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ABSTRACT
         In this sensor fusion approach, combination of filtering encoder, gyro and accel-
erometerʼs signals was used to improve and correct the measurement of 4-wheel 
mobile robot s̓ own position. The error model method was proposed for fusing encoder 
information with relative position measurement by gyro sensor and accelerometerʼs 
information to obtain more reliable position estimation. From this, we computed 
high-accuracy position estimation and had reduced the systematic and non-systematic 
errors during traveling and had succeeded in estimating the bias drift of gyro and 
accelerometer. The basic tool here is a Kalman filter supported by change detection from 
sensor diagnosis. Results and experience of real-time implementations are presented.
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INTRODUCTION
         Typically, mobile robotʼs behavior such as navigation, map building and estimation of 
own position is very important. There are lots of researches regarding the mobile robot (Wata-
nabe and Yuta, 1990; Komori et al., 1992; Barshan, 1994; Cooper and Durrant-Whyte, 1994; 
Komoriya and Oyama, 1994; Maeyama et al., 1994; Tonouchi et al., 1994; Borenstein et al., 
1996; Maeyama et al., 1996; Borenstein and Feng, 1997; Maeyama et al., 1997; Abott and 
Powell, 1999; Becker and Simon, 2000; Hashimoto et al., 2000). Basically, the method of 
estimation for a wheel-type mobile robotʼs position employs the rotation encoder (also called 
odometry system) of a wheel, etc. However, in outdoor environment, the estimated position 
by encoder has an unpredictable error caused by traveling over an unexpected small object 
or a bump under the wheels. When this happens, the accuracy of the estimated robotʼs position 
becomes worse instantaneously. Despite these limitations, most researchers agree that en-
coder is an important part of a robotʼs navigation system and that navigation tasks will be 
simplified if encoder accuracy can be improved. Since a gyro sensor and accelerometer (ac-
celeration sensor) can measure directions and acceleration of a robot, unrelated to the condi-
tion of a road surface, they are very effective in position estimation.  When we have the in-
formations from different sources, the problem rises here is how to use them with fusion 
method (Ishikawa and Yamasaki, 1994; Luo, 1994; Toshiharu and Ishikawa, 1994; Becker 
and Simon, 2000). In this paper, we propose a method for fusing encoder information with 
relative position measurements by gyro sensor and accelerometerʼs information to obtain 
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more reliable position estimation. 
         The research background and overview are described in Section 2. The system outline 
is described in Section 3. The implementation and design for each error model are described 
in Section 4. The experimental results are detailed in Section 5 while in Section 6 is our 
research conclusion. 

