑐𝑐2𝑛𝑛∗) ,
  = 𝛿𝛿 

 𝛿𝛿𝑐𝑐1𝑛𝑛2 + 𝛿𝛿(𝑐𝑐1 + 𝑐𝑐2)𝑛𝑛 − (1 − 𝛿𝛿)𝑐𝑐2 = 0   (4)

Note that (4) has two roots with opposite signs. 
It follows that 𝑛𝑛𝑏𝑏 * is the positive root of  (4), 
which is given by

𝑛𝑛∗ = −𝛿𝛿𝑐𝑐1 +√𝛿𝛿(𝑐𝑐1 + 𝑐𝑐2)2 − 4𝛿𝛿(1− 𝛿𝛿)𝑐𝑐1𝑐𝑐2
2𝛿𝛿𝑐𝑐1

  (5)

and	the	choice	of 	backup	group	size	is
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𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚 (⌈𝑚𝑚∗⌉, |𝑊𝑊|, ⌊𝐷𝐷∆⌋)  (6)

As an example, with 1-GB checkpoint data, 
1-MB	chunk	size	(D	=	1000	MB	and	∆  = 1 
MB) and a large working group, we have 𝑐𝑐1 =

𝛽𝛽∆ + 2𝐷𝐷
𝛼𝛼   = 

2.5780, 𝑐𝑐2 =
𝐷𝐷𝐷𝐷
𝛼𝛼   = 1.1853. For 𝑇𝑇(𝑛𝑛∗ + 1) − 𝑇𝑇(𝑛𝑛∗)

𝑇𝑇(𝑛𝑛∗) =
𝑐𝑐2 (

1
𝑛𝑛∗ + 1 − 1

𝑛𝑛∗) ,

𝑐𝑐1 + (𝑐𝑐2𝑛𝑛∗) ,
  = 𝛿𝛿  = 0.02, the backup 

group	size	calculated	from	(6)	is	𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚 (⌈𝑚𝑚∗⌉, |𝑊𝑊|, ⌊𝐷𝐷∆⌋)  = 4. 
Observe from (3) that if  ∆ ≪ 𝐷𝐷 , 𝑐𝑐1 =

𝛽𝛽∆ + 2𝐷𝐷
𝛼𝛼   and 𝑐𝑐2 =

𝐷𝐷𝐷𝐷
𝛼𝛼   

are approximately ∆ ≪ 𝐷𝐷  scaled by constants, and 
the solution of  𝑛𝑛𝑏𝑏 * in (5) becomes independent 
of  ∆ ≪ 𝐷𝐷 .	Therefore,	the	choice	of 	backup	group	
size	can	be	set	to	four.

3.3 Simulation Results
This	section	evaluates	the	replication	

time obtained from the analysis in Section 
3.2	against	ns-2	simulation.	The	recovery	time	
under Peer-to-Peer replication and client-server 
replication are also compared. We simulated 
a grid environment with ten grid nodes under 
the star network topology as in Figure 5 with 
1-Gbps links and a 200 microseconds of  the 
end-to-end propagation delay.

Figure 8 shows the replication time as 
a	function	of 	the	backup	group	size	(B). 
The	results	from	analysis	and	simulation	are	
consistent and clearly validate the analysis that 
as	the	backup	group	size	increases	beyond	four,	
the replication time starts to converge.

 For the recovery process, the time to 
recover the checkpoint data from backup 
CPs to a replacement CP is observed after 
a node failure. Because the replacement CP 
needs to be created by GRAM, the recovery 
overhead occurs when backup CPs of  the failed 
CP send backup chunks to the replacement 
CP. We measure the recovery time from the 
start of  backup transfer. Figure 9 shows the 
recovery times under Peer-to-Peer replication 
compared to the client-server replication at 
different	backup	group	sizes.	As	expected,	
the recovery time increases linearly with the 
checkpoint	data	size.	However,	the	recovery	

time under Peer-to-Peer replication are always 
smaller because the aggregate throughput on 
the	link	increases	with	the	number	of 	flows	as	
shown	earlier	in	Figure	7(b).	The	results	suggest	
that our proposed Peer-to-Peer fault tolerance 
approach can reduce both replication time 
and recovery time compared to the traditional 
client-server approach.

4. CONCLUSIONS
A peer-to-peer fault tolerance approach in 

a grid computing system is proposed to reduce 
the replication time and the recovery time in 
the	backup	process.	The	backup	process	is	
performed by nodes in a working group to 
replicate	checkpoint	data	in	parallel.	The	main	

 

 Figure 8. Replication time as a function of  the 
backup	group	size	at	different	check-	point	data	
sizes	(∆	=	1	MB,	|W|	=	10	nodes).

 

 
Figure 9. Comparison of  the recovery time.  
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procedures including group forming, replication, 
and failure recovery are described and the 
replication	time	is	analyzed	under	a	basic	star	
topology to obtain suitable parameter values. 
Our mathematical analysis, also validated against 
simulation, reveals that negligible reduction in 
the replication time is gained once the backup 
group	size	is	beyond	four.	Furthermore,	the	
recovery time under the peer-to-peer approach 
is always better than that of  the client-server 
approach due to simultaneous transfers of  data 
among compute processes. Our replication time 
analysis	assumes	the	fixed	redundancy	level	of 	
two and a simple star topology. However, there 
may be a need of  a higher redundancy level in 
some cases and the system may have a more 
complicated	network	topology.	The	study	of 	
how our peer-to-peer fault tolerance approach 
performs under more generic circumstances 
will be left for the future work.
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