BACKGROUND AND OVERVIEW 
         The sensor fusion method is to combine data from different sources with mathematical 
techniques such as discrete Bayesian method (Tonouchi et al., 1994), neural network, Kalman 
filter and etc. Borenstein et al., 1996 and Borenstein and Feng, 1997 has proposed a dead-
reckoning algorithm called Gyrodometry (Borenstein et al., 1996) and researched in mobile 
robot positioning technique (Boreinstein and Feng, 1997) for mobile robot navigation systems. 
Borenstein et al. has concentrated on calibration method of odometry error with fusion of the 
gyro sensor data in dead-reckoning system (Boreinstein et al., 1996, and Borenstein and Feng, 
1997). Komoriya et al. improved the Barshan model (Barshan, 1994), using the fiber optic 
gyro in mobile robot position estimations (Komoriya and Oyama, 1994). Hashimoto et al. 
also fused the odometry and gyro information for their directional vehicle (Hashimoto et al., 
2000). The other researches (Watanabe and Yuta, 1990; Komoriya and Oyama, 1994; Maeya-
ma et al., 1994) are used as a method of correcting the information on a gyro sensor and 
encoder, using such an external sensor and a landmark information for their position estima-
tion and most researchers also use a Global Positioning System (GPS) to correct the fusion 
information between odometry and gyro sensor (Cooper and Durrant-Whyte, 1994; Abbott 
and Powell, 1999; Becker and Simon, 2000 (a); Becker and Simon, 2000 (b)). For most 
vehicle applications, GPS is augmented with inertial sensing to provide a higher degree of 
accuracy. However, GPS might not be able to calculate positioning accurately when GPSʼs 
signal or wave are disrupted, for example, when the mobile robot (which installs the GPS 
receiver) is moving inside of a tunnel, skyscraper, trees, around tall buildings and others. 
         The advantages of the inertial systems are lower in cost and simpler to implement in 
most computer system and mobile robot navigation systems. Also, the inertial systems can 
even be used on unpaved road without initial knowledge of the traveling environments 
(unknown environments). It is because of the fact that inertial systems use only odometry 
and internal sensors for its own position estimation.
         In this paper, we propose the fusion of inertial sensors for mobile robot dead-reckoning 
system. We propose to use a fusion of the rotation encoder data, gyro sensor and accelero-
meter for the 4-wheel mobile robot to recognize its own position. The method we use is called 
error model method where each sensor will measure the accumulated error and compare it to 
the robotʼs own position. In Maeyama et al., (1997), they combined the angular rate signal 
measured from odometry and gyro to get more accuracy to robot direction, but they did it in 
different method compared to ours. Maeyama et al., (1996, 1997) used the rule based data 
fusion method in fusion process. Basically, when more information source is given, more 
accuracy we can get about that information. So here, for our method we add an accelerometer 
to get more information to combine with odometryʼs information. In our proposed method, 
we combine the rotation encoder data with accelerometer and gyroscope data, using the error 
model method to estimate more reliable position. The main advantages of our proposed 
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method are:
         1) Fusion of the odometry, gyro and accelerometer sensorʼs information, and more 
accurate position estimation can be acquired. Figure 1 shows, the position (xa, ya) measured 
by accelerometer combined with position (xe, ye) measured by odometry. And also, the robot 
angle measured by gyro, θg combined with angle measured by odometry, θe in estimator part.
         2) Our system also has a function that monitors all errors occurred which can give 
information about mechanical system breakdown or facing the road surface obstacle during 
traveling. This function can be useful when the monitored error became higher than normal 
or evaluation value. However, in this paper we did not evaluate above function at present 
time but will consider it in the future.

Figure 1.  Overview of Sensor Fusion System. ω is angular velocity data from gyro sensor, 
a is acceleration data from accelerometer and θe is angle data and we, ye are 
position data from encoder. After the one and twice integration process for gyro 
and accelerometer data, we get θg for the angle and xe, ye are for the positions. From 
the position estimator, we get the new estimated position for the mobile robot after 
fusion of the gyro, accelerometer and encoderʼs information through the Kalman 
filter, as x, y, θ.

         The estimation method of the rotation speed error and a rear wheel distance error is 
used most widely, using a two-wheel drive mobile robot modeling. But in our research, we 
proposed the four-wheel drive mobile robot system. 

SYSTEM OUTLINE
         In our system (Figure 2), we used two rotary encoders, one accelerometer and one gyro 
sensor. From the rotation of the back wheels, rotary encoder will give a pulse signal to Uni-
versal Pulse Processor (UPP) card (RATOC made-REX 5059) as a pulse count. The speci-
fications of rotary encoder are shown in Table 1. Gyro and accelerometer outputs are first led 
to 2nd and 4th order Butterworth low pass filter stages to prevent aliasing and to reduce noise. 
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These filters have a cutoff frequency of 30 Hz and are followed by an amplifier to perform 
optimum signal range adaptation at the A/D converter in the same UPP card. The A/D con-
verter voltage input range is 0–5V and 10 bit of resolution ability. The software features all 
necessary structures to fetch acquired data and to calculate and display actual accelerations, 
angular and translatorial speeds and the current position of the mobile robot.

Table 1.   Rotary Encoder Specifications.

Figure 2. The System Outline.

IMPLEMENTATION OF DEAD-RECKONING SYSTEM
         Dead-reckoning system should be designed to be able to minimize growth in position 
and orientation errors. This can be accomplished by meticulously modeling sensor errors and 
by the efficient design of a filter. In this paper, we implement an indirect Kalman filter that 
combined all sensors information as error model.

Voltage DC 4.5~5.5 V

Resolution Ability 500 P/R

Max. Reply Frequency 50 kHz

Starting Torque 4.9x10-4 N.m

Angular Acceleration 1x104 rad/s2

Max R.P.M. 600 rpm

Signals Processing U
nit

(Filtering, A
lgorithm

s...)

Encoder xe

Encoder ye

Encoder θe

Accelerator xa

Accelerator xy

Gyro θg

U
niversal Pulse

Processor
Low

 Pass Filter

A
/D

 C
onverter

A
m

plifier

 

 

 

   

   

  



CMU. Journal (2006) Vol. 5(1)4 CMU. Journal (2006) Vol. 5(1) 5

Figure 3. 4-Wheel Mobile Robot Model.

         The Error Model for Odometry
         Odometry is based on simple equations which holds true when wheel revolutions can 
be translated accurately into linear displacement relative to the floor.
         However, in case of wheel spillage and some other more subtle causes, wheel rotations 
may not translate proportionally into linear motion. Systematic errors are those resulting from 
kinematics imperfections of the robot, e.g., unequal wheel diameters or uncertainty about the 
exact wheelbase. Non-systematic errors are those that result from the interaction of the floor 
with the wheels, e.g., wheel slippage or bumps and cracks (Boreinstein and Feng, 1996, 
1997).
         Figure 3 is a model of four-wheel mobile robot where x and y represent the mobile 
robot position in the navigation frame, θ is the heading angle, φ is the steering angle, v is a 
velocity of the mobile robot, L is the length between the front and back wheels and W is the 
right and left wheel width. The mobile robotʼs position and heading angle are calculated from 
the output of incremental encoders by Eq. (1).

(1)

         where V(k) is the average of the left and right rear wheel incremental speed respectively, 
k is the present sampling time and k+1 is the sampling time after 1 sampling-interval progress. 
Δk is a 1 sampling time.
         It is well known that odometry is subject to systematic errors caused by factors such as 
unequal wheel diameters, imprecisely-measured wheel diameters or an imprecisely-measured 
wheel separation distance. Subject to these errors, the robotʼs position and its heading angle 
are computed by Eq. (2). 

x(k+1)=x(k)+V(k)•cosθ(k)•Δk
y(k+1)=y(k)+V(k)•sinθ(k)•Δk

θ(k+1)=θ(k)+(                     )•Δk 

V(k)=

Vl(k)–Vr(k)
W

Vl(k)+Vr(k)
2
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         From Eq. (3), the estimated position and heading angle are shown with hat symbols. δ 
symbols are added respectively for each error. From Eqs.(1), (2) and (3), will yield the error 
propagation equations as shown in Eq. (4). 

(4)
         
         where we assumed that δθ(k) was small and we also assumed that there was no error in 
wheel alignment. We considered left and right unit of the wheels to cause radius estimation 
errors, where the rotation of the wheel itself causing incremental distance errors. Also the 
wheel width contributes to width estimation error. Finally, the wheel length also contributes 
to wheel length error where this error is regarded as random noise due to their slow time-
varying characteristics. In this error model system, the random constant noise represents the 
average values of the irregular errors.

         The Error Model for Gyro Sensor
         Inertial navigation uses gyros and accelerometers to measure rate of rotation and ac-
cele-ration respectively. Measurements are integrated once (or twice, for accelerometers) to 
yield position. Inertial navigation systems have the advantage that they are self-contained, 
that is, they donʼt need external references. However, inertial sensor data drift with time 
because of the need to integrate rate data to yield position. The heading angle from a gyro 
sensor with bias drift is represented in Eq. (5).
   

(5)
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ˆ 1
2

ˆ

1
2

ˆ ˆ ˆ

1
W+δW

ˆ ˆ

x(k)=x(k)+δx(k)
y(k)=y(k)+δy(k)
θ(k)=θ(k)+δθ(k)

ˆ
ˆ
ˆ

δx(k+1)=δx(k)+     (Vr(k)+Vl(k))sinθ(k)•Δt•δθ(k)+    cosθ(k)•Δt•δVr(k)+     cosθ(k)•Δt•δVl(k)

δy(k+1)=δy(k)–     (Vr(k)+Vl(k))cosθ(k)•Δt•δθ(k)+    sinθ(k)•Δt•δVr(k)+     sinθ(k)•Δt•δVl(k)

δθ(k+1)=δθ(k)–     (Vl(k)–Vr(k))•Δt•δW–      •Δt•δVr(k)+     •Δt•δVl(k)

1
2

1
2

1
2

1
2
1

W2

1
2

1
2

1
W

1
W

θg(k+1)=θg(k)+ω(k)•Δk+Bbg(k)
θg(k+1)=θg(k)+(ω(k)+δω(k))•Δk+Bg(k)
Bg(k)=Bbg(k)+δBg(k)
θg(k)=θg(k)+δθ(k)

ˆ ˆ
ˆ
ˆ



CMU. Journal (2006) Vol. 5(1)6 CMU. Journal (2006) Vol. 5(1) 7

         where the hat symbol stands for estimation values and δ symbols are added respectively 
for each error. θg(k) is the true heading angle using the gyro sensor. Bg(k) is a gyro bias drift 
and Bbg(k) is the theoretical gyro bias drift. 
   
                                                                                     

(6)
                      

         A heading angle error equation for the gyro sensor is obtained from Eq. (5), as shown 
in Eq. (6). Where w(k) is a system noise, bias drift can be modeled as random noise.

         The Error Model for Accelerometer
         Same as gyro sensor, accelerometer also suffers from extensive drift with time due to 
the twice-integrate rate data to yield position. The mobile robot position from an accelero-
meter with bias drift is represented in Eq. (7).
                                                                                     
                                                                                     

(7)
   

         where Bba(k) is a theoretical bias drift and v(k) is a true velocity of the mobile robot. 
   
   
                                                                                                                                                  

 (8)

         δv(k+1)=δv(k)+δa(k)•Δk+δBa(k)
         δxa(k+1)=δxa(k)–v(k)sinθ(k)Δk•δθ(k)
         +cosθ(k)Δk•δv(k)  (9)
         δya(k+1)=δya(k)+v(k)cosθ(k)Δ(k)•δθ(k)
         +sinθ(k)Δ(k)•δv(k)

         where Ba(k) is an accelerometer bias drift. A position error equation for the accelero-
meter is obtained from Eq. (7) and Eq. (8), as shown in Eq. (9). Bias drift can be modeled as 
random noise.

         Implementation of the Kalman Filtering
         Using the above error models, we design the indirect feedback Kalman filter, (Chui and 
Chen, 1990), as the state equations of the system. 

         x(k+1)=A(k)x(k)+w(k) (10)
   

δθg(k+1)=δθg(k)+δω(k)•Δk+δBg(k)
δBg(k+1)=δBg(k)+w(k)
δω(k+1)=δω(k)+w(k)

v(k+1)=v(k)+a(k)•Δk+Bba(k)
xa(k+1)=xa(k)+v(k)cosθ(k)•Δk
ya(k+1)=ya(k)+v(k)sinθ(k)•Δk

v(k)=v(k)+δv(k)
xa(k)=xa(k)+δxa(k)
ya(k)=ya(k)+δya(k)
Ba(k)=Bba(k)+δBa(k)

ˆ
ˆ
ˆ
ˆ
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         The error model for odometry in Eq. (4), the error model for gyro sensor in Eq. (6) and 
the error model for accelerometer in Eq. (9) are used for Kalman filter state equation as Eq. 
(10).
         where w(k) refers to system noise. Taking the error of positions and heading angle dif-
ference between the angular rates measured by odometry and measured by gyro, and position 
measured by odometry and measured by accelerometer, the measurement equations are giv-
ens by Eq. (11) and Eq. (12).

         •  Odometry and Gyro sensor 
             y1=δθe(k)–δθg(k)+v1  (11)

         •  Odometry and Accelerometer
             y2=δxe(k)–δxg(k)+v2
             y3=δye(k)–δya(k)+v3  (12)
                                                                                              
         where v(k)is measurement noise. It is assumed that w(k) and v(k) are zero-mean Gauss-
ian white noise sequences. A(k) are system matrices.

EXPERIMENT
         Experiment Setup

Figure 4. The Actual 4-Wheel Mobile Robot.
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Figure 5. Structure of the Practical Mobile Robot.

Figure 6. The Experimental Setup.
   
         In our experiment (refer to Figure 4 and Figure 5), basically we used a 4-wheel remote 
control car (TAMIYA made) as a mobile robot, a personal computer and sensors. The 
personal computer was put on the mobile robot and used for signal processing. Then we fixed 
a rotation encoder sensor at the rear wheels. The gyro was installed at the center of rear-wheel 

Traveling path

Mobile robotʼs
Initial position

y[m]

Steering Order

Angular Velocity

Velocity Order Computer

Sensor
Fusion



CMU. Journal (2006) Vol. 5(1)10 CMU. Journal (2006) Vol. 5(1) 11

axle. The accelerometer was installed at center of front-wheel axle. We used a vibration gyro 
ENV-05A type (MURATA made) and 2 axes of the accelerometer ADXL202 type (ANALOG 
DEVICE made). 
         Referring to Figure 6, we set a mobile robot from initial point [0, 0]. The mobile robot 
moved forward using pre-input data of angle and speed calculated by the program. We at-
tached a marker pen at the mobile robot rear section to record the moving path and distance. 
For every 1 m movement in Y-axis, we recorded the gap A, B and C for X-axis and plot in 
graph as a measured value. All sampling times, Δk is 0.01 s. 

         Experimental Results
         We presented the results of experiments which were conducted in our Mechanical 
Faculty lobby. We compared our sensor fusion method with encoder-only method and ac-
celerometer-only method to the actual data measured which are shown in Figure 7. In Figure 
7, the experiments were conducted with input velocity rate and steering angle rate of the 
mobile robot, set to 1.0 m/s and 5.0 deg respectively. Based from Figure 7, the results show 
that our sensor fusion method accumulated the least deviation compared to other methods. 
Therefore, our sensor fusion method is very close to real measurement (measured) from the 
experimental data. 
         In Figure 8, we tried to make a traveling path become more curved with steering angle 
rate set to 10.0 deg. but the input velocity rate was the same as Figure 7. From that, we com-
pared our sensor fusion method to the encoder-only method and the accelerometer-only 
method. Based on those figures, we also got good results for our sensor fusion method which 
showed the least deviation compared to real-measured data in experiments.
         In Figure 9, we used the same path but increased the input velocity of mobile robot as 
v=1.5 m/s. From that figure, it showed that by using accelerometer-only method, it gave the 
worst result but when we changed to our sensor fusion method, it managed to reduce accu-
mulated error substantially. 
         Then we performed the other two experiments. First experiment used only odometry 
sensor and the second experiment integrated the odometry and gyro sensor. We performed 
20 individual, consecutive runs for each experiment. From this experiment results, we com-
pared with our proposed method that integrated the odometry, gyro and acceleration sensors. 
From the measurement, the error of the actual position of mobile robot at the end-running 
with the setting goal of the mobile robot should reach in theory (theory position) at the end 
of these 3 experiments. The results of the average of the error from above experiments are 
summarized in Table 2. From that table, we saw that the improvement provided by previous 
method was relatively small compared to the improvement provided by our proposed meth-
od. This is because our positioning system, using the gyro and accelerometer information for 
calibration, was very accurate and could reduce the accumulative error which occurred 
during traveling with more effectiveness.   

CONCLUSION
         This paper presents a method for improving the dead-reckoning accuracy of a mobile 
robot based on odometry, gyro and accelerometer. From the experimental results, we under-
stand that the accurate position estimation for the mobile robot can be realized by our sensor 
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fusion method. The accumulated error which occurred due to wheel spillage or obstacles on 
the traveling path could be determined and estimated by our method to reduce the robot 
positioning error. 
         We also understand that, from the experiment results, the proposed sensor fusion 
method showed that the generated error was improvable from presuming the position and 
heading angle error which a mobile robot produces when traveling in the path by the error 
model systems. The effectiveness of the proposed sensor fusion method has been shown from 
the experiment results. 

Table 2.   The Average of the Postion Errors between the Actual Measured and Estimation 
                Method at the Last Point of the Mobile Robot.

Figure 7. Position of the Mobile Robot (φ=5 deg, v=1.0 m/s).

Method

Conditions 
(deg), (m/s)

Odometry
only
(cm)

Fusion of
Odometry and Gyro

(cm)

Proposed method
(Error model method)

(cm)

      Φ=5,  v=1.0          14.1                   8.2                               4.6
      Φ=10,                  v=1.0                  5.6                               5.0 4.4
      Φ=10, v=1.5          67.4                  49.4                             47.8
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Figure 8. Position of the Mobile Robot (φ=10 deg, v=1.0 m/s).

Figure 9. Position of the Mobile Robot (φ=5 deg, v=1.5 m/s).
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